1
|
Wang X, Gong W, Xiong X, Jia X, Xu J. Asparagine: A key metabolic junction in targeted tumor therapy. Pharmacol Res 2024; 206:107292. [PMID: 39002867 DOI: 10.1016/j.phrs.2024.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Nutrient bioavailability in the tumor microenvironment plays a pivotal role in tumor proliferation and metastasis. Among these nutrients, glutamine is a key substance that promotes tumor growth and proliferation, and its downstream metabolite asparagine is also crucial in tumors. Studies have shown that when glutamine is exhausted, tumor cells can rely on asparagine to sustain their growth. Given the reliance of tumor cell proliferation on asparagine, restricting its bioavailability has emerged as promising strategy in cancer treatment. For instance, the use of asparaginase, an enzyme that depletes asparagine, has been one of the key chemotherapies for acute lymphoblastic leukemia (ALL). However, tumor cells can adapt to asparagine restriction, leading to reduced chemotherapy efficacy, and the mechanisms by which different genetically altered tumors are sensitized or adapted to asparagine restriction vary. We review the sources of asparagine and explore how limiting its bioavailability impacts the progression of specific genetically altered tumors. It is hoped that by targeting the signaling pathways involved in tumor adaptation to asparagine restriction and certain factors within these pathways, the issue of drug resistance can be addressed. Importantly, these strategies offer precise therapeutic approaches for genetically altered cancers.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Weijian Gong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xueyou Xiong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China; Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing 210004, China.
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China; Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing 210004, China.
| |
Collapse
|
2
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
3
|
Erden-Karaoğlan F, Karaoğlan M. Improvement of recombinant L-Asparaginase production in Pichia pastoris. 3 Biotech 2023; 13:164. [PMID: 37159589 PMCID: PMC10163189 DOI: 10.1007/s13205-023-03600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
Pichia pastoris is a successful expression system that is frequently preferred in the secretion of proteins for both basic research and industrial purposes. In this study, recombinant Rhizomucor miehei (RmASNase) L-asparaginase was produced in Pichia pastoris. The impact of gene copy number on increasing protein production was examined with six clones harboring various gene copy numbers (1-5 and 5 +). The results demonstrated that the clone with three copies of the expression cassette integrated had the highest production level. Also, biochemical characterization of the enzyme was performed. It was determined that the optimum pH and temperature values of the purified enzyme were pH 7.0 and 50 °C, respectively. Stability analyses of the enzyme showed that it maintains its activity of 80% in the pH range of 5-9 and 67% in the temperature range of 20-50 °C. Ca+2 and Mn+2 ions increased the enzyme activity to 121% and 138%, respectively. In future studies, it is also possible to improve the activity and stability values of the enzyme with advanced molecular techniques and to increase production efficiency by producing at fermenter scale and under optimum conditions.
Collapse
Affiliation(s)
- Fidan Erden-Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Mert Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| |
Collapse
|
4
|
Freitas M, Souza P, Homem-de-Mello M, Fonseca-Bazzo YM, Silveira D, Ferreira Filho EX, Pessoa Junior A, Sarker D, Timson D, Inácio J, Magalhães PO. L-Asparaginase from Penicillium sizovae Produced by a Recombinant Komagataella phaffii Strain. Pharmaceuticals (Basel) 2022; 15:ph15060746. [PMID: 35745665 PMCID: PMC9227789 DOI: 10.3390/ph15060746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
L-asparaginase is an important enzyme in the pharmaceutical field used as treatment for acute lymphoblastic leukemia due to its ability to hydrolyze L-asparagine, an essential amino acid synthesized by normal cells, but not by neoplastic cells. Adverse effects of L-asparaginase formulations are associated with its glutaminase activity and bacterial origin; therefore, it is important to find new sources of L-asparaginase produced by eukaryotic microorganisms with low glutaminase activity. This work aimed to identify the L-asparaginase gene sequence from Penicillium sizovae, a filamentous fungus isolated from the Brazilian Savanna (Cerrado) soil with low glutaminase activity, and to biosynthesize higher yields of this enzyme in the yeast Komagataella phaffii. The L-asparaginase gene sequence of P. sizovae was identified by homology to L-asparaginases from species of Penicillium of the section Citrina: P. citrinum and P. steckii. Partial L-asparaginase from P. sizovae, lacking the periplasmic signaling sequence, was cloned, and expressed intracellularly with highest enzymatic activity achieved by a MUT+ clone cultured in BMM expression medium; a value 5-fold greater than that obtained by native L-asparaginase in P. sizovae cells. To the best of our knowledge, this is the first literature report of the heterologous production of an L-asparaginase from a filamentous fungus by a yeast.
