1
|
Thakur RK, Kumar A, Aggarwal K, Sood N, Khare S, Patel P, Das Kurmi B. A complete sojourn on nanotechnological advancements and nanocarrier applications in psoriasis management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6453-6471. [PMID: 39847054 DOI: 10.1007/s00210-025-03804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects. Among these, microneedles (MNs) emerge as an innovative transdermal delivery device offering controlled and sustained drug release, reduced systemic exposure, and painless, minimally invasive targeted drug delivery, making them highly suitable for managing skin-related immune disorders. Other transdermal techniques, such as sonophoresis, patches, iontophoresis, and electroporation, also play critical roles in psoriasis treatment. Nanotechnological approaches offer transformative solutions to overcome the limitations of traditional formulations by enhancing efficacy, reducing dosing frequency, and minimizing dose-dependent side effects. Various nanocarriers, including liposomes, ethosomes, transferosomes, niosomes, solid lipid nanoparticles (SLNs), liquid crystalline nanoparticles (LCNPs), nanoemulsions (NEs), and micelles, demonstrate significant potential to improve drug penetration, targeted distribution, safety, and efficacy. This review aims to comprehensively analyze the advancements in nanotechnological approaches and nanocarrier applications for psoriasis management. It discusses the types, pathophysiology, and history of psoriasis while exploring current treatment strategies, including herbal formulations and nanotechnology-based interventions. The review also evaluates the potential of nanotechnological advancements as innovative therapeutic options, emphasizing their mechanisms, benefits, and clinical applicability in addressing the shortcomings of conventional therapies. Together, these insights highlight nano-formulations as a promising frontier for effective psoriasis management.
Collapse
Affiliation(s)
- Ritik Kumar Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Aman Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kaushal Aggarwal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Nayan Sood
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Satyam Khare
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India.
| |
Collapse
|
2
|
Naves VDML, Bruzadelli RFD, Ionta M, Gremião MPD, Pedreiro LN, Pereira GR, Carvalho FC. Uptake and Inhibition of P-Glycoprotein-Mediated Efflux Evaluation of Encapsulated Methotrexate Chitosan and Hypromellose Phthalate Nanoparticles for Potential Glioblastoma Treatment. Pharmaceutics 2025; 17:239. [PMID: 40006606 PMCID: PMC11859166 DOI: 10.3390/pharmaceutics17020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Methotrexate (MTX), a folic acid antagonist used in chemotherapy, faces limitations due to cancer cell resistance, high toxicity, and low bioavailability. Objective: This study developed nanoparticles (NPs) of chitosan (QS) and hydroxypropylmethylcellulose phthalate (HPMCP) to encapsulate MTX for potential effect investigation on glioblastoma cell targeting and P-gp efflux inhibition. Method: NPs were produced by the polyelectrolyte complexation method and were characterized by DLS, PDI, DSC, FTIR, PXRD, MEV, drug release profile, and an in vitro mucoadhesion test. Cell viability, flow cytometry, and LSCM using U251MG (glioblastoma) and CCD 1059Sk (fibroblasts) cells were used to evaluate glioblastoma and the P-gp efflux effect. Results: NPPM29 (QS3:1) showed 91.72% encapsulation efficiency, a mean diameter of 452.6 nm, and a zeta potential of +22.5 mV. DSC, FTIR, and PXRD confirmed the QS-HPMCP supramolecular interaction. Liquid falling mucoadhesion tests demonstrated strong retention of NPPM29 (84%) compared to free MTX (10.5%). In vitro release studies indicated controlled drug release at pH 7.4. Cytotoxicity assays in U251MG revealed enhanced efficacy of NPPM29 (IC50 = 68.79 µg/mL) compared to free MTX (IC50 = 80.54 µg/mL), with minimal impact on fibroblasts, confirming tumor specificity. Flow cytometry and LSCM confirmed improved cellular internalization and P-gp inhibition. Conclusions: These findings highlight the potential of MTX-QS-HPMCP-NPs for glioblastoma therapy.
