1
|
Ma W, Li X. Spinal cord injury repair based on drug and cell delivery: From remodeling microenvironment to relay connection formation. Mater Today Bio 2025; 31:101556. [PMID: 40026622 PMCID: PMC11871491 DOI: 10.1016/j.mtbio.2025.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Spinal cord injury (SCI) presents a formidable challenge in clinical settings, resulting in sensory and motor function loss and imposing significant personal and societal burdens. However, owning to the adverse microenvironment and limited regenerative capacity, achieving complete functional recovery after SCI remains elusive. Additionally, traditional interventions including surgery and medication have a series of limitations that restrict the effectiveness of treatment. Recently, tissue engineering (TE) has emerged as a promising approach for promoting neural regeneration and functional recovery in SCI, which can effectively delivery drugs into injury site and delivery cells and improve the survival and differential. Here, we outline the main pathophysiology events of SCI and the adverse microenvironment post injury, further discuss the materials and common assembly strategies used for scaffolds in SCI treatment, expound on the latest advancements in treatment methods based on materials and scaffolds for drug and cell delivery in detail, and propose future directions for SCI repair with TE and highlight potential clinical applications.
Collapse
Affiliation(s)
- Wanrong Ma
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
| |
Collapse
|
2
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
3
|
Subagio EA, Wicaksono P, Asadullah A, Faris M, Bajamal AH, Susilo I, Abdillah DS. Effectiveness of Pharmacotherapy in Reducing the Inflammation Process of Spinal Cord Injuries: A Systematic Review of Animal Studies. ScientificWorldJournal 2024; 2024:2741367. [PMID: 39564147 PMCID: PMC11576083 DOI: 10.1155/2024/2741367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 11/21/2024] Open
Abstract
Background: Currently, there is no gold standard technique in SCI therapy. Although there have been many systematic reviews on the pharmacological treatment of inflammation in SCI, there has been no published discussion regarding the effectiveness of anti-inflammatory pharmacotherapy when viewed from a neuroinflammatory pathway. This research aimed to examine an effective and reliable medication for decreasing inflammation in SCI and, where possible, identify effective pharmacotherapeutic treatment protocols. Methods: We searched SCOPUS, PubMed, PlosOne, and Science Direct, for experimental trials published in English. The keywords included (Pharmacotherapy OR pharmacology OR treatment) AND (traumatic spinal cord injury OR spinal cord OR traumatic OR hemisection of spinal cord OR compression OR traumatic spinal cord injury OR aneurysm clip OR hemisection of spinal cord OR sharp pin injury) AND (Side Effect therapy). In addition, the Basso-Beattie-Bresnahan (BBB) score was used to assess post-SCI clinical progress. Results: Twelve pilot studies met the inclusion criteria. The highest BBB score was 15, and the best animal performance was tested after the average therapy was on the second week or 14th day. Three pharmacotherapies have fast effectiveness regarding BBB scores: calcitriol, lithium, and valproic acid. As well as a combination of pharmacotherapy therapy with surgical therapy also get significant results. Conclusions: The preliminary findings showed that many inflammatory pathways cause inflammatory agents to have their pathways for inhibition pathways, so they have different ways.
Collapse
Affiliation(s)
- Eko Agus Subagio
- Department of Neurosurgery, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Pandu Wicaksono
- Department of Neurosurgery, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Asadullah Asadullah
- Department of Neurosurgery, Brain and Spine Center, Mitra Keluarga Hospital, Surabaya, Indonesia
| | - Muhammad Faris
- Department of Neurosurgery, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Susilo
- Department of Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diaz Syafrie Abdillah
- Faculty of Medicine, Universitas Nahdlatul Ulama Surabaya, Bisui General Hospital, South Halmahera, Indonesia
| |
Collapse
|
4
|
Liu Y, Zhao C, Zhang R, Pang Y, Li L, Feng S. Progression of mesenchymal stem cell regulation on imbalanced microenvironment after spinal cord injury. Stem Cell Res Ther 2024; 15:343. [PMID: 39354635 PMCID: PMC11446099 DOI: 10.1186/s13287-024-03914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Spinal cord injury (SCI) results in significant neural damage and inhibition of axonal regeneration due to an imbalanced microenvironment. Extensive evidence supports the efficacy of mesenchymal stem cell (MSC) transplantation as a therapeutic approach for SCI. This review aims to present an overview of MSC regulation on the imbalanced microenvironment following SCI, specifically focusing on inflammation, neurotrophy and axonal regeneration. The application, limitations and future prospects of MSC transplantation are discussed as well. Generally, a comprehensive perspective is provided for the clinical translation of MSC transplantation for SCI.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Chenxi Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Rong Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Yilin Pang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Linquan Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China.
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China.
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
5
|
Roy A, Sen S, Das R, Shard A, Kumar H. Modulation of the LIMK Pathway by Myricetin: A Protective Strategy Against Neurological Impairments in Spinal Cord Injury. Neurospine 2024; 21:878-889. [PMID: 39363468 PMCID: PMC11456951 DOI: 10.14245/ns.2448546.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Spinal cord injury (SCI), one of the major disabilities concerning central nervous system injury, results in permanent tissue loss and neurological impairment. The existing therapeutic options for SCI are limited and predominantly consist of chemical compounds. In this study, we delved into the neuroprotective effects of myricetin, a natural flavonoid compound, and the underlying mechanisms, specifically in the context of SCI, utilizing an in vivo model. Previously, our investigations revealed an elevation in the phosphorylated form of Lin-11, Isl-1, and Mec-3 kinase1 (LIMK1) at chronic time points postinjury, coinciding with neuronal loss and scar formation. Our primary objective here was to assess the potential neuroprotective properties of myricetin in SCI and to ascertain if these effects were linked to LIMK inhibition, a hitherto unexamined pathway to date. METHODS Computational docking and molecular dynamics simulation studies were performed to assess myricetin's potential to bind with LIMK. Then, using a rat contusion model, SCI was induced and different molecular techniques (Western blot, Evans Blue assay, quantitative reverse transcription polymerase chain reaction and immunohistochemistry) were performed to determine the effects of myricetin. RESULTS Remarkably, computational docking models identified myricetin as having a better interaction profile with LIMK than standard. Subsequent to myricetin treatment, a significant downregulation in phosphorylated LIMK expression was observed at chronic time points. This reduction correlated with a notable decrease in glial and fibrotic scar formation, and enhanced neuroprotection indicating a positive outcome in vivo. CONCLUSION In summary, our findings underscore myricetin's potential as a bioactive compound capable of attenuating SCI-induced injury cascades by targeting the LIMK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| |
Collapse
|
6
|
Ozaydin D, Kuru Bektaşoğlu P, Türe D, Bozkurt H, Ergüder Bİ, Sargon MF, Arıkök AT, Kertmen H, Gürer B. Mildronate Has Ameliorative Effects on the Experimental Ischemia/Reperfusion Injury Model in the Rabbit Spinal Cord. World Neurosurg 2023; 173:e717-e726. [PMID: 36889637 DOI: 10.1016/j.wneu.2023.02.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Mildronate is a useful anti-ischemic agent and has antiinflammatory, antioxidant, and neuroprotective activities. The aim of this study is to investigate the potential neuroprotective effects of mildronate in the experimental rabbit spinal cord ischemia/reperfusion injury (SCIRI) model. METHODS Rabbits were randomized into 5 groups of 8 animals as groups 1 (control), 2 (ischemia), 3 (vehicle), 4 (30 mg/kg methylprednisolone [MP]), and 5 (100 mg/kg mildronate). The control group underwent only laparotomy. The other groups have the spinal cord ischemia model by a 20-minute aortic occlusion just caudal to the renal artery. The malondialdehyde and catalase levels and caspase-3, myeloperoxidase, and xanthine oxidase activities were investigated. Neurologic, histopathologic, and ultrastructural evaluations were also performed. RESULTS The serum and tissue myeloperoxidase, malondialdehyde, and caspase-3 values of the ischemia and vehicle groups were statistically significantly higher than those of the MP and mildronate groups (P < 0.001). Serum and tissue catalase values of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001). The histopathologic evaluation showed a statistically significantly lower score in the mildronate and MP groups than in the ischemia and vehicle groups (P < 0.001). The modified Tarlov scores of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001). CONCLUSIONS This study presented the antiinflammatory, antioxidant, antiapoptotic, and neuroprotective effects of mildronate on SCIRI. Future studies will elucidate its possible use in clinical settings in SCIRI.