Collapse
Affiliation(s)
- Marcela Freitas
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Paula Souza
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Mauricio Homem-de-Mello
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Yris M. Fonseca-Bazzo
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | - Damaris Silveira
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
| | | | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Dipak Sarker
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - David Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - João Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; (D.S.); (D.T.); (J.I.)
| | - Pérola O. Magalhães
- Health Sciences School, University of Brasilia, Brasilia 70910-900, Brazil; (M.F.); (P.S.); (M.H.-d.-M.); (Y.M.F.-B.); (D.S.)
- Correspondence:
| |
Collapse
|
5
|
Bioprospection of l-asparaginase producing microorganisms and cloning of the l-asparaginase type II gene from a Pseudomonas putida species group isolate. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang N, Ji W, Wang L, Wu W, Zhang W, Wu Q, Du W, Bai H, Peng B, Ma B, Li L. Overview of the structure, side effects, and activity assays of l-asparaginase as a therapy drug of acute lymphoblastic leukemia. RSC Med Chem 2022; 13:117-128. [PMID: 35308022 PMCID: PMC8864486 DOI: 10.1039/d1md00344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/09/2022] [Indexed: 01/14/2023] Open
Abstract
l-Asparaginase (l-ASNase is the abbreviation, l-asparagine aminohydrolase, E.C.3.5.1.1) is an enzyme that is clinically employed as an antitumor agent for the treatment of acute lymphoblastic leukemia (ALL). Although l-ASNase is known to deplete l-asparagine (l-Asn), causing cytotoxicity in leukemia cells, the specific molecular signaling pathways are not well defined. Because of the deficiencies in the production and administration of current formulations, the l-ASNase agent in clinical use is still associated with serious side effects, so controlling its dose and activity monitoring during therapy is crucial for improving the treatment success rate. Accordingly, it is urgent to summarize and develop effective analytical methods to detect l-ASNase activity in treatment. However, current reports on these detection methods are fragmented and also have not been systematically summarized and classified, thereby not only delaying the investigations of specific molecular mechanisms, but also hindering the development of novel detection methods. Herein, in this review, we provided a detailed summary of the l-ASNase structures, antitumor mechanism and side effects, and current detection approaches, such as fluorescence assays, colorimetric assays, spectroscopic assays and some other assays. All of them possess unique advantages and disadvantages, so it has been difficult to establish clear criteria for clinical application. We hope that this review will be of some value in promoting the development of l-ASNase activity detection methods.
Collapse
Affiliation(s)
- Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Lan Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wanxia Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wei Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| |
Collapse
|
7
|
Dumina M, Zhgun A, Pokrovskaya M, Aleksandrova S, Zhdanov D, Sokolov N, El’darov M. Highly Active Thermophilic L-Asparaginase from Melioribacter roseus Represents a Novel Large Group of Type II Bacterial L-Asparaginases from Chlorobi-Ignavibacteriae-Bacteroidetes Clade. Int J Mol Sci 2021; 22:13632. [PMID: 34948436 PMCID: PMC8709496 DOI: 10.3390/ijms222413632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
L-asparaginase (L-ASNase) is a biotechnologically relevant enzyme for the pharmaceutical, biosensor and food industries. Efforts to discover new promising L-ASNases for different fields of biotechnology have turned this group of enzymes into a growing family with amazing diversity. Here, we report that thermophile Melioribacter roseus from Ignavibacteriae of the Bacteroidetes/Chlorobi group possesses two L-ASNases-bacterial type II (MrAII) and plant-type (MrAIII). The current study is focused on a novel L-ASNase MrAII that was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 70 °C and pH 9.3, with a high L-asparaginase activity of 1530 U/mg and L-glutaminase activity ~19% of the activity compared with L-asparagine. The kinetic parameters KM and Vmax for the enzyme were 1.4 mM and 5573 µM/min, respectively. The change in MrAII activity was not significant in the presence of 10 mM Ni2+, Mg2+ or EDTA, but increased with the addition of Cu2+ and Ca2+ by 56% and 77%, respectively, and was completely inhibited by Zn2+, Fe3+ or urea solutions 2-8 M. MrAII displays differential cytotoxic activity: cancer cell lines K562, Jurkat, LnCap, and SCOV-3 were more sensitive to MrAII treatment, compared with normal cells. MrAII represents the first described enzyme of a large group of uncharacterized counterparts from the Chlorobi-Ignavibacteriae-Bacteroidetes clade.
