1
|
Ateyya H, Atif HM, Abd El-Fadeal NM, Abul-Ela E, Nadeem RI, Rizk NI, Gomaa FAM, Abdelkhalig SM, Aldahish AA, Fawzy MS, Barakat BM, Zaitone SA. Hesperetin protects against rotenone-induced motor disability and neurotoxicity via the regulation of SIRT1/NLRP3 signaling. Toxicol Mech Methods 2024; 34:1045-1060. [PMID: 39119966 DOI: 10.1080/15376516.2024.2390646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Rotenone is a pesticide that causes complex I inhibition and is widely known to induce motor disability and experimental Parkinson's disease (PD) in rodents. Evidence suggests a crucial role for sirtuin/nuclear factor-kappaB/nod-like receptor family, pyrin domain-containing 3 (SIRT1/NFκB/NLRP3) signaling and inflammation in PD and rotenone neurotoxicity. Hesperetin (C16H14O6) is a citrus flavonoid with documented anti-inflammatory activity. We investigated the value of hesperetin in delaying rotenone-induced PD in mice and the possible modulation of inflammatory burden. PD was induced in mice via rotenone injections. Groups were assigned as a vehicle, PD, or PD + hesperetin (50 or 100 mg/kg) and compared for the motor function, protein level (by ELISA), and gene expression (by real-time PCR) of the target proteins, histopathology, and immunohistochemistry for tyrosine hydroxylase enzyme. Hesperetin (50 or 100 mg/kg) alleviated the motor disability and the striatal dopamine level and decreased the expression of NLRP3 and NF-κB but increased SIRT1 expression (p < 0.05). Further, it enhanced the neural viability and significantly decreased neural degeneration in the substantia nigra, hippocampus, and cerebral cortex (p < 0.05). Taken together, we propose that hesperetin mediates its neuroprotective function via alleviating modulation of the SIRT1/NFκB/NLRP3 pathway. Therefore, hesperetin might delay the PD progression.
Collapse
Affiliation(s)
- Hayam Ateyya
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Huda M Atif
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Biochemistry Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Eman Abul-Ela
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rania I Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medical Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Sozan M Abdelkhalig
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Afaf A Aldahish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Bassant M Barakat
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Baha University, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Ryu JY, Cerecedo-Lopez C, Yang H, Ryu I, Du R. Brain-targeted intranasal delivery of protein-based gene therapy for treatment of ischemic stroke. Theranostics 2024; 14:4773-4786. [PMID: 39239521 PMCID: PMC11373627 DOI: 10.7150/thno.98088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Gene therapy using a protein-based CRISPR system in the brain has practical limitations due to current delivery systems, especially in the presence of arterial occlusion. To overcome these obstacles and improve stability, we designed a system for intranasal administration of gene therapy for the treatment of ischemic stroke. Methods: Nanoparticles containing the protein-based CRISPR/dCas9 system targeting Sirt1 were delivered intranasally to the brain in a mouse model of ischemic stroke. The CRISPR/dCas9 system was encapsulated with calcium phosphate (CaP) nanoparticles to prevent them from being degraded. They were then conjugated with β-hydroxybutyrates (bHb) to target monocarboxylic acid transporter 1 (MCT1) in nasal epithelial cells to facilitate their transfer into the brain. Results: Human nasal epithelial cells were shown to uptake and transfer nanoparticles to human brain endothelial cells with high efficiency in vitro. The intranasal administration of the dCas9/CaP/PEI-PEG-bHb nanoparticles in mice effectively upregulated the target gene, Sirt1, in the brain, decreased cerebral edema and increased survival after permanent middle cerebral artery occlusion. Additionally, we observed no significant in vivo toxicity associated with intranasal administration of the nanoparticles, highlighting the safety of this approach. Conclusion: This study demonstrates that the proposed protein-based CRISPR-dCas9 system targeting neuroprotective genes in general, and SIRT1 in particular, can be a potential novel therapy for acute ischemic stroke.
Collapse
Affiliation(s)
- Jee-Yeon Ryu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Christian Cerecedo-Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Surgery, Valley Baptist Medical Center, University of Texas Rio Grande Valley, Harlingen, TX 78550, United States
| | - Hongkuan Yang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ilhwan Ryu
- Department of Chemistry, Kookmin University, Seoul 02707, South Korea
- Cooperative Center for Research Facilities, Kookmin University, Seoul 02707, South Korea
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
3
|
Qu W, Ralto KM, Qin T, Cheng Y, Zong W, Luo X, Perez-Pinzon M, Parikh SM, Ayata C. NAD + precursor nutritional supplements sensitize the brain to future ischemic events. J Cereb Blood Flow Metab 2023; 43:37-48. [PMID: 37434361 PMCID: PMC10638999 DOI: 10.1177/0271678x231156500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 10/09/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a redox cofactor critical for oxidative phosphorylation. Nicotinamide (NAM) and nicotinamide riboside (NR) are NAD+ precursors widely used as nutritional supplements to augment oxidative phosphorylation. Indeed, NAD+ precursors have been reported to improve outcomes in ischemic stroke when administered as a rescue therapy after stroke onset. However, we have also reported that enhanced reliance on oxidative phosphorylation before ischemia onset might worsen outcomes. To address the paradox, we examined how NAD+ precursors modulate the outcome of middle cerebral artery occlusion in mice, when administered either 20 minutes after reperfusion or daily for three days before ischemia onset. A single post-ischemic dose of NAM or NR indeed improved tissue and neurologic outcomes examined at 72 hours. In contrast, pre-ischemic treatment for three days enlarged the infarcts and worsened neurological deficits. As a possible explanation for the diametric outcomes, a single dose of NAM or NR augmented tissue AMPK, PGC1α, SIRT1, and ATP in both naïve and ischemic brains, while the multiple-dose paradigm failed to do so. Our data suggest that NAD+ precursor supplements may sensitize the brain to subsequent ischemic events, despite their neuroprotective effect when administered after ischemia onset.