Collapse
Affiliation(s)
- Dilan Ozaydin
- Department of Neurosurgery, Kartal Dr. Lutfi Kırdar Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Durukan Türe
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Toros University, Mersin, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Dışkapı Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Berrin İmge Ergüder
- Ankara University School of Medicine, Department of Biochemistry, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Lokman Hekim University School of Medicine, Department of Anatomy, Ankara, Turkey
| | - Ata Türker Arıkök
- University of Health Sciences, Dışkapı Education and Research Hospital, Department of Pathology, Ankara, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, Dışkapı Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
7
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
8
|
Acute Traumatic Myelopathy: Rethinking Central Cord Syndrome. J Am Acad Orthop Surg 2022; 30:1099-1107. [PMID: 36400056 DOI: 10.5435/jaaos-d-22-00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Central cord syndrome (CCS) is an incomplete spinal cord injury that consists of both sensory and motor changes of the upper and lower extremities. CCS most commonly occurs after trauma to the cervical spine leading to acute neurological changes. Despite being the most common incomplete spinal cord injury with the best outcomes, optimal treatment remains controversial. Although clinical practice has shifted from primarily conservative management to early surgical intervention, many questions remain unanswered and treatment remains varied. One of the most limiting aspects of CCS remains the diagnosis itself. CCS, by definition, is a syndrome with a very specific pattern of neurological deficits. In practice and in the literature, CCS has been used to describe a spectrum of neurological conditions and traumatic morphologies. Establishing clarity will allow for more accurate decision making by clinicians involved in the care of these injuries. The authors emphasize that a more precise term for the clinical condition in question is acute traumatic myelopathy: an acute cervical cord injury in the setting of a stable spine with either congenital and/or degenerative stenosis.
Collapse
|
9
|
Mech D, Korgol K, Kurowska A, Adamski B, Miazga M, Biala G, Kruk-Slomka M. Promising Advances in Pharmacotherapy for Patients with Spinal Cord Injury-A Review of Studies Performed In Vivo with Modern Drugs. J Clin Med 2022; 11:jcm11226685. [PMID: 36431161 PMCID: PMC9698573 DOI: 10.3390/jcm11226685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is a pathological neurological condition that leads to significant motor dysfunction. It is a condition that occurs as a result of tragic accidents, violent acts, or as a consequence of chronic diseases or degenerative changes. The current treatments for patients with SCI have moderate efficacy. They improve the quality of life of patients, but they are still doomed to long-term disability. In response to the modern directions of research on possible therapeutic methods that allow for the recovery of patients with SCI, a scientific review publication is needed to summarize the recent developments in this topic. The following review is focused on the available pharmacological treatments for SCIs and the problems that patients face depending on the location of the injury. In the following review, the research team describes problems related to spasticity and neuropathic pain; possible therapeutic pathways are also described for neuroprotection and the improvement of neurotransmission within the injured spinal cord, and the review focuses on issues related to oxidative stress.
Collapse
Affiliation(s)
- Dominika Mech
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Katarzyna Korgol
- Student Clubs and Organizations, Department of Pharmacognosy and Pharmaceutical Botany, Medical University of Lublin, Chodzki 1 Street, 20-400 Lublin, Poland
| | - Antonina Kurowska
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Bartlomiej Adamski
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Malgorzata Miazga
- Student Clubs and Organizations, Department of Pharmacognosy and Pharmaceutical Botany, Medical University of Lublin, Chodzki 1 Street, 20-400 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-8-1448-7258; Fax: +48-8-1448-7252
| |
Collapse
|
10
|
Codelivery of minocycline hydrochloride and dextran sulfate via bionic liposomes for the treatment of spinal cord injury. Int J Pharm 2022; 628:122285. [DOI: 10.1016/j.ijpharm.2022.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022]
|
11
|
Hoffman SE, Hauser BM, Zaki MM, Gupta S, Chua M, Bernstock JD, Khawaja AM, Smith TR, Zaidi HA. Spinal level and cord involvement in the prediction of sepsis development after vertebral fracture repair for traumatic spinal injury. J Neurosurg Spine 2022; 37:292-298. [PMID: 35120317 PMCID: PMC9349473 DOI: 10.3171/2021.12.spine21423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/16/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Despite understanding the associated adverse outcomes, identifying hospitalized patients at risk for sepsis is challenging. The authors aimed to characterize the epidemiology and clinical risk of sepsis in patients who underwent vertebral fracture repair for traumatic spinal injury (TSI). METHODS The authors conducted a retrospective cohort analysis of adults undergoing vertebral fracture repair during initial hospitalization after TSI who were registered in the National Trauma Data Bank from 2011 to 2014. RESULTS Of the 29,050 eligible patients undergoing vertebral fracture repair, 317 developed sepsis during initial hospitalization. Of these patients, most presented after a motor vehicle accident (63%) or fall (28%). Patients in whom sepsis developed had greater odds of being male (adjusted OR [aOR] 1.5, 95% CI 1.1-1.9), having diabetes mellitus (aOR 1.5, 95% CI 1.11-2.1), and being obese (aOR 1.9, 95% CI 1.4-2.5). Additionally, they had greater odds of presenting with moderate (aOR 2.7, 95% CI 1.8-4.2) or severe (aOR 3.9, 95% CI 2.9-5.2) Glasgow Coma Scale scores and of having concomitant abdominal injuries (aOR 1.9, 95% CI 1.5-2.5) but not cranial, thoracic, or lower-extremity injuries. Interestingly, cervical spine injury was significantly associated with developing sepsis (OR 1.4, 95% CI 1.1-1.8), but thoracic and lumbar spine injuries were not. Spinal cord injury (OR 1.9, 95% CI 1.5-2.5) was also associated with sepsis regardless of level. Patients with sepsis were hospitalized approximately 16 days longer. They had greater odds of being discharged to rehabilitative care or home with rehabilitative care (OR 2.4, 95% CI 1.8-3.2) and greater odds of death or discharge to hospice (OR 6.0, 95% CI 4.4-8.1). CONCLUSIONS Among patients undergoing vertebral fracture repair, those with cervical spine fractures, spinal cord injuries, preexisting comorbidities, and severe concomitant injuries are at highest risk for developing postoperative sepsis and experiencing adverse hospital disposition.