Collapse
Affiliation(s)
- Maria Dumina
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Alexander Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Marina Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Svetlana Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Dmitry Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Nikolay Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Michael El’darov
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| |
Collapse
|
8
|
Dumina M, Zhgun A, Pokrovskaya M, Aleksandrova S, Zhdanov D, Sokolov N, El’darov M. A Novel L-Asparaginase from Hyperthermophilic Archaeon Thermococcus sibiricus: Heterologous Expression and Characterization for Biotechnology Application. Int J Mol Sci 2021; 22:9894. [PMID: 34576056 PMCID: PMC8470970 DOI: 10.3390/ijms22189894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine and food industry. Drawbacks of current commercial L-ASNases stimulate the search for better-producing sources of the enzyme, and extremophiles are especially attractive in this view. In this study, a novel L-asparaginase originating from the hyperthermophilic archaeon Thermococcus sibiricus (TsA) was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 90 °C and pH 9.0 with a specific activity of 2164 U/mg towards L-asparagine. Kinetic parameters KM and Vmax for the enzyme are 2.8 mM and 1200 µM/min, respectively. TsA is stable in urea solutions 0-6 M and displays no significant changes of the activity in the presence of metal ions Ni2+, Cu2+, Mg2+, Zn2+ and Ca2+ and EDTA added in concentrations 1 and 10 mmol/L except for Fe3+. The enzyme retains 86% of its initial activity after 20 min incubation at 90 °C, which should be enough to reduce acrylamide formation in foods processed at elevated temperatures. TsA displays strong cytotoxic activity toward cancer cell lines K562, A549 and Sk-Br-3, while normal human fibroblasts WI-38 are almost unsensitive to it. The enzyme seems to be a promising candidate for further investigation and biotechnology application.
Collapse
Affiliation(s)
- Maria Dumina
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Alexander Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Marina Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Svetlana Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Dmitry Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Nikolay Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Michael El’darov
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| |
Collapse
|
9
|
Circumventing the side effects of L-asparaginase. Biomed Pharmacother 2021; 139:111616. [PMID: 33932739 DOI: 10.1016/j.biopha.2021.111616] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
L-asparaginase is an enzyme that catalyzes the degradation of asparagine and successfully used in the treatment of acute lymphoblastic leukemia. L-asparaginase toxicity is either related to hypersensitivity to the foreign protein or to a secondary L-glutaminase activity that causes inhibition of protein synthesis. PEGylated versions have been incorporated into the treatment protocols to reduce immunogenicity and an alternative L-asparaginase derived from Dickeya chrysanthemi is used in patients with anaphylactic reactions to the E. coli L-asparaginase. Alternative approaches commonly explore new sources of the enzyme as well as the use of protein engineering techniques to create less immunogenic, more stable variants with lower L-glutaminase activity. This article reviews the main strategies used to overcome L-asparaginase shortcomings and introduces recent tools that can be used to create therapeutic enzymes with improved features.