Collapse
Affiliation(s)
- Wensheng Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kenneth M Ralto
- Division of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Nephrology and Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yinhong Cheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miguel Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Laboratories, Department of Neurology, The University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Samir M Parikh
- Division of Nephrology and Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Mehramiz M, Porter T, O’Brien EK, Rainey-Smith SR, Laws SM. A Potential Role for Sirtuin-1 in Alzheimer's Disease: Reviewing the Biological and Environmental Evidence. J Alzheimers Dis Rep 2023; 7:823-843. [PMID: 37662612 PMCID: PMC10473168 DOI: 10.3233/adr-220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/08/2023] [Indexed: 09/05/2023] Open
Abstract
Sirtuin-1 (Sirt1), encoded by the SIRT1 gene, is a conserved Nicotinamide adenine dinucleotide (NAD+) dependent deacetylase enzyme, considered as the master regulator of metabolism in humans. Sirt1 contributes to a wide range of biological pathways via several mechanisms influenced by lifestyle, such as diet and exercise. The importance of a healthy lifestyle is of relevance to highly prevalent modern chronic diseases, such as Alzheimer's disease (AD). There is growing evidence at multiple levels for a role of Sirt1/SIRT1 in AD pathological mechanisms. As such, this review will explore the relevance of Sirt1 to AD pathological mechanisms, by describing the involvement of Sirt1/SIRT1 in the development of AD pathological hallmarks, through its impact on the metabolism of amyloid-β and degradation of phosphorylated tau. We then explore the involvement of Sirt1/SIRT1 across different AD-relevant biological processes, including cholesterol metabolism, inflammation, circadian rhythm, and gut microbiome, before discussing the interplay between Sirt1 and AD-related lifestyle factors, such as diet, physical activity, and smoking, as well as depression, a common comorbidity. Genome-wide association studies have explored potential associations between SIRT1 and AD, as well as AD risk factors and co-morbidities. We summarize this evidence at the genetic level to highlight links between SIRT1 and AD, particularly associations with AD-related risk factors, such as heart disease. Finally, we review the current literature of potential interactions between SIRT1 genetic variants and lifestyle factors and how this evidence supports the need for further research to determine the relevance of these interactions with respect to AD and dementia.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Eleanor K. O’Brien
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
5
|
Fangma Y, Wan H, Shao C, Jin L, He Y. Research Progress on the Role of Sirtuin 1 in Cerebral Ischemia. Cell Mol Neurobiol 2023; 43:1769-1783. [PMID: 36153473 PMCID: PMC11412199 DOI: 10.1007/s10571-022-01288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
A significant amount of evidence from the past few years has shown that Sirtuin 1 (SIRT1), a histone deacetylase dinucleotide of nicotinamide adenine dinucleotide (NAD+) is closely related to the cerebral ischemia. Several potential neuroprotective strategies like resveratrol, ischemia preconditioning, and caloric restriction exert their neuroprotection effects through SIRT1-related signaling pathway. However, the potential mechanisms and neuroprotection of SIRT1 in the process of cerebral ischemia injury development and recovery have not been systematically elaborated. This review summarized the the deacetylase activity and distribution of SIRT1 as well as analyzed the roles of SIRT1 in astrocytes, microglia, neurons, and brain microvascular endothelial cells (BMECs), and the molecular mechanisms of SIRT1 in cerebral ischemia, providing a theoretical basis for exploration of new therapeutic target in future.
Collapse
Affiliation(s)
- Yijia Fangma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310051, China
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310051, China
| | - Liang Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310051, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Zhou D, Chen L, Wang Y, Gan L, Yuan M, Zhang L, Chen F. RNA binding protein RPS3 mediates microglial polarization by activating NLRP3 inflammasome via SIRT1 in ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107132. [PMID: 37087770 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Ischemic stroke is the obstruction of cerebral blood flow with a high morbidity. Microglial polarization is a contributing factor for ischemic stroke-induced injury. Here, we focused on function and mechanism of RNA binding protein RPS3 in microglial polarization after ischemic stroke. METHODS Transient middle cerebral artery occlusion (tMCAO) was conducted in SD rats. Infarct area was detected by TTC staining and neurological score was assessed. Fluorescence staining tested neuronal apoptosis and microglial differentiation. Oxygen and glucose deprivation/reoxygenation (OGD/R) was applied for treating microglia. Levels of RPS3, SIRT1, M1 and M2 polarization markers (CD86, iNOS, CD206, Arg-1) were determined by RT-qPCR. Western blot detected RPS3, SIRT1, NLRP3, ASC and Cleaved-caspase-1 expression. RIP assay validated that RPS3 interacted with SIRT1. CCK-8 measured cell viability. Flow cytometry and ELISA assessed M1 and M2 polarization markers. LDH release was detected using colorimetric CytoTox 96 Cytotoxicity kit. RESULTS RPS3 depletion improved neurological dysfunction and reduced infarction area in rats after tMCAO. Knockdown of RPS3 resulted in increased SIRT1 expression and decreased NLRP3 inflammasome activation, and induced microglia M2 polarization after ischemia-reperfusion (I/R). Besides, RPS3 directly targeted SIRT1 and reduced its expression in microglia. RPS3 silencing suppressed OGD/R-triggered neuronal and microglial cell death through SIRT1. Moreover, RPS3 activated NLRP3 inflammasome and regulated microglial polarization via SIRT1. CONCLUSION RPS3 regulates microglial polarization and neuronal injury through SIRT1/NLRP3 pathway, suggesting a novel target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Dimi Zhou
- Department of Neurology, The Second Affiliated Hospital of University of South China, 35 Jiefang Dadao, Zhengxiang District, Hengyang, Hunan, China
| | - Lin Chen
- Department of Neurology, The Second Affiliated Hospital of University of South China, 35 Jiefang Dadao, Zhengxiang District, Hengyang, Hunan, China
| | - Yuzheng Wang
- Department of Neurology, The Second Affiliated Hospital of University of South China, 35 Jiefang Dadao, Zhengxiang District, Hengyang, Hunan, China
| | - Lu Gan
- Department of Neurology, The Second Affiliated Hospital of University of South China, 35 Jiefang Dadao, Zhengxiang District, Hengyang, Hunan, China
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital of University of South China, 35 Jiefang Dadao, Zhengxiang District, Hengyang, Hunan, China
| | - Lei Zhang
- Department of Neurology, The Second Affiliated Hospital of University of South China, 35 Jiefang Dadao, Zhengxiang District, Hengyang, Hunan, China
| | - Fenfang Chen
- Department of Neurology, The Second Affiliated Hospital of University of South China, 35 Jiefang Dadao, Zhengxiang District, Hengyang, Hunan, China.