Collapse
Affiliation(s)
- Samantha E. Hoffman
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Blake M. Hauser
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Mark M. Zaki
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Saksham Gupta
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Melissa Chua
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Joshua D. Bernstock
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Ayaz M. Khawaja
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Timothy R. Smith
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Hasan A. Zaidi
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
12
|
Lu D, Yang Y, Zhang P, Ma Z, Li W, Song Y, Feng H, Yu W, Ren F, Li T, Zeng H, Wang J. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury. Tissue Eng Regen Med 2022; 19:1113-1127. [PMID: 35767151 DOI: 10.1007/s13770-022-00465-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury (SCI) is a disabling and destructive central nervous system injury that has not yet been successfully treated at this stage. Three-dimensional (3D) bioprinting has become a promising method to produce more biologically complex microstructures, which fabricate living neural constructs with anatomically accurate complex geometries and spatial distributions of neural stem cells, and this is critical in the treatment of SCI. With the development of 3D printing technology and the deepening of research, neural tissue engineering research using different printing methods, bio-inks, and cells to repair SCI has achieved certain results. Although satisfactory results have not yet been achieved, they have provided novel ideas for the clinical treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focuses on 3D bioprinting methods widely used in SCI neural tissue engineering, and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed. In addition to introducing the recent progress, this work also describes the existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- Dezhi Lu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yang Yang
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Shandong, 250000, China
| | - Pingping Zhang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Song
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Haiyang Feng
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Wenqiang Yu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Fuchao Ren
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Tao Li
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Hong Zeng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
13
|
Dolma S, Adhikari K, Mamidi T, Roy A, Pathak Z, Kumar H. Ethamsylate Attenuates Mutilated Secondary Pathogenesis and Exhibits a Neuroprotective Role in Experimental Model of Spinal Cord Injury. Neuroscience 2022; 484:26-37. [PMID: 34995714 DOI: 10.1016/j.neuroscience.2021.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Deficits in the neuronal connection that succumbs to the impairment of sensory and motor neurons are the hallmarks of spinal cord injury (SCI). Secondary pathogenesis, which initiates after the primary mechanical insult to the spinal cord, depicts a pivotal role in producing inflammation, lesion formation and ultimately causes fibrotic scar formation in the chronic period. This fibrotic scar formed acts as a major hindrance in facilitating axonal regeneration and is one of the root causes of motor impairment. Cascade of secondary events in SCI begins with injury-induced blood spinal cord barrier rupture that promotes increased migration of neutrophils, macrophages, and other inflammatory cells at the injury site to initiate the secondary damages. This phenomenon leads to the release of matrix metalloproteinase, cytokines and chemokines, reactive oxygen species, and other proteolytic enzymes at the lesion site. These factors assist in the activation of the TGF-β1 signaling pathway, which further leads to excessive proliferation of perivascular fibroblast, followed by deposition of collagen and fibronectin matrix, which are the main components of the fibrotic scar. Subsequently, this scar formed inhibits the propagation of action potential from one neuron to adjacent neurons. Ethamsylate, an anti-hemorrhagic drug, has the potential to maintain early hemostasis as well as restore capillary resistance. Therefore, we hypothesized that ethamsylate, by virtue of its anti-hemorrhagic activity, reduces hemorrhagic ischemia-induced neuronal apoptosis, maintains the blood spinal cord barrier integrity, and decreases secondary damage severity, thereby reduce the extent of fibrotic scar formation, and demonstrates a neuroprotective role in SCI.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Kirti Adhikari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Teena Mamidi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
14
|
Gensel JC, Orr MB. Reflections on Data Sharing Practices in Spinal Cord Injury Research. Neuroinformatics 2022; 20:3-6. [PMID: 33454872 PMCID: PMC8282785 DOI: 10.1007/s12021-020-09498-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 01/05/2023]
Abstract
There are few pharmacological therapeutics available for spinal cord injury despite years of preclinical and clinical research. This brief editorial discusses some of the shortcomings of translational research efforts. In addition, we comment on our previous experiences with data curation and highlight evolving efforts by the spinal cord injury research community to improve prospects for future therapeutic development, especially pertaining to preclinical data sharing through the Open Data Commons for Spinal Cord Injury (ODC-SCI).
Collapse
Affiliation(s)
- John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky Medical School, Lexington, KY, USA.
| | - Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky Medical School, Lexington, KY, USA
- Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Furlan D, Deana C, Orso D, Licari M, Cappelletto B, DE Monte A, Vetrugno L, Bove T. Perioperative management of spinal cord injury: the anesthesiologist's point of view. Minerva Anestesiol 2021; 87:1347-1358. [PMID: 34874136 DOI: 10.23736/s0375-9393.21.15753-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is one of the most devastating events a person can experience. It may be life-threatening or result in long-term disability. This narrative review aims to delineate a systematic step-wise airways, breathing, circulation and disability (ABCD) approach to perioperative patient management during spinal cord surgery in order to fill some of the gaps in our current knowledge. METHODS We performed a comprehensive review of the literature regarding the perioperative management of traumatic spinal injuries from May 15, 2020, to December 13, 2020. We consulted the PubMed and Embase database libraries. RESULTS Videolaryngoscopy supplements the armamentarium available for airway management. Optical fiberscope use should be evaluated when intubating awake patients. Respiratory complications are frequent in the acute phase of traumatic spinal injury, with an estimated incidence of 36-83%. Early tracheostomy can be considered for expected difficult weaning from mechanical ventilation. Careful intraoperative management of administered fluids should be pursued to avoid complications from volume overload. Neuromonitoring requires investments in staff training and cooperation, but better outcomes have been obtained in centers where it is routinely applied. The prone position can cause rare but devastating complications, such as ischemic optic neuropathy; thus, the anesthetist should take the utmost care in positioning the patient. CONCLUSIONS A one-size fit all approach to spinal surgery patients is not applicable due to patient heterogeneity and the complexity of the procedures involved. The neurologic outcome of spinal surgery can be improved, and the incidence of complications reduced with better knowledge of patient-specific aspects and individualized perioperative management.