Collapse
|
10
|
Barros T, Brumano L, Freitas M, Pessoa A, Parachin N, Magalhães PO. Development of Processes for Recombinant L-Asparaginase II Production by Escherichia coli Bl21 (De3): From Shaker to Bioreactors. Pharmaceutics 2020; 13:E14. [PMID: 33374100 PMCID: PMC7823503 DOI: 10.3390/pharmaceutics13010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Since 1961, L-asparaginase has been used to treat patients with acute lymphocytic leukemia. It rapidly depletes the plasma asparagine and deprives the blood cells of this circulating amino acid, essential for the metabolic cycles of cells. In the search for viable alternatives to produce L-asparaginase, this work aimed to produce this enzyme from Escherichia coli in a shaker and in a 3 L bioreactor. Three culture media were tested: defined, semi-defined and complex medium. L-asparaginase activity was quantified using the β-hydroxamate aspartic acid method. The defined medium provided the highest L-asparaginase activity. In induction studies, two inducers, lactose and its analog IPTG, were compared. Lactose was chosen as an inducer for the experiments conducted in the bioreactor due to its natural source, lower cost and lower toxicity. Batch and fed-batch cultures were carried out to reach high cell density and then start the induction. Batch cultivation provided a final cell concentration of 11 g L-1 and fed-batch cultivation produced 69.90 g L-1 of cells, which produced a volumetric activity of 43,954.79 U L-1 after lactose induction. L-asparaginase was produced in a shaker and scaled up to a bioreactor, increasing 23-fold the cell concentration and thus, the enzyme productivity.
Collapse
Affiliation(s)
- Thaís Barros
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| | - Larissa Brumano
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil; (L.B.); (A.P.J.)
| | - Marcela Freitas
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil; (L.B.); (A.P.J.)
| | - Nádia Parachin
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70910-900, Brazil;
| | - Pérola O. Magalhães
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| |
Collapse
|
11
|
Ameen F, Alshehri WA, Al-Enazi NM, Almansob A. L-Asparaginase activity analysis, ansZ gene identification and anticancer activity of a new Bacillus subtilis isolated from sponges of the Red Sea. Biosci Biotechnol Biochem 2020; 84:2576-2584. [DOI: 10.1080/09168451.2020.1807310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
This study describes the isolation of various marine bacteriafrom sponges collected from the Red Sea (Saudi Arabia) andL-asparaginase (anti-cancer enzyme) production from bacterialisolates. The 16S rDNA based phylogenetic analysis revealed thatthe isolate WSA3 was a Bacillus subtilis. Its partial-length genesequence was submitted to GenBank under the accession numberMK072695. The new B. subtilis strain harbored the exact size(1128 bp) of the new L-asparaginase (ansZ) gene as confirmedby PCR and in gel visualization, which was submitted to the NCBIdatabase (accession number MN566442). The molecular weightof partially purified L-asparaginase was determined as 45 kDa bySDS-PAGE. In addition, the enzyme L-asparaginase did not showglutaminase activity which is very important from a medical pointof view. Moreover, 100 μg/mL of the partially purified B. subtilis Lasparaginaseshowed promising anti-cancer activities when testedagainst three cancer cell lines (HCT-116, MCF-7, and HepG2).
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Abobakr Almansob
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Costa-Silva T, Costa I, Biasoto H, Lima G, Silva C, Pessoa A, Monteiro G. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Rev 2020; 43:100651. [DOI: 10.1016/j.blre.2020.100651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
13
|
de Moura WAF, Schultz L, Breyer CA, de Oliveira ALP, Tairum CA, Fernandes GC, Toyama MH, Pessoa-Jr A, Monteiro G, de Oliveira MA. Functional and structural evaluation of the antileukaemic enzyme L-asparaginase II expressed at low temperature by different Escherichia coli strains. Biotechnol Lett 2020; 42:2333-2344. [PMID: 32638188 DOI: 10.1007/s10529-020-02955-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) affects lymphoblastic cells and is the most common neoplasm during childhood. Among the pharmaceuticals used in the treatment protocols for ALL, Asparaginase (ASNase) from Escherichia coli (EcAII) is an essential biodrug. Meanwhile, the use of EcAII in neoplastic treatments causes several side effects, such as immunological reactions, hepatotoxicity, neurotoxicity, depression, and coagulation abnormalities. Commercial EcAII is expressed as a recombinant protein, similar to novel enzymes from different organisms; in fact, EcAII is a tetrameric enzyme with high molecular weight (140 kDa), and its overexpression in recombinant systems often results in bacterial cell death or the production of aggregated or inactive EcAII protein, which is related to the formation of inclusion bodies. On the other hand, several commercial expression strains have been developed to overcome these expression issues, but no studies on a systematic evaluation of the E. coli strains aiming to express recombinant asparaginases have been performed to date. In this study, we evaluated eleven expression strains at a low temperature (16 °C) with different characteristics to determine which is the most appropriate for asparaginase expression; recombinant wild-type EcAII (rEcAII) was used as a prototype enzyme and the secondary structure content, oligomeric state, aggregation and specific activity of the enzymes were assessed. Structural analysis suggested that a correctly folded tetrameric rEcAII was obtained using ArcticExpress (DE3), a strain that co-express chaperonins, while all other strains produced poorly folded proteins. Additionally, the enzymatic assays showed high specific activity of proteins expressed by ArcticExpress (DE3) when compared to the other strains used in this work.