| |
Collapse
|
7
|
Tan Z, Dong F, Wu L, Feng Y, Zhang M, Zhang F. Transcutaneous Electrical Nerve Stimulation (TENS) Alleviates Brain Ischemic Injury by Regulating Neuronal Oxidative Stress, Pyroptosis, and Mitophagy. Mediators Inflamm 2023; 2023:5677865. [PMID: 37101593 PMCID: PMC10125764 DOI: 10.1155/2023/5677865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Background As a noninvasive treatment, transcutaneous electrical nerve stimulation (TENS) has been utilized to treat various diseases in clinic. However, whether TENS can be an effective intervention in the acute stage of ischemic stroke still remains unclear. In the present study, we aimed to explore whether TENS could alleviate brain infarct volume, reduce oxidative stress and neuronal pyroptosis, and activate mitophagy following ischemic stroke. Methods TENS was performed at 24 h after middle cerebral artery occlusion/reperfusion (MCAO/R) in rats for 3 consecutive days. Neurological scores, the volume of infarction, and the activity of SOD, MDA, GSH, and GSH-px were measured. Moreover, western blot was performed to detect the related protein expression, including Bcl-2, Bax, TXNIP, GSDMD, caspase-1, NLRP3, BRCC3, HIF-1α, BNIP3, LC3, and P62. Real-time PCR was performed to detect NLRP3 expression. Immunofluorescence was performed to detect the levels of LC3. Results There was no significant difference of neurological deficit scores between the MCAO group and the TENS group at 2 h after MCAO/R operation (P > 0.05), while the neurological deficit scores of TENS group significantly decreased in comparison with MCAO group at 72 h following MACO/R injury (P < 0.05). Similarly, TENS treatment significantly reduced the brain infarct volume compared with the MCAO group (P < 0.05). Moreover, TENS decreased the expression of Bax, TXNIP, GSDMD, caspase-1, BRCC3, NLRP3, and P62 and the activity of MDA as well as increasing the level of Bcl-2, HIF-1α, BNIP3, and LC3 and the activity of SOD, GSH, and GSH-px (P < 0.05). Conclusions In conclusion, our results indicated that TENS alleviated brain damage following ischemic stroke via inhibiting neuronal oxidative stress and pyroptosis and activating mitophagy, possibly via the regulation of TXNIP, BRCC3/NLRP3, and HIF-1α/BNIP3 pathways.
Collapse
Affiliation(s)
- Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 05005, China
| | - Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Yashuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050051, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang 050051, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang 050051, China
| |
Collapse
|
8
|
Li L, Song JJ, Zhang MX, Zhang HW, Zhu HY, Guo W, Pan CL, Liu X, Xu L, Zhang ZY. Oridonin ameliorates caspase-9-mediated brain neuronal apoptosis in mouse with ischemic stroke by inhibiting RIPK3-mediated mitophagy. Acta Pharmacol Sin 2023; 44:726-740. [PMID: 36216897 PMCID: PMC10042824 DOI: 10.1038/s41401-022-00995-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/02/2022] [Indexed: 12/11/2022]
Abstract
Neuronal loss is a primary factor in determining the outcome of ischemic stroke. Oridonin (Ori), a natural diterpenoid compound extracted from the Chinese herb Rabdosia rubescens, has been shown to exert anti-inflammatory and neuroregulatory effects in various models of neurological diseases. In this study we investigated whether Ori exerted a protective effect against reperfusion injury-induced neuronal loss and the underlying mechanisms. Mice were subjected to transient middle cerebral artery occlusion (tMCAO), and were injected with Ori (5, 10, 20 mg/kg, i.p.) at the beginning of reperfusion. We showed that Ori treatment rescued neuronal loss in a dose-dependent manner by specifically inhibiting caspase-9-mediated neuronal apoptosis and exerted neuroprotective effects against reperfusion injury. Furthermore, we found that Ori treatment reversed neuronal mitochondrial damage and loss after reperfusion injury. In N2a cells and primary neurons, Ori (1, 3, 6 μM) exerted similar protective effects against oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury. We then conducted an RNA-sequencing assay of the ipsilateral brain tissue of tMCAO mice, and identified receptor-interacting protein kinase-3 (RIPK3) as the most significantly changed apoptosis-associated gene. In N2a cells after OGD/R and in the ipsilateral brain region, we found that RIPK3 mediated excessive neuronal mitophagy by activating AMPK mitophagy signaling, which was inhibited by Ori or 3-MA. Using in vitro and in vivo RIPK3 knockdown models, we demonstrated that the anti-apoptotic and neuroprotective effects of Ori were RIPK3-dependent. Collectively, our results show that Ori effectively inhibits RIPK3-induced excessive mitophagy and thereby rescues the neuronal loss in the early stage of ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jing-Jing Song
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Meng-Xue Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hui-Wen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yan Zhu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Guo
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Cai-Long Pan
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xue Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Lu Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Department of Neurology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Zhao P, Lu Y, Wang Z. Naringenin attenuates cerebral ischemia/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/FOXO1 signaling pathway in vitro. Acta Cir Bras 2023; 38:e380823. [PMID: 37132753 PMCID: PMC10158850 DOI: 10.1590/acb380823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE To explore the protection of naringenin against oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cell injury, a cell model of cerebral ischemia/reperfusion (I/R) injury in vitro, focusing on SIRT1/FOXO1 signaling pathway. METHODS Cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, 4-hydroxynonenoic acid (4-HNE) level, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured by commercial kits. Inflammatory cytokines levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expressions were monitored by Western blot analysis. RESULTS Naringenin significantly ameliorated OGD/R-induced cytotoxicity and apoptosis in HT22 cells. Meanwhile, naringenin promoted SIRT1 and FOXO1 protein expressions in OGD/R-subjected HT22 cells. In addition, naringenin attenuated OGD/R-induced cytotoxicity, apoptosis, oxidative stress (the increased ROS, MDA and 4-HNE levels, and the decreased SOD, GSH-Px and CAT activities) and inflammatory response (the increased tumor necrosis factor-α, interleukin [IL]-1β, and IL-6 levels and the decreased IL-10 level), which were blocked by the inhibition of the SIRT1/FOXO1 signaling pathway induced by SIRT1-siRNA transfection. CONCLUSIONS Naringenin protected HT22 cells against OGD/R injury depending on its antioxidant and anti-inflammatory activities via promoting the SIRT1/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Yi Lu
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Zhiyun Wang
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| |
Collapse
|
10
|
Magdy A, Farrag EAE, Hamed SM, Abdallah Z, El Nashar EM, Alghamdi MA, Ali AAH, Abd El-kader M. Neuroprotective and therapeutic effects of calcitriol in rotenone-induced Parkinson’s disease rat model. Front Cell Neurosci 2022; 16:967813. [PMID: 36187296 PMCID: PMC9522903 DOI: 10.3389/fncel.2022.967813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Treatment of PD is challenging, as current treatment strategies are only symptomatic and do not stop disease development. Recent studies reported neuroprotective effects of calcitriol in PD through its antioxidant and anti-inflammatory properties. The exact pathomechanisms of PD are not yet fully understood. So, investigation of different molecular pathways is challenging. Sirtuin-1 (Sirt1) modulates multiple physiological processes, including programmed cell death, DNA repair, and inflammation. Furthermore, defective autophagy is considered a key pathomechanism in PD as it eliminates protein aggregation and dysfunctional cell organelles. The present study investigated the involvement of autophagy and Sirt1/NF-κB molecular pathway in rotenone-induced PD and explored the protective and restorative effects of calcitriol through these mechanisms. Therefore, behavioral tests were used to test the effect of calcitriol on motor disability and equilibrium. Furthermore, the histological and neuronal architecture was assessed. The expression of genes encoding neuroinflammation and autophagy markers was determined by qPCR while their protein levels were determined by Western blot analysis and immune-histochemical staining. Our results indicate that behavioral impairments and dopaminergic neuron depletion in the rotenone-induced PD model were improved by calcitriol administration. Furthermore, calcitriol attenuated rotenone-induced neuroinflammation and autophagy dysfunction in PD rats through up-regulation of Sirt1 and LC3 and down-regulation of P62 and NF-κB expression levels. Thus, calcitriol could induce a neuro-protective and restorative effect in the rotenone-induced PD model by modulating autophagy and Sirt1/NF-κB pathway.