Collapse
Affiliation(s)
- Valéria de Moura Leite Naves
- Department of Food and Drugs, Federal University of Alfenas, UNIFAL-MG, Alfenas 37130-001, MG, Brazil; (V.d.M.L.N.); (R.F.D.B.); (G.R.P.)
| | - Rafaela Franco Dias Bruzadelli
- Department of Food and Drugs, Federal University of Alfenas, UNIFAL-MG, Alfenas 37130-001, MG, Brazil; (V.d.M.L.N.); (R.F.D.B.); (G.R.P.)
| | - Marisa Ionta
- Institute of Biomedicals Sicences, Federal University of Alfenas, UNIFAL-MG, Alfenas 37130-001, MG, Brazil;
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, State University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil; (M.P.D.G.); (L.N.P.)
| | - Liliane Neves Pedreiro
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, State University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil; (M.P.D.G.); (L.N.P.)
| | - Gislaine Ribeiro Pereira
- Department of Food and Drugs, Federal University of Alfenas, UNIFAL-MG, Alfenas 37130-001, MG, Brazil; (V.d.M.L.N.); (R.F.D.B.); (G.R.P.)
| | - Flávia Chiva Carvalho
- Department of Food and Drugs, Federal University of Alfenas, UNIFAL-MG, Alfenas 37130-001, MG, Brazil; (V.d.M.L.N.); (R.F.D.B.); (G.R.P.)
| |
Collapse
|
3
|
Nguyen HX, Kipping T, Banga AK. Polymeric Microneedles Enhance Transdermal Delivery of Therapeutics. Pharmaceutics 2024; 16:845. [PMID: 39065542 PMCID: PMC11280287 DOI: 10.3390/pharmaceutics16070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
This research presents the efficacy of polymeric microneedles in improving the transdermal permeation of methotrexate across human skin. These microneedles were fabricated from PLGA Expansorb® 50-2A and 50-8A and subjected to comprehensive characterization via scanning electron microscopy, Fourier-transform infrared spectroscopy, and mechanical analysis. We developed and assessed a methotrexate hydrogel for physicochemical and rheological properties. Dye binding, histological examinations, and assessments of skin integrity demonstrated the effective microporation of the skin by PLGA microneedles. We measured the dimensions of microchannels in the skin using scanning electron microscopy, pore uniformity analysis, and confocal microscopy. The skin permeation and disposition of methotrexate were researched in vitro. PLGA 50-8A microneedles appeared significantly longer, sharper, and more mechanically uniform than PLGA 50-2A needles. PLGA 50-8A needles generated substantially more microchannels, as well as deeper, larger, and more uniform channels in the skin than PLGA 50-2A needles. Microneedle insertion substantially reduced skin electrical resistance, accompanied by an elevation in transepidermal water loss values. PLGA 50-8A microneedle treatment provided a significantly higher cumulative delivery, flux, diffusion coefficient, permeability coefficient, and predicted steady-state plasma concentration; however, there was a shorter lag time than for PLGA 50-2A needles, base-treated, and untreated groups (p < 0.05). Conclusively, skin microporation using polymeric microneedles significantly improved the transdermal delivery of methotrexate.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam;
| | - Thomas Kipping
- MilliporeSigma, a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K. Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
4
|
Zhang H, Pan Y, Hou Y, Li M, Deng J, Wang B, Hao S. Smart Physical-Based Transdermal Drug Delivery System:Towards Intelligence and Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306944. [PMID: 37852939 DOI: 10.1002/smll.202306944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
5
|
Neupane R, Boddu SHS, Abou-Dahech MS, Bachu RD, Terrero D, Babu RJ, Tiwari AK. Transdermal Delivery of Chemotherapeutics: Strategies, Requirements, and Opportunities. Pharmaceutics 2021; 13:960. [PMID: 34206728 PMCID: PMC8308987 DOI: 10.3390/pharmaceutics13070960] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Chemotherapeutic drugs are primarily administered to cancer patients via oral or parenteral routes. The use of transdermal drug delivery could potentially be a better alternative to decrease the dose frequency and severity of adverse or toxic effects associated with oral or parenteral administration of chemotherapeutic drugs. The transdermal delivery of drugs has shown to be advantageous for the treatment of highly localized tumors in certain types of breast and skin cancers. In addition, the transdermal route can be used to deliver low-dose chemotherapeutics in a sustained manner. The transdermal route can also be utilized for vaccine design in cancer management, for example, vaccines against cervical cancer. However, the design of transdermal formulations may be challenging in terms of the conjugation chemistry of the molecules and the sustained and reproducible delivery of therapeutically efficacious doses. In this review, we discuss the nano-carrier systems, such as nanoparticles, liposomes, etc., used in recent literature to deliver chemotherapeutic agents. The advantages of transdermal route over oral and parenteral routes for popular chemotherapeutic drugs are summarized. Furthermore, we also discuss a possible in silico approach, Formulating for Efficacy™, to design transdermal formulations that would probably be economical, robust, and more efficacious.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - Sai H. S. Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Mariam Sami Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; (R.N.); (M.S.A.-D.); (R.D.B.); (D.T.)
- Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
6
|
Jyothi S, Krishna K, Ameena Shirin V, Sankar R, Pramod K, Gangadharappa H. Drug delivery systems for the treatment of psoriasis: Current status and prospects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Helmy AM. Overview of recent advancements in the iontophoretic drug delivery to various tissues and organs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Aickara D, Bashyam AM, Pichardo RO, Feldman SR. Topical methotrexate in dermatology: a review of the literature. J DERMATOL TREAT 2020; 33:512-517. [PMID: 32412810 DOI: 10.1080/09546634.2020.1770170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Systemic methotrexate (MTX) is a useful treatment for many dermatologic conditions, however, the risk of adverse events prevents its use in patients with minimal or localized disease. Topical application of MTX may be an option to avoid the systemic adverse effects of oral MTX.Objective: To assess what is known about the efficacy and safety of topical methotrexate.Methods: A search on Pubmed was conducted. There were no limits on publication date.Results: A total of 963 articles were discovered. Using our exclusion criteria, 916 articles were excluded; 47 articles were used for full text assessment. Topical MTX has been used primarily in psoriasis but also in mycosis fungoides, lymphomatoid papulosis, and oral precancerous lesions. Optimal delivery system and formulation for adequate penetration is still under investigation.Conclusion: The quality of evidence for the utility of topical methotrexate in psoriasis is good, however, for other dermatologic diseases, the quality is poor. Topical MTX with improved delivery methods may be a viable tool against certain localized dermatologic conditions for patients who do not tolerate oral MTX. Further double-blinded randomized controled studies are needed to substantiate the utility of topical methotrexate.
Collapse
Affiliation(s)
- Divya Aickara
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Arjun M Bashyam
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rita O Pichardo
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Social Sciences & Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Dermatology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Andanooru Chandrappa NK, Channakeshavaiah Ravikumar B, Rangegowda SM. Iontophoretic delivery of methotrexate in the treatment of palmar psoriasis: A randomised controlled study. Australas J Dermatol 2020; 61:140-146. [PMID: 31944270 DOI: 10.1111/ajd.13228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVES Palmoplantar psoriasis is a localised variant of psoriasis. Topical therapy is the preferred treatment modality, but in severe and recalcitrant cases, systemic drugs like methotrexate are prescribed, with potential for significant adverse effects. Iontophoresis is gaining popularity in enhancing the transdermal delivery of drugs in ionic state. This study was undertaken to evaluate and compare the efficacy of topical methotrexate by iontophoresis technique with clobetasol propionate 0.05% ointment in the treatment of palmar psoriasis. METHODS This was a prospective randomised controlled study conducted on patients with palmar psoriasis. Group 1 patients (n = 31) were treated with once weekly iontophoretic delivery of methotrexate over 6 sittings, and group 2 patients (n = 31) were treated with clobetasol propionate 0.05% ointment, twice daily for 6 weeks. Severity of palmar psoriasis was assessed by modified Palmoplantar Pustular Psoriasis Area and Severity Index (m-PPPASI), and treatment was considered as satisfactory when there was >50% improvement. RESULTS Sixty two patients were recruited, of which 50 completed the study. Eight out of 25 (32%) patients in group 1 and 12 out of 25 (48%) patients in group 2 showed satisfactory improvement at the end of 6 weeks. However, this difference was statistically not significant (P = 0.25). Burn injury was noted in 12 (48%) group 1 patients with no adverse effects in group 2. CONCLUSION Iontophoretic delivery of methotrexate is a promising therapeutic modality, the efficacy of which is comparable to that of clobetasol propionate ointment in the treatment of palmar psoriasis.