Collapse
Affiliation(s)
- Werner Alfinito Feio de Moura
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Leonardo Schultz
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Carlos Alexandre Breyer
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Ana Laura Pires de Oliveira
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Carlos Abrunhosa Tairum
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Gabriella Costa Fernandes
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Marcos Hikari Toyama
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil
| | - Adalberto Pessoa-Jr
- Biochemical-Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Gisele Monteiro
- Biochemical-Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Marcos Antonio de Oliveira
- Institute of Biosciences, São Paulo State University (UNESP), Coastal Campus, São Vicente, São Paulo, 11330-900, Brazil.
| |
Collapse
|
14
|
Feng Y, Liu S, Jiao Y, Wang Y, Wang M, Du G. Gene cloning and expression of the l-asparaginase from Bacillus cereus BDRD-ST26 in Bacillus subtilis WB600. J Biosci Bioeng 2019; 127:418-424. [DOI: 10.1016/j.jbiosc.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023]
|
15
|
Feng Y, Liu S, Pang C, Gao H, Wang M, Du G. Improvement of catalytic efficiency and thermal stability of l-asparaginase from Bacillus subtilis 168 through reducing the flexibility of the highly flexible loop at N-terminus. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Faret M, de Morais SB, Zanchin NIT, de Souza TDACB. L-Asparaginase from Erwinia carotovora: insights about its stability and activity. Mol Biol Rep 2018; 46:1313-1316. [PMID: 30446961 DOI: 10.1007/s11033-018-4459-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/30/2018] [Indexed: 11/26/2022]
Abstract
Enzymatic prospection indicated that L-asparaginase from Erwinia carotovora (ECAR-LANS) posses low glutaminase activity and much effort has been made to produce therapeutic ECAR-LANS. However, its low stability precludes its use in therapy. Herein, biochemical and biophysical assays provided data highlighting the influence of solubilization and storage into ECAR-LANS structure, stability, and activity. Moreover, innovations in recombinant expression and purification guaranteed the purification of functional tetramers. According to solubilization condition, the L-asparaginase activity and temperature of melting ranged up to 25-32%, respectively. CD spectra indicate the tendency of ECAR-LANS to instability and the influence of β-structures in activity. These results provide relevant information to guide formulations with prolonged action in the bloodstream.