Collapse
Affiliation(s)
- Alshimaa Magdy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Alshimaa Magdy,
| | - Eman A. E. Farrag
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Mohamed Hamed
- Department of Medical Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zienab Abdallah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amira A. H. Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Institute of Anatomy ll, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marwa Abd El-kader
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Tiwari P, Khan H, Singh TG, Grewal AK. Poly (ADP-ribose) polymerase: An Overview of Mechanistic Approaches and Therapeutic Opportunities in the Management of Stroke. Neurochem Res 2022; 47:1830-1852. [PMID: 35437712 DOI: 10.1007/s11064-022-03595-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Stroke is one of the leading causes of morbidity and mortality accompanied by blood supply loss to a particular brain area. Several mechanistic approaches such as inhibition of poly (ADP-ribose) polymerase, therapies against tissue thrombosis, and neutrophils lead to stroke's therapeutic intervention. Evidence obtained with the poly (ADP-ribose) polymerase (PARP) inhibition and animals having a deficiency of PARP enzymes; represented the role of PARP in cerebral stroke, ischemia/reperfusion, and neurotrauma. PARP is a nuclear enzyme superfamily with various isoforms, each with different structural domains and functions, and out of all, PARP-1 is the best-characterized member. It has been shown to perform multiple physiological as well as pathological processes, including its role in inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction. The enzyme interacts with NF-κB, p53, and other transcriptional factors to regulate survival and cell death and modulates multiple downstream signaling pathways. Clinical trials have also been conducted using PARP inhibitors for numerous disorders and have shown positive results. However, additional information is yet to be established for the therapeutic intervention of PARP inhibitors in stroke. These agents' utilization appears to be challenging due to their unknown potential long-term side effects. PARP activity increased during ischemia, but its inhibition provided significant neuroprotection. Despite the increased interest in PARP as a pharmacological modulator for novel therapeutic therapies, the current review focused on stroke and poly ADP-ribosylation.
Collapse
Affiliation(s)
- Palak Tiwari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
12
|
Eid M, Dzreyan V, Demyanenko S. Sirtuins 1 and 2 in the Acute Period After Photothrombotic Stroke: Expression, Localization and Involvement in Apoptosis. Front Physiol 2022; 13:782684. [PMID: 35574497 PMCID: PMC9092253 DOI: 10.3389/fphys.2022.782684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuins (SIRTs) are NAD+- dependent histone deacetylases. They are involved in a variety of biological pathways and are thought to be a promising target for treating several human disorders. Although evidence is piling up to support the neuroprotective role of SIRTs in ischemic stroke, the role of different sirtuin isoforms needs further investigation. We studied the effects of photothrombotic stroke (PTS) on the expression and localization of sirtuins SIRT1 and SIRT2 in neurons and astrocytes of the penumbra and tested the activity of their selective and non-selective inhibitors. SIRT1 levels significantly decreased in the penumbra cells nuclei and increased in their cytoplasm. This indicated a redistribution of SIRT1 from the nucleus to the cytoplasm after PTS. The expression and intracellular distribution of SIRT1 were also observed in astrocytes. Photothrombotic stroke caused a sharp increase in SIRT2 levels in the cytoplasmic fraction of the penumbra neurons. SIRT2 was not expressed in the penumbra astrocytes. SIRT1 and SIRT2 did not co-localize with TUNEL-positive apoptotic cells. Mice were injected with EX-527, a selective SIRT1 inhibitor; SirReal2, selective SIRT2 inhibitor or salermide, a nonspecific inhibitor of SIRT1 and SIRT2. These inhibitors did not demonstrate any change in the infarction volume or the apoptotic index, compared to the control samples. The studies presented indicate the involvement of these sirtuins in the response of brain cells to ischemia in the first 24 h, but the alterations in their expression and change in the localization of SIRT1 are not related to the regulation of penumbra cell apoptosis in the acute period after PTS.
Collapse
Affiliation(s)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | |
Collapse
|
13
|
Guo S, Mangal R, Dandu C, Geng X, Ding Y. Role of Forkhead Box Protein O1 (FoxO1) in Stroke: A Literature Review. Aging Dis 2022; 13:521-533. [PMID: 35371601 PMCID: PMC8947839 DOI: 10.14336/ad.2021.0826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Stroke is one of the most prevalent causes of death around the world. When a stroke occurs, many cellular signaling cascades and regulators are activated, which results in severe cellular dysfunction and debilitating long-term disability. One crucial regulator of cell fate and function is mammalian Forkhead box protein O1 (FoxO1). Many studies have found FoxO1 to be implicated in many cellular processes, including regulating gluconeogenesis and glycogenolysis. During a stroke, modifications of FoxO1 have been linked to a variety of functions, such as inducing cell death and inflammation, inhibiting oxidative injury, affecting the blood brain barrier (BBB), and regulating hepatic gluconeogenesis. For these functions of FoxO1, different measures and treatments were applied to FoxO1 after ischemia. However, the subtle mechanisms of post-transcriptional modification and the role of FoxO1 are still elusive and even contradictory in the development of stroke. The determination of these mechanisms will lead to further enlightenment for FoxO1 signal transduction and the identification of targeted drugs. The regulation and function of FoxO1 may provide an important way for the prevention and treatment of diseases. Overall, the functions of FoxO1 are multifactorial, and this paper will summarize all of the significant pathways in which FoxO1 plays an important role during stroke damage and recovery.