Collapse
Affiliation(s)
- Davide Furlan
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Cristian Deana
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy
| | - Daniele Orso
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Maurizia Licari
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy
| | - Barbara Cappelletto
- Section of Spine and Spinal Cord Surgery, Department of Neurological Sciences, ASUFC University Hospital of Udine, Udine, Italy
| | - Amato DE Monte
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy
| | - Luigi Vetrugno
- Department of Medicine (DAME), University of Udine, Udine, Italy - .,Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy
| | - Tiziana Bove
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy
| |
Collapse
|
16
|
Lin GH, Shih YL. Paraplegia following transarterial chemoembolisation for hepatocellular carcinoma: a case report. Acta Chir Belg 2021; 121:437-440. [PMID: 32031042 DOI: 10.1080/00015458.2020.1726097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Transarterial chemoembolisation (TACE) is considered standard treatment for intermediate-stage hepatocellular carcinoma (HCC). Although TACE is viewed as a safe and effective procedure, it may still present with various complications, including spinal cord injury, though very rarely. METHODS A 74-year-old male was diagnosed with non-B, non-C HCC, segment 4, cT2N0M0, AJCC stage II, BCLC stage B. Angiography had shown a hypervascular tumour stain indicating that both T10 and T11 were tumour-feeding arteries, TACE then performed. After TACE, loss of sensation and motor functions involving the trunk below the umbilicus and both lower extremities were noted. The patient immediately underwent steroid pulse therapy. However, 100 days after TACE, the symptoms showed no improvement. DISCUSSION Because of anatomy and neurological distribution, it is conceivable that the embolic materials originating from the TACE procedure might have led to an embolic event with a serious manifestation, although the blood supply of the spinal cord encompasses multiple anastomoses. CONCLUSION Spinal cord injury is an extremely rare but grave complication of TACE. Paraplegia may result from inadvertent embolisation of spinal branches arising from intercostal or lumbar collateral vessels. This case highlights the necessity of evaluating and choosing the vessels before starting TACE to achieve a good outcome.
Collapse
Affiliation(s)
- Gang-Hua Lin
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
17
|
Enduring glucocorticoid-evoked exacerbation of synaptic plasticity disruption in male rats modelling early Alzheimer's disease amyloidosis. Neuropsychopharmacology 2021; 46:2170-2179. [PMID: 34188184 PMCID: PMC8505492 DOI: 10.1038/s41386-021-01056-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Synaptic dysfunction is a likely proximate cause of subtle cognitive impairment in early Alzheimer's disease. Soluble oligomers are the most synaptotoxic forms of amyloid ß-protein (Aß) and mediate synaptic plasticity disruption in Alzheimer's disease amyloidosis. Because the presence and extent of cortisol excess in prodromal Alzheimer's disease predicts the onset of cognitive symptoms we hypothesised that corticosteroids would exacerbate the inhibition of hippocampal synaptic long-term potentiation in a rat model of Alzheimer's disease amyloidosis. In a longitudinal experimental design using freely behaving pre-plaque McGill-R-Thy1-APP male rats, three injections of corticosterone or the glucocorticoid methylprednisolone profoundly disrupted long-term potentiation induced by strong conditioning stimulation for at least 2 months. The same treatments had a transient or no detectible detrimental effect on synaptic plasticity in wild-type littermates. Moreover, corticosterone-mediated cognitive dysfunction, as assessed in a novel object recognition test, was more persistent in the transgenic animals. Evidence for the involvement of pro-inflammatory mechanisms was provided by the ability of the selective the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome inhibitor Mcc950 to reverse the synaptic plasticity deficit in corticosterone-treated transgenic animals. The marked prolongation of the synaptic plasticity disrupting effects of brief corticosteroid excess substantiates a causal role for hypothalamic-pituitary-adrenal axis dysregulation in early Alzheimer's disease.
Collapse
|
18
|
Kim S. Meta-analysis of the Effectiveness of Steroid Pulse Therapy in Treating Patients with Spinal Cord Injury. Open Nurs J 2021. [DOI: 10.2174/1874434602115010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
High-dose steroid injection therapy is effective in reducing anti-inflammation and edema and is often used to treat patients with acute spinal cord injury. To evaluate the effectiveness of steroid pulse therapy and identify the factors that affect its effectiveness in patients with acute traumatic spinal cord injury.
Methods:
A comprehensive literature search of the databases Pubmed, Medline, the Cochrane Central Register of Controlled Trials, Embase, and CINAHL was performed on July 31, 2019, with no language and time limits. For analysis, studies conducted within the last 10 years were included to reflect on the recent trend.
Results:
A total of 3 randomized controlled trials and 5 observational studies with 2418 patients were included in this meta-analysis. High-dose steroid injection therapy was found to have a high effect on patients with acute spinal cord injury. The following factors had a strong influence on the effectiveness of high-dose steroid treatment in patients with acute spinal cord injuries: injury, onset ASIA, onset neurological assessment scales, time to start treatment after injury, age, BMI, and gender.
Conclusion:
It is necessary to accurately assess the scope of spinal injury in the early stages and actively provide nursing interventions to identify and mediate factors affecting the treatment effect.