Collapse
|
10
|
Niamlang S, Paradee N, Sirivat A. Hybrid transdermal drug delivery patch made from poly(p
-phenylene vinylene)/natural rubber latex and controlled by an electric field. POLYM INT 2018. [DOI: 10.1002/pi.5566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumonman Niamlang
- Advanced Materials Research Group, Department of Materials and Metallurgical Engineering, Faculty of Engineering; Rajamangala University of Technology Thanyaburi; Thailand
| | - Nophawan Paradee
- Department of Chemistry, Faculty of Science; King Mongkut's University of Technology Thonburi; Bangkok Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymers Research Unit, Petroleum and Petrochemical College; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
11
|
Nguyen HX, Banga AK. Delivery of Methotrexate and Characterization of Skin Treated by Fabricated PLGA Microneedles and Fractional Ablative Laser. Pharm Res 2018; 35:68. [PMID: 29468316 DOI: 10.1007/s11095-018-2369-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/12/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE This study investigated in vitro transdermal delivery of methotrexate through dermatomed porcine ear and cadaver human skin treated with poly (D,L-lactide-co-glycolide) acid microneedles or fractional ablative laser. METHODS PLGA microneedles were fabricated and characterized using scanning electron microscopy and mechanical assessment techniques. The integrity of treated skin was evaluated by rheometer, transepidermal water loss, and skin electrical resistance measurements. Successful skin microporation was demonstrated by dye binding, histology, pore uniformity, confocal laser microscopy, and DermaScan studies. In vitro permeation experiment was performed on Franz diffusion cells to determine drug delivery into and across the skin. RESULTS Both physical treatments resulted in a considerable decrease in skin resistance and an increase in transepidermal water loss value. The laser-created microchannels were significantly larger than those formed by microneedles (p < 0.05). An effective force of 41.04 ± 18.33 N was required to achieve 100% penetration efficiency of the microneedles. For both porcine ear and human skin, laser ablation provided a significantly higher methotrexate permeability into the receptor chamber and skin layers compared to microneedle poration and untreated skin (p < 0.05). CONCLUSIONS Both fractional ablative laser and polymeric microneedles markedly enhanced in vitro transdermal delivery of methotrexate into and across skin. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, 30341, USA
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, 30341, USA.
| |
Collapse
|
12
|
Taudorf EH, Lerche CM, Erlendsson AM, Philipsen PA, Hansen SH, Janfelt C, Paasch U, Anderson RR, Haedersdal M. Fractional laser-assisted drug delivery: Laser channel depth influences biodistribution and skin deposition of methotrexate. Lasers Surg Med 2016; 48:519-29. [PMID: 26846733 DOI: 10.1002/lsm.22484] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Ablative fractional laser (AFXL) facilitates delivery of topical methotrexate (MTX). This study investigates impact of laser-channel depth on topical MTX-delivery. MATERIALS AND METHODS MTX (1% [w/v]) diffused for 21 hours through AFXL-exposed porcine skin in in vitro Franz Cells (n = 120). A 2,940 nm AFXL generated microscopic ablation zones (MAZs) into epidermis (11 mJ/channel, MAZ-E), superficial-dermis (26 mJ/channel, MAZ-DS), and mid-dermis (256 mJ/channel, MAZ-DM). High performance liquid chromatography (HPLC) was used to quantify MTX deposition in full-thickness skin, biodistribution profiles at specific skin levels, and transdermal permeation. Fluorescence microscopy was used to visualize UVC-activated MTX-fluorescence (254 nm) and semi-quantify MTX distribution in skin. RESULTS AFXL increased topical MTX-delivery (P < 0.001). Without laser exposure, MTX-concentration in full-thickness skin was 0.07 mg/cm(2) , increasing sixfold (MAZ-E), ninefold (MAZ-DS), and 11-fold (MAZ-DM) after AFXL (P < 0.001). Deeper MAZs increased MTX-concentrations in all skin layers (P < 0.038) and favored maximum accumulation in deeper skin layers (MAZ-E: 1.85 mg/cm(3) at 500 μm skin-level vs. MAZ-DM 3.75 mg/cm(3) at 800 μm, P = 0.002). Ratio of skin deposition versus transdermal permeation remained constant, regardless of MAZ depth (P = 0.172). Fluorescence intensities confirmed MTX biodistribution through coagulation zones and into surrounding skin, regardless of thickness of coagulation zones (6-47 μm, P ≥ 0.438). CONCLUSION AFXL greatly increases topical MTX-delivery. Deeper MAZs deliver higher MTX-concentrations than superficial MAZs, which indicates that laser channel depth may be important for topical delivery of hydrophilic molecules. Lasers Surg. Med. 48:519-529, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- E H Taudorf
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Denmark
| | - C M Lerche
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Denmark
| | - A M Erlendsson
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Denmark
| | - P A Philipsen
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Denmark