Collapse
Affiliation(s)
- Sichao Guo
- 1Luhe Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ruchi Mangal
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chaitu Dandu
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaokun Geng
- 1Luhe Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,2Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yuchuan Ding
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Silva de Carvalho T, Singh V, Mohamud Yusuf A, Wang J, Schultz Moreira AR, Sanchez-Mendoza EH, Sardari M, Nascentes Melo LM, Doeppner TR, Kehrmann J, Scholtysik R, Hitpass L, Gunzer M, Hermann DM. Post-ischemic protein restriction induces sustained neuroprotection, neurological recovery, brain remodeling, and gut microbiota rebalancing. Brain Behav Immun 2022; 100:134-144. [PMID: 34848338 DOI: 10.1016/j.bbi.2021.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Moderate dietary protein restriction confers neuroprotection when applied before ischemic stroke. How a moderately protein-reduced diet influences stroke recovery when administered after stroke, is a clinically relevant question. This question has not yet been investigated. METHODS Male C57BL6/J mice were exposed to transient intraluminal middle cerebral artery occlusion. Immediately after the stroke, mice were randomized to two normocaloric diets: a moderately protein-reduced diet containing 8% protein (PRD) or normal diet containing 20% protein (ND). Post-stroke neurological deficits were evaluated by a comprehensive test battery. Antioxidant and neuroinflammatory responses in the brain and liver were evaluated by Western blot and RTqPCR. Stroke-induced brain injury, microvascular integrity, glial responses, and neuroplasticity were assessed by immunohistochemistry. Fecal microbiota analysis was performed using 16S ribosomal RNA amplicon sequencing. RESULTS We show that PRD reduces brain infarct volume after three days and enhances neurological and, specifically, motor-coordination recovery over six weeks in stroke mice. The recovery-promoting effects of PRD were associated with increased antioxidant responses and reduced neuroinflammation. Histochemical studies revealed that PRD increased long-term neuronal survival, increased peri-infarct microvascular density, reduced microglia/macrophage accumulation, increased contralesional pyramidal tract plasticity, and reduced brain atrophy. Fecal microbiota analysis showed reduced bacterial richness and diversity in ischemic mice on ND starting at 7 dpi. PRD restored bacterial richness and diversity at these time points. CONCLUSION Moderate dietary protein restriction initiated post-ischemic stroke induces neurological recovery, brain remodeling, and neuroplasticity in mice by mechanisms involving antiinflammation and, in the post-acute phase, commensal gut microbiota rebalancing.
Collapse
Affiliation(s)
- Tayana Silva de Carvalho
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Jing Wang
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Adriana R Schultz Moreira
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Eduardo H Sanchez-Mendoza
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Maryam Sardari
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany; Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Luiza M Nascentes Melo
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | | | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, Essen, Germany
| | - Rene Scholtysik
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Ludger Hitpass
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany; Leibniz-Institut für Analytische Wissenschaften ISAS e.V, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany.
| |
Collapse
|
15
|
Alshammari GM, Al-Qahtani WH, Alshuniaber MA, Yagoub AEA, Al-Khalifah AS, Al-Harbi LN, Alhussain MH, AlSedairy SA, Yahya MA. Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
16
|
Fangma Y, Zhou H, Shao C, Yu L, Yang J, Wan H, He Y. Hydroxysafflor Yellow A and Anhydrosafflor Yellow B Protect Against Cerebral Ischemia/Reperfusion Injury by Attenuating Oxidative Stress and Apoptosis via the Silent Information Regulator 1 Signaling Pathway. Front Pharmacol 2021; 12:739864. [PMID: 34658877 PMCID: PMC8514692 DOI: 10.3389/fphar.2021.739864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 01/11/2023] Open
Abstract
Hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (AHSYB) are the main water-soluble compounds in Carthamus tinctorius L. However, studies on the effect of AHSYB on cerebral ischemia/reperfusion (I/R) injury and the therapeutic effect of HSYA by regulating silent information regulator 1 (SIRT1) pathway remain obscure. In this study, we investigated whether the neuroprotective effects of HSYA and AHSYB on oxygen-glucose deprivation/reoxygenation in primary-cultured hippocampal neuronal cells and the middle cerebral artery occlusion and reperfusion model in rats are associated with the regulation of the SIRT1 pathway. In vitro, HSYA and AHSYB increased cell viability, depressed oxidation properties, and reduced neuronal cell apoptosis. In vivo results showed that HSYA and AHSYB effectively reduced infarct volume, improved neurological function, suppressed apoptosis, and decreased the oxidative stress reaction. Besides, RT-PCR and Western blot analysis showed that HSYA and AHSYB increased the mRNA and protein expressions of the main factors in the SIRT1 pathway, including SIRT1, forkhead box O (FOXO) 1, and peroxisome proliferator–activated receptor coactivator 1α (PGC1α), decreased the expression of Bax, and increased the expression of Bcl-2. The results from immunohistochemistry also showed that the expressions of SIRT1, FOXO1, and PGC1α were increased after treatment with HSYA and AHSYB. Furthermore, the neuroprotective effects of HSYA and AHSYB were abolished by EX527 (SIRT1–specific inhibitor). These results indicated that HSYA and AHSYB should be developed into potential drugs for treating cerebral I/R injury via the SIRT1 pathway. Although HSYA and AHSYB have different chemical structures, both of them exert similar neuroprotective properties against I/R injury in vitro and in vivo, which means that AHSYB is also a non-negligible component in safflower.