Collapse
|
19
|
Torabi S, Anjamrooz SH, Zeraatpisheh Z, Aligholi H, Azari H. Ibrutinib reduces neutrophil infiltration, preserves neural tissue and enhances locomotor recovery in mouse contusion model of spinal cord injury. Anat Cell Biol 2021; 54:350-360. [PMID: 34031271 PMCID: PMC8493027 DOI: 10.5115/acb.20.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
Following acute spinal cord injury (SCI), excessive recruitment of neutrophils can result in inflammation, neural tissue loss and exacerbation of neurological outcomes. Ibrutinib is a bruton's tyrosine kinase inhibitor in innate immune cells such as the neutrophils that diminishes their activation and influx to the site of injury. The present study evaluated the efficacy of ibrutinib administration in the acute phase of SCI on neural tissue preservation and locomotor recovery. Ibrutinib was delivered intravenously at 3.125 mg/kg either immediately, 12 hours after, or both immediately and 12 hours after SCI induction in adult male C57BL/6 mice. Neutrophil influx into the lesion area was evaluated 24 hours following SCI using light microscopy and immunohistochemistry methods. Animals' body weight changes were recorded, and their functional motor recovery was assessed based on the Basso mouse scale during 28 days after treatment. Finally, spinal cord lesion volume was estimated by an unbiased stereological method. While animals' weight in the control group started to increase one week after injury, it stayed unchanged in treatment groups. However, the double injection of ibrutinib led to a significantly lower body weight compared to the control group at 4 weeks post-injury. Mean neutrophil counts per visual field and the lesion volume were significantly decreased in all ibrutinib-treated groups. In addition, ibrutinib significantly improved locomotor functional recovery in all treated groups, especially in immediate and double-injection groups. Neural tissue protection and locomotor functional recovery suggest ibrutinib treatment as a potent immunotherapeutic intervention for traumatic SCI that warrants clinical testing.
Collapse
Affiliation(s)
- Somayyeh Torabi
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hadi Anjamrooz
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Azari
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Peripheral Immune Dysfunction: A Problem of Central Importance after Spinal Cord Injury. BIOLOGY 2021; 10:biology10090928. [PMID: 34571804 PMCID: PMC8470244 DOI: 10.3390/biology10090928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Spinal cord injury can result in an increased vulnerability to infections, but until recently the biological mechanisms behind this observation were not well defined. Immunosuppression and concurrent sustained peripheral inflammation after spinal cord injury have been observed in preclinical and clinical studies, now termed spinal cord injury-induced immune depression syndrome. Recent research indicates a key instigator of this immune dysfunction is altered sympathetic input to lymphoid organs, such as the spleen, resulting in a wide array of secondary effects that can, in turn, exacerbate immune pathology. In this review, we discuss what we know about immune dysfunction after spinal cord injury, why it occurs, and how we might treat it. Abstract Individuals with spinal cord injuries (SCI) exhibit increased susceptibility to infection, with pneumonia consistently ranking as a leading cause of death. Despite this statistic, chronic inflammation and concurrent immune suppression have only recently begun to be explored mechanistically. Investigators have now identified numerous changes that occur in the peripheral immune system post-SCI, including splenic atrophy, reduced circulating lymphocytes, and impaired lymphocyte function. These effects stem from maladaptive changes in the spinal cord after injury, including plasticity within the spinal sympathetic reflex circuit that results in exaggerated sympathetic output in response to peripheral stimulation below injury level. Such pathological activity is particularly evident after a severe high-level injury above thoracic spinal cord segment 6, greatly increasing the risk of the development of sympathetic hyperreflexia and subsequent disrupted regulation of lymphoid organs. Encouragingly, studies have presented evidence for promising therapies, such as modulation of neuroimmune activity, to improve regulation of peripheral immune function. In this review, we summarize recent publications examining (1) how various immune functions and populations are affected, (2) mechanisms behind SCI-induced immune dysfunction, and (3) potential interventions to improve SCI individuals’ immunological function to strengthen resistance to potentially deadly infections.
Collapse
|
21
|
Srinivasan G, Moses V, Padmanabhan A, Ahmed M, Keshava SN, Krishnan V, Joseph BV, Raju KP, Rajshekhar V. Utility of spinal angiography and arterial embolization in patients undergoing CT guided alcohol injection of aggressive vertebral hemangiomas. Neuroradiology 2021; 63:1935-1945. [PMID: 34427707 DOI: 10.1007/s00234-021-02788-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The purpose of this study is to evaluate the role of spinal angiography and arterial embolization in avoiding spinal cord ischemia in patients undergoing CT-guided alcohol injection of aggressive vertebral hemangiomas. METHODS In this retrospective study, patients with vertebral hemangioma who underwent CT-guided direct alcohol injection between January 2007 and October 2018 were identified. Of 28 such patients, 26 had neurological deficits, and 2 had only back pain or radiculopathy. Direct alcohol injection without prior arterial embolization was done in 17 patients. Direct alcohol injection with prior arterial embolization was done in 11 patients. Clinical outcome was assessed immediately after the intervention and at follow-up. RESULTS Three patients, who underwent alcohol injection without trans-arterial embolization, had worsening of neurological deficits in the post procedure period due to spinal cord ischemia. No complications related to spinal cord ischemia were noted in the embolization group. There was no significant difference in the outcomes between the two groups if the three patients with complications are excluded (p = 0.34). CONCLUSION While CT-guided direct alcohol injection is effective in the management of symptomatic and aggressive vertebral hemangiomas, spinal angiography and trans-arterial embolization of the blood supply to the vertebral body hemangioma, prior to the direct transpedicular alcohol embolization of the lesion, improves the safety of the procedure.
Collapse
Affiliation(s)
| | - Vinu Moses
- Radiology, Christian Medical College, Vellore, 632004, India
| | | | - Munawwar Ahmed
- Radiology, Christian Medical College, Vellore, 632004, India
| | | | | | | | | | | |
Collapse
|
22
|
Tejeda G, Ciciriello AJ, Dumont CM. Biomaterial Strategies to Bolster Neural Stem Cell-Mediated Repair of the Central Nervous System. Cells Tissues Organs 2021; 211:655-669. [PMID: 34120118 DOI: 10.1159/000515351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 01/25/2023] Open
Abstract
Stem cell therapies have the potential to not only repair, but to regenerate tissue of the central nervous system (CNS). Recent studies demonstrate that transplanted stem cells can differentiate into neurons and integrate with the intact circuitry after traumatic injury. Unfortunately, the positive findings described in rodent models have not been replicated in clinical trials, where the burden to maintain the cell viability necessary for tissue repair becomes more challenging. Low transplant survival remains the greatest barrier to stem cell-mediated repair of the CNS, often with fewer than 1-2% of the transplanted cells remaining after 1 week. Strategic transplantation parameters, such as injection location, cell concentration, and transplant timing achieve only modest improvements in stem cell transplant survival and appear inconsistent across studies. Biomaterials provide researchers with a means to significantly improve stem cell transplant survival through two mechanisms: (1) a vehicle to deliver and protect the stem cells and (2) a substrate to control the cytotoxic injury environment. These biomaterial strategies can alleviate cell death associated with delivery to the injury and can be used to limit cell death after transplantation by limiting cell exposure to cytotoxic signals. Moreover, it is likely that control of the injury environment with biomaterials will lead to a more reliable support for transplanted cell populations. This review will highlight the challenges associated with cell delivery in the CNS and the advances in biomaterial development and deployment for stem cell therapies necessary to bolster stem cell-mediated repair.