Collapse
Affiliation(s)
- Marcele Faret
- Instituto Carlos Chagas, ICC - FIOCRUZ/PR, Rua Algacyr Munhoz Mader, 3775, bloco C, Curitiba,, Paraná, 81350-010, Brazil
| | - Stephanie Bath de Morais
- Instituto Carlos Chagas, ICC - FIOCRUZ/PR, Rua Algacyr Munhoz Mader, 3775, bloco C, Curitiba,, Paraná, 81350-010, Brazil
| | - Nilson Ivo Tonin Zanchin
- Instituto Carlos Chagas, ICC - FIOCRUZ/PR, Rua Algacyr Munhoz Mader, 3775, bloco C, Curitiba,, Paraná, 81350-010, Brazil
| | | |
Collapse
|
17
|
Expression and Functional Characterization of Pseudomonas aeruginosa Recombinant l.Asparaginase. Protein J 2018; 37:461-471. [DOI: 10.1007/s10930-018-9789-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Li X, Zhang X, Xu S, Zhang H, Xu M, Yang T, Wang L, Qian H, Zhang H, Fang H, Osire T, Rao Z, Yang S. Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Sci Rep 2018; 8:7915. [PMID: 29784948 PMCID: PMC5962637 DOI: 10.1038/s41598-018-26241-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
L-asparaginase, which catalyses the hydrolysis of L-asparagine to L-aspartate, has attracted the attention of researchers due to its expanded applications in medicine and the food industry. In this study, a novel thermostable L-asparaginase from Pyrococcus yayanosii CH1 was cloned and over-expressed in Bacillus subtilis 168. To obtain thermostable L-asparaginase mutants with higher activity, a robust high-throughput screening process was developed specifically for thermophilic enzymes. In this process, cell disruption and enzyme activity assays are simultaneously performed in 96-deep well plates. By combining error-prone PCR and screening, six brilliant positive variants and four key amino acid residue mutations were identified. Combined mutation of the four residues showed relatively high specific activity (3108 U/mg) that was 2.1 times greater than that of the wild-type enzyme. Fermentation with the mutant strain in a 5-L fermenter yielded L-asparaginase activity of 2168 U/mL.
Collapse
Affiliation(s)
- Xu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Shuqin Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hengwei Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huiling Zhang
- School of Agriculture Ningxia University, Yinchuan, 750021, China
| | - Haitian Fang
- School of Agriculture Ningxia University, Yinchuan, 750021, China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
19
|
Radha R, Arumugam N, Gummadi SN. Glutaminase free l-asparaginase from Vibrio cholerae: Heterologous expression, purification and biochemical characterization. Int J Biol Macromol 2018; 111:129-138. [DOI: 10.1016/j.ijbiomac.2017.12.165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/20/2017] [Accepted: 12/30/2017] [Indexed: 11/26/2022]
|
20
|
Sindhu R, Manonmani H. Expression and characterization of recombinant l -asparaginase from Pseudomonas fluorescens. Protein Expr Purif 2018; 143:83-91. [DOI: 10.1016/j.pep.2017.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
21
|
Vidya J, Sajitha S, Ushasree MV, Sindhu R, Binod P, Madhavan A, Pandey A. Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: An overview. BIORESOURCE TECHNOLOGY 2017; 245:1775-1781. [PMID: 28596071 DOI: 10.1016/j.biortech.2017.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
L-asparaginase is one of the protein drugs for countering leukemia and lymphoma. A major challenge in the therapeutic potential of the enzyme is its immunogenicity, low-plasma half-life and glutaminase activity that are found to be the reasons for toxicities attributed to asparaginase therapy. For addressing these challenges, several research and developmental activities are going on throughout the world for an effective drug delivery for treatment of cancer. Hence there is an urgent need for the development of asparaginase with improved properties for efficient drug delivery. The strategies selected should be economically viable to ensure the availability of the drug at low cost. The current review addresses various strategies adopted for the production of asparaginase from different sources, approaches for increasing the therapeutic efficiency of the protein and new drug delivery systems for L-asparaginase.
Collapse
Affiliation(s)
- Jalaja Vidya
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.
| | - Syed Sajitha
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Mrudula Vasudevan Ushasree
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, Punjab, India
| |
Collapse
|
22
|
Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Appl Microbiol Biotechnol 2017; 101:7227-7238. [DOI: 10.1007/s00253-017-8456-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
23
|
Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Appl Microbiol Biotechnol 2016; 101:1509-1520. [DOI: 10.1007/s00253-016-7816-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 11/27/2022]
|
24
|
El-Sharkawy AS, Farag AM, Embaby AM, Saeed H, El-Shenawy M. Cloning, expression and characterization of aeruginosa EGYII L-Asparaginase from Pseudomonas aeruginosa strain EGYII DSM 101801 in E.coli BL21(DE3) pLysS. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Trang THN, Cuong TN, Thanh SLN, Tuyen TD. Optimization, purification and characterization of recombinant L-asparaginase II in Escherichia coli. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
|