Collapse
Affiliation(s)
- Yijia Fangma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
17
|
Gomaa AA, El-Abhar HS, Abdallah DM, Awad AS, Soubh AA. Prasugrel anti-ischemic effect in rats: Modulation of hippocampal SUMO2/3-IкBα/Ubc9 and SIRT-1/miR-22 trajectories. Toxicol Appl Pharmacol 2021; 426:115635. [PMID: 34174262 DOI: 10.1016/j.taap.2021.115635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022]
Abstract
The beneficial role of prasugrel, a P2Y12 receptor blocker, in several neurointerventional procedures has been reviewed clinically. Beyond its antiplatelet capacity, the potential neuroprotective mechanisms of prasugrel are poorly addressed experimentally. Relevant to the imbalance between neuro-inflammation and neuroprotective pathways in cerebral ischemia/reperfusion (I/R), our study evaluated the anti-ischemic potential of prasugrel treatment through tackling novel targets. Male Wistar rats were allocated into 2 sets; set 1 (I/R 60 min/3 days) to assess the neurological deficits/biochemical impact of prasugrel and set 2 (I/R 60 min/5 days) for evaluating short memory/morphological/immunoreactive changes. Each set comprised 4 groups designated as sham, sham + prasugrel, I/R, and I/R + prasugrel. Post-administration of prasugrel for 3 and 5 days reduced neurological deficit scores and improved the spontaneous activity/short term spatial memory using the Y-maze paradigm. On the molecular level, prasugrel turned off SUMO2/3-inhibitory kappa (Iκ)Bα, Ubc9 and nuclear factor kappa (NF-κ)B. Besides, it inhibited malondialdehyde (MDA) and inactivated astrocytes by downregulating the glial fibrillary acidic protein (GFAP) hippocampal immune-expression. Conversely, it activated its target molecule cAMP, protein kinase (PK)A, and cAMP response element-binding protein (CREB) to enhance the brain-derived nuclear factor (BDNF) hippocampal content. Additionally, cAMP/PKA axis increased the hippocampal content of deacetylator silent information regulator 1 (SIRT1) and the micro RNA (miR)-22 gene expression. The crosstalk between these paths partakes in preserving hippocampal cellularity. Accordingly, prasugrel, regardless inhibiting platelets activity, modulated other cellular components; viz., SUMO2/3-IκBα/Ubc9/NF-κB, cAMP/PKA related trajectories, CREB/BDNF and SIRT1/miR-22 signaling, besides inhibiting GFAP and MDA to signify its anti-ischemic potential.
Collapse
Affiliation(s)
- Asmaa A Gomaa
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Azza S Awad
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
18
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
19
|
Tan ZX, Dong F, Wu LY, Feng YS, Zhang F. The Beneficial Role of Exercise on Treating Alzheimer's Disease by Inhibiting β-Amyloid Peptide. Mol Neurobiol 2021; 58:5890-5906. [PMID: 34415486 DOI: 10.1007/s12035-021-02514-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is associated with a very large burden on global healthcare systems. Thus, it is imperative to find effective treatments of the disease. One feature of AD is the accumulation of neurotoxic β-amyloid peptide (Aβ). Aβ induces multiple pathological processes that are deleterious to nerve cells. Despite the development of medications that target the reduction of Aβ to treat AD, none has proven to be effective to date. Non-pharmacological interventions, such as physical exercise, are also being studied. The benefits of exercise on AD are widely recognized. Experimental and clinical studies have been performed to verify the role that exercise plays in reducing Aβ deposition to alleviate AD. This paper reviewed the various mechanisms involved in the exercise-induced reduction of Aβ, including the regulation of amyloid precursor protein cleaved proteases, the glymphatic system, brain-blood transport proteins, degrading enzymes and autophagy, which is beneficial to promote exercise therapy as a means of prevention and treatment of AD and indicates that exercise may provide new therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Lin-Yu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
20
|
Chen Y, Jiang Y, Yang Y, Huang X, Sun C. SIRT1 Protects Dopaminergic Neurons in Parkinson's Disease Models via PGC-1α-Mediated Mitochondrial Biogenesis. Neurotox Res 2021; 39:1393-1404. [PMID: 34251648 DOI: 10.1007/s12640-021-00392-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
SIRT1 is a deacetylase with multiple physiological functions by targeting histones and non-histone proteins. It has been shown that SIRT1 activation is involved in neuroprotection in Parkinson's disease (PD) models. In the present study, we provided direct evidences showing the neuroprotective roles of SIRT1 in dopaminergic neurons. Our data showed that increased expression of SIRT1 plays beneficial roles against MPP+ insults in SH-SY5Y cells and primary dopaminergic neurons, including increased cell viability, reduced LDH release, improved the mitochondrial membrane potential (MMP), and attenuated cell apoptosis. On the contrary, knockdown of SIRT1 further aggravated cell injuries induced by MPP+. Moreover, mutated SIRT1 without deacetylase activity (SIRT1 H363Y) failed to protect dopaminergic neurons from MPP+ injuries. Mechanistically, SIRT1 improved PGC-1α expression and mitochondrial biogenesis. Knockdown of PGC-1α almost completely abolished the neuroprotective roles of SIRT1 in SH-SY5Y cells. Collectively, our data indicate that SIRT1 has neuroprotective roles in dopaminergic neurons, which is dependent upon PGC-1α-mediated mitochondrial biogenesis. These findings suggest that SIRT1 may hold great therapeutic potentials for treating dopaminergic neuron loss associated disorders such as PD.
Collapse
Affiliation(s)
- Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Institute of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, 20 Xishi Road, Nantong, China.
| |
Collapse
|
21
|
Pan Z, Ma G, Kong L, Du G. Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke. Pharmacol Res 2021; 170:105742. [PMID: 34182129 DOI: 10.1016/j.phrs.2021.105742] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Stroke is an acute cerebrovascular disease caused by sudden rupture of blood vessels in the brain or blockage of blood vessels, which has now become one of the main causes of adult death. During stroke, hypoxia-inducible factor-1 (HIF-1), as an important regulator under hypoxia conditions, is involved in the pathological process of stroke by regulating multi-pathways, such as glucose metabolism, angiogenesis, erythropoiesis, cell survival. However, the roles of HIF-1 in stroke are still controversial, which are related with ischemic time and degree of ischemia. The regulatory mechanisms of HIF-1 in stroke include inflammation, autophagy, oxidative stress, apoptosis and energy metabolism. The potential drugs targeting HIF-1 have attracted more attention, such as HIF-1 inhibitors, HIF-1 stabilizers and natural products. Based on the role of HIF-1 in stroke, HIF-1 is expected to be a potential target for stroke treatment. Resolving when and what interventions for HIF-1 to take during stroke will provide novel strategies for stroke treatment.