Collapse
Affiliation(s)
- Giancarlo Tejeda
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|
23
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
24
|
|
25
|
Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2020; 226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of morbidity and disability in the world. Over the past few decades, the exact molecular mechanisms describing secondary, persistent injuries, as well as primary and transient injuries, have attracted massive attention to the clinicians and researchers. Recent investigations have distinctly shown the critical roles of innate and adaptive immune responses in regulating sterile neuroinflammation and functional outcomes after SCI. In past years, some promising advances in immunotherapeutic options have efficaciously been identified for the treatment of SCI. In our narrative review, we have mainly focused on the new therapeutic strategies such as the maturation and apoptosis of immune cells by several agents, mesenchymal stem cells (MSCs) as well as multi-factor combination therapy, which have recently provided novel ideas and prospects for the future treatment of SCI. This article also illustrates the latest progress in clarifying the potential roles of innate and adaptive immune responses in SCI, the progression and specification of prospective immunotherapy and outstanding issues in the area.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Khadija Tul Kubra
- Department of Pharmacy, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jaheda Akter
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chattogram-4318, Chittagong, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka 1229, Bangladesh
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China.
| |
Collapse
|
26
|
Zimmermann R, Vieira Alves Y, Sperling LE, Pranke P. Nanotechnology for the Treatment of Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:353-365. [PMID: 33135599 DOI: 10.1089/ten.teb.2020.0188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) affects the central nervous system (CNS) and there is currently no treatment with the potential for rehabilitation. Although several clinical treatments have been developed, they are still at an early stage and have not shown success in repairing the broken fiber, which prevents cellular regeneration and integral restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering for neural tissue injuries, this review focuses on the latest advances in nanotechnology for SCI treatment and tissue repair. The PubMed database was used for the bibliographic survey. Initial research using the following keywords "tissue engineering and spinal cord injury" revealed 970 articles published in the last 10 years. The articles were further analyzed, excluding those not related to SCI or with results that did not pertain to the field of interest, including the reviews. It was observed that a total of 811 original articles used the quoted keywords. When the word "treatment" was added, 662 articles were found and among them, 529 were original ones. Finally, when the keywords "Nanotechnology and spinal cord injury" were used, 102 articles were found, 65 being original articles. A search concerning the biomaterials used for SCI found 700 articles with 589 original articles. A total of 107 articles were included in the discussion of this review and some are used for the theoretical framework. Recent progress in nanotechnology and tissue engineering has shown promise for repairing CNS damage. A variety of in vivo animal testing for SCI has been used with or without cells and some of these in vivo studies have shown successful results. However, there is no translation to humans using nanotechnology for SCI treatment, although there is one ongoing trial that employs a tissue engineering approach, among other technologies. The first human surgical scaffold implantation will elucidate the possibility of this use for further clinical trials. This review concludes that even though tissue engineering and nanotechnology are being investigated as a possibility for SCI treatment, tests with humans are still in the theoretical stage. Impact statement Thousands of people are affected by spinal cord injury (SCI) per year in the world. This type of lesion is one of the most severe conditions that can affect humans and usually causes permanent loss of strength, sensitivity, and motor function below the injury site. This article reviews studies on the PubMed database, assessing the publications on SCI in the study field of tissue engineering, focusing on the use of nanotechnology for the treatment of SCI. The review makes an evaluation of the biomaterials used for the treatment of this condition and the techniques applied for the production of nanostructured biomaterials.
Collapse
Affiliation(s)
- Rafaela Zimmermann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yuri Vieira Alves
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura E Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Health School, Faculty of Medicine, UNISINOS, São Leopoldo, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Research Institute, Porto Alegre, Brazil
| |
Collapse
|
27
|
Mirzaei F, Meshkini A, Habibi B, Salehpour F, Rafei E, Fathi W, Alavi SHN, Majdi A, Rahigh Aghasan S, Naseri Alavi SA. Ceftriaxone Plus Methylprednisolone Combination Therapy Versus Methylprednisolone Monotherapy in Patients With Acute Spinal Cord Injury: A Randomized, Triple-Blind Clinical Trial. Int J Spine Surg 2020; 14:706-712. [PMID: 33077437 PMCID: PMC7671452 DOI: 10.14444/7102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Guidelines do not suggest the routine use of methylprednisolone (MP) in patients with acute traumatic spinal cord injury (SCI). We tested the hypothesis regarding whether combination therapy with ceftriaxone and MP is superior to MP monotherapy in patients with acute traumatic SCI. METHODS In a randomized, triple-blind clinical trial, 60 patients with acute (first 8 hours of the injury) traumatic SCI were enrolled at the Tabriz University of Medical Sciences, Tabriz, Iran, between December 2016 and June 2017. Accordingly, the patients were randomly divided into 2 case and control groups (n = 30 each). Upon admission, all included patients received a bolus dose of MP at 33 mg/kg intravenously (IV) for 15 minutes. Then, after 45 minutes, MP infusion was continued for 24 to 48 hours at a 5.4 mg/kg IV dose. The case group received an additional dose of ceftriaxone at 1 g 2 times a day for 7 days through an IV route. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were checked and compared between case and control groups upon admission and on the fourth and eighth days. Also, sensory and motor functions were evaluated according to the American Spinal Injury Association (ASIA) grading score upon admission, on the third and seventh days, upon discharge and 6 months after admission. RESULTS Analyses showed a significant statistical difference between groups in the changes in CRP levels during days 1 and 4 (P = .001) and also during days 4 and 8 (P = .001). However, no significant statistical difference was detected in ESR levels changes between groups during days 1 and 4 (P = .073), and during days 4 and 8 (P = .069). ASIA scale was found to be significantly different between the MP plus ceftriaxone group and MP monotherapy upon admission and 6 months after treatment (P = .001 for both comparisons). However, the number of variations in the ASIA score had no significant statistical difference between groups 6 months after intervention (P = .465). CONCLUSION The addition of ceftriaxone to the routine therapeutic protocol of acute SCI is accompanied by improved inflammation markers and functional outcomes 6 months after the intervention.