| | - S H Hansen
- Faculty of Health and Medical Sciences, Department of Pharmacy, University of Copenhagen, Denmark
| | - C Janfelt
- Faculty of Health and Medical Sciences, Department of Pharmacy, University of Copenhagen, Denmark
| | - U Paasch
- Division of Dermatopathology, Aesthetics and Laserdermatology, Departments of Dermatology, University of Leipzig, Germany
| | - R R Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - M Haedersdal
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Denmark.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Arunkumar S, Ashok P, Desai B, Shivakumar H. Effect of chemical penetration enhancer on transdermal iontophoretic delivery of diclofenac sodium under constant voltage. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Taudorf EH, Lerche CM, Vissing AC, Philipsen PA, Hannibal J, D'Alvise J, Hansen SH, Janfelt C, Paasch U, Anderson RR, Haedersdal M. Topically applied methotrexate is rapidly delivered into skin by fractional laser ablation. Expert Opin Drug Deliv 2015; 12:1059-69. [PMID: 25893560 DOI: 10.1517/17425247.2015.1031216] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Methotrexate (MTX) is a chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects. This study investigated kinetics and biodistribution of MTX delivered topically by ablative fractional laser (AFXL). METHODS In vitro passive diffusion of 10 mg/ml MTX (1 w/v%) was measured from 0.25 to 24 h through AFXL-processed and intact porcine skin in Franz Cells (n = 46). A 2,940 nm fractional Erbium Yttrium Aluminium Garnet laser generated mid-dermal microchannels at 2.4% density, and 256 mJ/microchannel. HPLC quantified MTX-concentrations in extracts from mid-dermal skin sections, donor and receiver compartments. Fluorescence microscopy of UVC-activated MTX-fluorescence and desorption electro-spray ionization mass spectrometry imaging (DESI-MSI) evaluated MTX biodistribution. RESULTS AFXL-processed skin facilitated rapid MTX delivery through cone-shaped microchannels of 690 µm ablation depth, lined by the 47 µm thermal coagulation zone (CZ). Quantitatively, MTX was detectable by HPLC in mid-dermis after 15 min, significantly exceeded deposition in intact skin after 1.5 h, and saturated skin after 7 h at a 10-fold increased MTX-deposition versus intact skin (3.08 vs 0.30 mg/cm(3), p = 0.002). Transdermal permeation was < 1.5% of applied MTX before skin saturation, and increased up to 8.0% after 24 h. Qualitatively, MTX distributed into CZ within 15 min (p = 0.015) and further into surrounding dermal tissue after 1.5 h (p = 0.004). After skin saturation at 7 h, MTX fluorescence intensities in CZ and tissue were similar and DESI-MSI confirmed MTX biodistribution throughout the mid-dermal skin section. CONCLUSIONS MTX absorbs rapidly into mid-dermis of AFXL-processed skin with minimal transdermal permeation until skin saturation, suggesting a possible alternative to systemic MTX for some skin disorders.
Collapse
Affiliation(s)
- Elisabeth Hjardem Taudorf
- Bispebjerg University Hospital, University of Copenhagen, Department of Dermatology , Bispebjerg Bakke 23, DK-2400 Copenhagen NV , Denmark +45 35 31 60 04 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oh DH, Kim MJ, Jeon SO, Seo JE, Jeong SH, Kang JW, Choi YW, Lee S. Strategic approaches for enhancement of in vivo transbuccal peptide drug delivery in rabbits using iontophoresis and chemical enhancers. Pharm Res 2014; 32:929-40. [PMID: 25231009 DOI: 10.1007/s11095-014-1507-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate the feasibility of iontophoresis and the combination effects with chemical enhancers on in vivo hypocalcemic effect of transbuccally delivered salmon calcitonin (sCT). METHODS N-acetyl-L-cysteine (NAC), sodium deoxyglycocholate (SDGC), and ethanol were used as chemical enhancers; and 0.5 mA/cm(2) fixed electric current was employed as a physical enhancer. sCT hydrogel was applied to rabbit buccal mucosa, and blood samples were obtained via the central auricular artery. Blood calcium level was measured by calcium kit and the conformational changes of buccal mucosa were investigated with FT-IR spectroscopy. Hematoxylin/eosin staining was used for the histological evaluation of buccal mucosa. RESULTS Iontophoresis groups except iontophoresis-NAC group showed significant hypocalcemic effect compared to negative control, in particular iontophoresis-SDGC combination group showed fast onset of action as well as sustained hypocalcemic effect (p < 0.05). FT-IR result demonstrated the reduction of buccal barrier function, and the histological study showed a decrease in buccal thickness as well as minor damage to the dermal-epidermal junctions in the enhancing method groups; however, the damaged tissues virtually recovered within 24 h after the removal of electrodes. CONCLUSIONS Iontophoresis and combination with SDGC were found to be safe and potential strategies for transbuccal peptide delivery in vivo.
Collapse
Affiliation(s)
- Dong-Ho Oh
- Department of Smart Foods and Drugs, Graduate School, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-Do, 621-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|