Collapse
Affiliation(s)
- Zirong Pan
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
22
|
Role of SIRT1 in Isoflurane Conditioning-Induced Neurovascular Protection against Delayed Cerebral Ischemia Secondary to Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22084291. [PMID: 33924243 PMCID: PMC8074752 DOI: 10.3390/ijms22084291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
We recently reported that isoflurane conditioning provided multifaceted protection against subarachnoid hemorrhage (SAH)-induced delayed cerebral ischemia (DCI), and this protection was through the upregulation of endothelial nitric oxide synthase (eNOS). SIRT1, an NAD-dependent deacetylase, was shown to be one of the critical regulators of eNOS. The aim of our current study is to examine the role of SIRT1 in isoflurane conditioning-induced neurovascular protection against SAH-induced DCI. Mice were divided into four groups: sham, SAH, or SAH with isoflurane conditioning (with and without EX-527). Experimental SAH via endovascular perforation was performed. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. EX-527, a selective SIRT1 inhibitor, 10 mg/kg was injected intraperitoneally immediately after SAH in the EX-527 group. SIRT1 mRNA expression and activity levels were measured. Vasospasm, microvessel thrombosis, and neurological outcome were assessed. SIRT1 mRNA expression was downregulated, and no difference in SIRT1 activity was noted after isoflurane exposure. Isoflurane conditioning with and without EX-527 attenuated vasospasm, microvessel thrombosis and improved neurological outcomes. Our data validate our previous findings that isoflurane conditioning provides strong protection against both the macro and micro vascular deficits induced by SAH, but this protection is likely not mediated through the SIRT1 pathway.
Collapse
|
23
|
Role of Oxidative DNA Damage and Repair in Atrial Fibrillation and Ischemic Heart Disease. Int J Mol Sci 2021; 22:ijms22083838. [PMID: 33917194 PMCID: PMC8068079 DOI: 10.3390/ijms22083838] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) and ischemic heart disease (IHD) represent the two most common clinical cardiac diseases, characterized by angina, arrhythmia, myocardial damage, and cardiac dysfunction, significantly contributing to cardiovascular morbidity and mortality and posing a heavy socio-economic burden on society worldwide. Current treatments of these two diseases are mainly symptomatic and lack efficacy. There is thus an urgent need to develop novel therapies based on the underlying pathophysiological mechanisms. Emerging evidence indicates that oxidative DNA damage might be a major underlying mechanism that promotes a variety of cardiac diseases, including AF and IHD. Antioxidants, nicotinamide adenine dinucleotide (NAD+) boosters, and enzymes involved in oxidative DNA repair processes have been shown to attenuate oxidative damage to DNA, making them potential therapeutic targets for AF and IHD. In this review, we first summarize the main molecular mechanisms responsible for oxidative DNA damage and repair both in nuclei and mitochondria, then describe the effects of oxidative DNA damage on the development of AF and IHD, and finally discuss potential targets for oxidative DNA repair-based therapeutic approaches for these two cardiac diseases.
Collapse
|
24
|
de Carvalho TS, Sanchez-Mendoza EH, Schultz Moreira AR, Nascentes Melo LM, Wang C, Sardari M, Hagemann N, Doeppner TR, Kleinschnitz C, Hermann DM. Hypocaloric Diet Initiated Post-Ischemia Provides Long-Term Neuroprotection and Promotes Peri-Infarct Brain Remodeling by Regulating Metabolic and Survival-Promoting Proteins. Mol Neurobiol 2021; 58:1491-1503. [PMID: 33200399 PMCID: PMC7932971 DOI: 10.1007/s12035-020-02207-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Calorie restriction confers post-ischemic neuroprotection, when administered in a defined time window before ischemic stroke. How a hypocaloric diet influences stroke recovery when initiated after stroke has not been investigated. Male C57BL6/j mice were exposed to transient intraluminal middle cerebral artery occlusion. Immediately post-ischemia, mice were randomized to two groups receiving moderately hypocaloric (2286 kcal/kg food) or normocaloric (3518 kcal/kg) diets ad libitum. Animals were sacrificed at 3 or 56 days post-ischemia (dpi). Besides increased low density lipoprotein at 3 days and reduced alanine aminotransferase and increased urea at 56 days, no alterations of plasma markers were found in ischemic mice on hypocaloric diet. Body weight mildly decreased over 56 dpi by 7.4%. Hypocaloric diet reduced infarct volume in the acute stroke phase at 3 dpi and decreased brain atrophy, increased neuronal survival and brain capillary density in peri-infarct striatum and reduced motor coordination impairment in tight rope tests in the post-acute stroke phase over up to 56 dpi. The abundance of brain-derived neurotrophic factor, the NAD-dependent deacetylase and longevity protein sirtuin-1, the anti-oxidant glutathione peroxidase-3, and the ammonium detoxifier glutamine synthetase in the peri-infarct brain tissue was increased by hypocaloric diet. This study shows that a moderately hypocaloric diet that is initiated after stroke confers long-term neuroprotection and promotes peri-infarct brain remodeling.
Collapse
Affiliation(s)
| | | | | | - Luiza M Nascentes Melo
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Maryam Sardari
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | | | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany.
| |
Collapse
|
25
|
Sirt1 Activity in the Brain: Simultaneous Effects on Energy Homeostasis and Reproduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031243. [PMID: 33573212 PMCID: PMC7908627 DOI: 10.3390/ijerph18031243] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Diet deeply impacts brain functions like synaptic plasticity and cognitive processes, neuroendocrine functions, reproduction and behaviour, with detrimental or protective effects on neuronal physiology and therefore consequences for health. In this respect, the activity of metabolic sensors within the brain is critical for the maintenance of health status and represents a possible therapeutic target for some diseases. This review summarizes the main activity of Sirtuin1 (Sirt1), a metabolic sensor within the brain with a focus on the link between the central control of energy homeostasis and reproduction. The possible modulation of Sirt1 by natural phytochemical compounds like polyphenols is also discussed.