Collapse
Affiliation(s)
- Farhad Mirzaei
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Meshkini
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bohlool Habibi
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firooz Salehpour
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Rafei
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Wouria Fathi
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Majdi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Rahigh Aghasan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ahmad Naseri Alavi
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci 2020; 10:112. [PMID: 32983406 PMCID: PMC7510077 DOI: 10.1186/s13578-020-00475-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background Spinal cord injury (SCI) is the damage to the spinal cord that can lead to temporary or permanent loss of function due to injury to the nerve. The SCI patients are often associated with poor quality of life. Results This review discusses the current status of mesenchymal stem cell (MSC) therapy for SCI, criteria to considering for the application of MSC therapy and novel biological therapies that can be applied together with MSCs to enhance its efficacy. Bone marrow-derived MSCs (BMSCs), umbilical cord-derived MSCs (UC-MSCs) and adipose tissue-derived MSCs (ADSCs) have been trialed for the treatment of SCI. Application of MSCs may minimize secondary injury to the spinal cord and protect the neural elements that survived the initial mechanical insult by suppressing the inflammation. Additionally, MSCs have been shown to differentiate into neuron-like cells and stimulate neural stem cell proliferation to rebuild the damaged nerve tissue. Conclusion These characteristics are crucial for the restoration of spinal cord function upon SCI as damaged cord has limited regenerative capacity and it is also something that cannot be achieved by pharmacological and physiotherapy interventions. New biological therapies including stem cell secretome therapy, immunotherapy and scaffolds can be combined with MSC therapy to enhance its therapeutic effects.
Collapse
Affiliation(s)
- Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Qi Hao Looi
- Ming Medical Services Sdn. Bhd., Pusat Perdagangan Dana 1, 47301 Petaling Jaya, Selangor Malaysia
| | - Wui Chuen Chia
- Ming Medical Services Sdn. Bhd., Pusat Perdagangan Dana 1, 47301 Petaling Jaya, Selangor Malaysia
| | - Thayaalini Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Vikartovska Z, Kuricova M, Farbakova J, Liptak T, Mudronova D, Humenik F, Madari A, Maloveska M, Sykova E, Cizkova D. Stem Cell Conditioned Medium Treatment for Canine Spinal Cord Injury: Pilot Feasibility Study. Int J Mol Sci 2020; 21:ijms21145129. [PMID: 32698543 PMCID: PMC7404210 DOI: 10.3390/ijms21145129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) involves nerve damage and often leads to motor, sensory and autonomic dysfunctions. In the present study, we have designed a clinical protocol to assess the feasibility of systemic delivery of allogenic canine bone marrow tissue-derived mesenchymal stem cell conditioned medium (BMMSC CM) to dogs with SCI. Four client-owned dogs with chronic SCI lasting more than six months underwent neurological and clinical evaluation, MRI imaging and blood tests before being enrolled in this study. All dogs received four intravenous infusions with canine allogenic BMMSC CM within one month. Between the infusions the dogs received comprehensive physiotherapy, which continued for three additional months. No adverse effects or complications were observed during the one, three and six months follow-up periods. Neither blood chemistry panel nor hematology profile showed any significant changes. All dogs were clinically improved as assessed using Olby locomotor scales after one, three and six months of BMMSC CM treatment. Furthermore, goniometric measurements revealed partial improvement in the range of joint motion. Bladder function improved in two disabled dogs. We conclude that multiple delivery of allogenic cell-derived conditioned medium to dogs with chronic SCI is feasible, and it might be clinically beneficial in combination with physiotherapy.
Collapse
Affiliation(s)
- Zuzana Vikartovska
- Center of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (Z.V.); (F.H.); (M.M.)
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Maria Kuricova
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Jana Farbakova
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Tomas Liptak
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, Institute of Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia;
| | - Filip Humenik
- Center of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (Z.V.); (F.H.); (M.M.)
| | - Aladar Madari
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Marcela Maloveska
- Center of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (Z.V.); (F.H.); (M.M.)
| | - Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia;
| | - Dasa Cizkova
- Center of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (Z.V.); (F.H.); (M.M.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia;
- Correspondence:
| |
Collapse
|
30
|
Chen CL, Chang MH, Lee WJ. A Case Report: An Acute Spinal Epidural Hematoma after Acupuncture Mimicking Stroke. J Emerg Med 2020; 58:e185-e188. [PMID: 32204999 DOI: 10.1016/j.jemermed.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/27/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spinal epidural hematoma (SEH) after acupuncture is rare and may present with acute or subacute onset and varied symptoms, making it difficult to diagnose. This condition can mimic acute stroke, so it is vital to establish a clear diagnosis before considering thrombolytic therapy, which could be disastrous if applied inappropriately. CASE REPORT We describe a 52-year-old man who presented to our emergency department (ED) with acute onset of unilateral weakness of the limbs for 3.5 h immediately after receiving acupuncture at the bilateral neck and back. The acute stroke team was activated. In the ED, computer tomography angiography from the aortic arch to the head revealed spinal epidural hematoma. The patient was admitted to the ward for conservative treatment and was discharged with subtle residual symptoms of arm soreness 5 days later. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Acute spinal epidural hematoma rarely presents with unilateral weakness of the limbs, mimicking a stroke. Because inappropriate thrombolysis can lead to devastating symptoms, spinal epidural hematoma should be excluded when evaluating an acute stroke patient with a history of acupuncture who is a possible candidate for thrombolytic therapy.
Collapse
Affiliation(s)
- Chieh-Ling Chen
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Hong Chang
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Wei-Ju Lee
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Dementia and Parkinson's Disease Integrated Center, Taichung Veterans General Hospital, Taichung, Taiwan; Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
31
|
3D bioprinting applications in neural tissue engineering for spinal cord injury repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110741. [PMID: 32204049 DOI: 10.1016/j.msec.2020.110741] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system (CNS) that has not yet been treated successfully. In the United States, almost 450,000 people suffer from SCI. Despite the development of many clinical treatments, therapeutics are still at an early stage for a successful bridging of damaged nerve spaces and complete recovery of nerve functions. Biomimetic 3D scaffolds have been an effective option in repairing the damaged nervous system. 3D scaffolds allow improved host tissue engraftment and new tissue development by supplying physical support to ease cell function. Recently, 3D bioprinting techniques that may easily regulate the dimension and shape of the 3D tissue scaffold and are capable of producing scaffolds with cells have attracted attention. Production of biologically more complex microstructures can be achieved by using 3D bioprinting technology. Particularly in vitro modeling of CNS tissues for in vivo transplantation is critical in the treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focus on 3D bioprinting methods, bio-inks, and cells widely used in neural tissue engineering and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed.
Collapse
|
32
|
Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 2019; 148:38-59. [PMID: 30582938 PMCID: PMC6959132 DOI: 10.1016/j.addr.2018.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging. Recent development of various nanoscale strategies provides exciting and promising new means of treating SCI by crossing the blood-spinal cord barrier and delivering therapeutics. As such, we discuss different nanomaterial fabrication methods and provide an overview of recent studies where nanomaterials were developed to modulate inflammatory signals, target inhibitory factors in the lesion, and promote axonal regeneration after SCI. We also review emerging areas of research such as optogenetics, immunotherapy and CRISPR-mediated genome editing where nanomaterials can provide synergistic effects in developing novel SCI therapy regimens, as well as current efforts and barriers to clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathan M Griffin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
33
|
Teixeira WGJ, Cristante AF, Marcon RM, Bispo G, Ferreira R, de Barros-Filho TEP. Granulocyte Colony-Stimulating Factor Combined with Methylprednisolone Improves Functional Outcomes in Rats with Experimental Acute Spinal Cord Injury. Clinics (Sao Paulo) 2018; 73:e235. [PMID: 29466494 PMCID: PMC5808113 DOI: 10.6061/clinics/2018/e235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/17/2017] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES To evaluate the effects of combined treatment with granulocyte colony-stimulating factor (G-CSF) and methylprednisolone in rats subjected to experimental spinal cord injury. METHODS Forty Wistar rats received a moderate spinal cord injury and were divided into four groups: control (no treatment); G-CSF (G-CSF at the time of injury and daily over the next five days); methylprednisolone (methylprednisolone for 24 h); and G-CSF/Methylprednisolone (methylprednisolone for 24 h and G-CSF at the time of injury and daily over the next five days). Functional evaluation was performed using the Basso, Beattie and Bresnahan score on days 2, 7, 14, 21, 28, 35 and 42 following injury. Motor-evoked potentials were evaluated. Histological examination of the spinal cord lesion was performed immediately after euthanasia on day 42. RESULTS Eight animals were excluded (2 from each group) due to infection, a normal Basso, Beattie and Bresnahan score at their first evaluation, or autophagy, and 32 were evaluated. The combination of methylprednisolone and G-CSF promoted greater functional improvement than methylprednisolone or G-CSF alone (p<0.001). This combination also exhibited a synergistic effect, with improvements in hyperemia and cellular infiltration at the injury site (p<0.001). The groups displayed no neurophysiological differences (latency p=0.85; amplitude p=0.75). CONCLUSION Methylprednisolone plus G-CSF promotes functional and histological improvements superior to those achieved by either of these drugs alone when treating spinal cord contusion injuries in rats. Combining the two drugs did have a synergistic effect.
Collapse
Affiliation(s)
- William Gemio Jacobsen Teixeira
- Divisao de Cirurgia da Coluna, Tumores da Coluna, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Alexandre Fogaça Cristante
- Divisao de Cirurgia da Coluna, Laboratorio de Investigacao Medica, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Raphael Martus Marcon
- Divisao de Cirurgia da Coluna, Laboratorio de Investigacao Medica, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Gustavo Bispo
- Laboratorio de Investigacao Medica – 41 (LIM-41), Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ricardo Ferreira
- Divisao de Cirurgia da Coluna, Laboratorio de Investigacao Medica, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Tarcísio Eloy Pessoa de Barros-Filho
- Divisao de Cirurgia da Coluna, Laboratorio de Investigacao Medica, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
34
|
Mojarad N, Janzadeh A, Yousefifard M, Nasirinezhad F. The role of low level laser therapy on neuropathic pain relief and interleukin-6 expression following spinal cord injury: An experimental study. J Chem Neuroanat 2018; 87:60-70. [DOI: 10.1016/j.jchemneu.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022]
|
35
|
Mechanism of Neuroprotection Against Experimental Spinal Cord Injury by Riluzole or Methylprednisolone. Neurochem Res 2017; 44:200-213. [PMID: 29290040 DOI: 10.1007/s11064-017-2459-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
Abstract
Any spinal cord injury carries the potential for persistent disability affecting motor, sensory and autonomic functions. To prevent this outcome, it is highly desirable to block a chain of deleterious reactions developing in the spinal areas immediately around the primary lesion. Thus, early timing of pharmacological neuroprotection should be one major strategy whose impact may be first studied with preclinical models. Using a simple in vitro model of the rat spinal cord it is possible to mimic pathological processes like excitotoxicity that damages neurons because of excessive glutamate receptor activation due to injury, or hypoxic/dysmetabolic insult that preferentially affects glia following vascular dysfunction. While ongoing research is exploring the various components of pathways leading to cell death, current treatment principally relies on the off-label use of riluzole (RLZ) or methylprednisolone sodium succinate (MPSS). The mechanism of action of these drugs is diverse as RLZ targets mainly neurons and MPSS targets glia. Even when applied after a transient excitotoxic stimulus, RLZ can provide effective prevention of secondary excitotoxic damage to premotoneurons, although not to motoneurons that remain very vulnerable. This observation indicates persistent inability to express locomotor activity despite pharmacological treatment conferring some histological protection. MPSS can protect glia from dysmetabolic insult, yet it remains poorly effective to prevent neuronal death. In summary, it appears that these pharmacological agents can produce delayed protection for certain cell types only, and that their combined administration does not provide additional benefit. The search should continue for better, mechanism-based neuroprotective agents.
Collapse
|
36
|
Sámano C, Kaur J, Nistri A. A study of methylprednisolone neuroprotection against acute injury to the rat spinal cord in vitro. Neuroscience 2015; 315:136-49. [PMID: 26701292 DOI: 10.1016/j.neuroscience.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Methylprednisolone sodium succinate (MPSS) has been proposed as a first-line treatment for acute spinal cord injury (SCI). Its clinical use remains, however, controversial because of the modest benefits and numerous side-effects. We investigated if MPSS could protect spinal neurons and glia using an in vitro model of the rat spinal cord that enables recording reflexes, fictive locomotion and morphological analysis of damage. With this model, a differential lesion affecting mainly either neurons or glia can be produced via kainate-evoked excitotoxicity or application of a pathological medium (lacking O2 and glucose), respectively. MPSS (6-10 μM) applied for 24 h after 1-h pathological medium protected astrocytes and oligodendrocytes especially in the ventrolateral white matter. This effect was accompanied by the return of slow, alternating oscillations (elicited by NMDA and 5-hydroxytryptamine (5-HT)) reminiscent of a sluggish fictive locomotor pattern. MPSS was, however, unable to reverse even a moderate neuronal loss and the concomitant suppression of fictive locomotion evoked by kainate (0.1 mM; 1 h). These results suggest that MPSS could, at least in part, contrast damage to spinal glia induced by a dysmetabolic state (associated to oxygen and glucose deprivation) and facilitate reactivation of spinal networks. Conversely, when even a minority of neurons was damaged by excitotoxicity, MPSS did not protect them nor did it restore network function in the current experimental model.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - J Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - A Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory) Laboratory, Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|