Collapse
|
26
|
Huang Q, Su H, Qi B, Wang Y, Yan K, Wang X, Li X, Zhao D. A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons. J Am Chem Soc 2021; 143:1416-1427. [PMID: 33439015 DOI: 10.1021/jacs.0c10836] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting SIRT1 signaling pathway could improve glucose aerobic metabolism and mitochondrial biosynthesis to resist cardiac and neurological injuries. Ginsenoside Rc has been identified for targeting mitochondrial function, but how ginsenoside Rc interacts with SIRT1 to regulate energy metabolism in cardiomyocytes and neurons under physiological or ischemia/reperfusion (I/R)-injured conditions has not been clearly investigated. Here, we confirm the interaction of Rc on the residue sites of SIRT1 in promoting its activity. Ginsenoside Rc significantly promotes mitochondrial biogenesis and increases the levels of electron-transport chain complex II-IV in cardiomyocytes and neurons. Meanwhile, ginsenoside Rc pretreatment increases ATP production, glucose uptake, and the levels of hexokinase I/II and mitochondrial pyruvate carrier I/II in both cell models. In addition, ginsenoside Rc activates the PGC1α pathway to induce mitochondrial biosynthesis. More importantly, ginsenoside Rc reduces mitochondrial damage and apoptosis through SIRT1 restoration-mediated reduction of PGC1α acetylation in the I/R-induced cardiac and neuronal models. Collectively, the in vitro and in vivo data indicate that ginsenoside Rc as a SIRT1 activator promotes energy metabolism to improve cardio- and neuroprotective functions under normal and I/R injury conditions, which provides new insights into the molecular mechanism of ginsenoside Rc as a protective agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinglin Wang
- Guangdong Hanfang Health Research Institute, Guangzhou 510550, P. R. China
| | | | | |
Collapse
|
27
|
Li J, Yang C, Wang Y. miR‑126 overexpression attenuates oxygen‑glucose deprivation/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/Nrf2 signaling pathway in human umbilical vein endothelial cells. Mol Med Rep 2020; 23:165. [PMID: 33355373 PMCID: PMC7789090 DOI: 10.3892/mmr.2020.11804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
MicroRNA‑126 (miR‑126) has been reported to be implicated in the pathogenesis of cerebral ischemia/reperfusion (I/R) injury; however, its role is still unclear and requires further investigation. The objective of the present study was to determine the neuroprotective effect of miR‑126 overexpression against oxygen‑glucose deprivation/reoxygenation (OGD/R)‑induced human umbilical vein endothelial cell (HUVEC) injury, an in vitro model of cerebral I/R injury, and to further explore the role of the NAD‑dependent protein deacetylase sirtuin‑1 (SIRT1)/nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling pathway in this process. The results of the present study revealed that miR‑126 expression was markedly reduced in HUVECs subjected to OGD/R treatment. Functional experiments demonstrated that transfection with miR‑126 mimics attenuated OGD/R‑induced down‑regulation of cell viability, and reversed OGD/R‑induced up‑regulation of lactate dehydrogenase release, apoptosis and caspase‑3 activity in HUVECs. Notably, OGD/R reduced SIRT1 and heme oxygenase‑1 expression, and induced the nuclear translocation of Nrf2, as demonstrated by the increase in cytoplasmic Nrf2 expression and the decrease in nuclear Nrf2 expression. Following transfection with miR‑126 mimics, these effects of OGD/R were reversed, indicating that miR‑126 overexpression promoted the SIRT1/Nrf2 signaling pathway. Additionally, miR‑126 mimics attenuated OGD/R‑induced cytotoxicity and apoptosis, which was blocked by inhibition of the SIRT1/Nrf2 signaling pathway followed by transfection with SIRT1‑small interfering RNA (siRNA). Furthermore, miR‑126 mimics decreased ROS generation and malondialdehyde content, and increased superoxide dismutase and glutathione peroxidase activity in HUVECs exposed to OGD/R, and these effects of miR‑126 mimics were also blocked by SIRT1‑siRNA. Additionally, the miR‑126 mimics‑induced the decreases in the levels of pro‑inflammatory cytokines, including tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6, and the miR‑126 mimics‑induced increase in anti‑inflammatory cytokines, including IL‑10, were reversed by SIRT1‑siRNA. Overall, these results suggested that miR‑126 overexpression attenuated OGD/R‑induced neurotoxicity to HUVECs by alleviating oxidative stress and the inflammatory response via promotion of the SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jixin Li
- Department of Neurology, The First People's Hospital, Taizhou, Zhejiang 317000, P.R. China
| | - Caili Yang
- Department of Neurology, The First People's Hospital, Taizhou, Zhejiang 317000, P.R. China
| | - Yan Wang
- Department of Neurology, The Second People's Hospital, Taizhou, Zhejiang 317016, P.R. China
| |
Collapse
|
28
|
Li X, Feng Y, Wang XX, Truong D, Wu YC. The Critical Role of SIRT1 in Parkinson's Disease: Mechanism and Therapeutic Considerations. Aging Dis 2020; 11:1608-1622. [PMID: 33269110 PMCID: PMC7673849 DOI: 10.14336/ad.2020.0216] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Silence information regulator 1 (SIRT1), a member of the sirtuin family, targets histones and many non-histone proteins and participates in various physiological functions. The enzymatic activity of SIRT1 is decreased in patients with Parkinson’s disease (PD), which may reduce their ability to resist neuronal damage caused by various neurotoxins. As far as we know, SIRT1 can induce autophagy by regulating autophagy related proteins such as AMP-activated protein kinase, light chain 3, mammalian target of rapamycin, and forkhead transcription factor 1. Furthermore, SIRT1 can regulate mitochondrial function and inhibit oxidative stress mainly by maintaining peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in a deacetylated state and thus maintaining a constant level of PGC-1α. Other studies have demonstrated that SIRT1 may play a role in the pathophysiology of PD by regulating neuroinflammation. SIRT1 deacetylases nuclear factor-kappa B and thus reduces its transcriptional activity, inhibits inducible nitric oxide synthase expression, and decreases tumor necrosis factor-alpha and interleukin-6 levels. SIRT1 can also upregulate heat shock protein 70 by deacetylating heat shock factor 1 to increase the degradation of α-synuclein oligomers. Few studies have focused on the relationship between SIRT1 single nucleotide polymorphisms and PD risk, so this topic requires further research. Based on the neuroprotective effects of SIRT1 on PD, many in vitro and in vivo experiments have demonstrated that some SIRT1 activators, notably resveratrol, have potential neuroprotective effects against dopaminergic neuronal damage caused by various neurotoxins. Thus, SIRT1 plays a critical role in PD development and might be a potential target for PD therapy.
Collapse
Affiliation(s)
- Xuan Li
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ya Feng
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xi-Xi Wang
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daniel Truong
- 2The Truong Neurosciences Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA.,3Department of Neurosciences and Psychiatry, University of California, Riverside, CA, USA
| | - Yun-Cheng Wu
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
29
|
Ren C, Han R, Hu J, Li H, Li S, Liu Y, Cheng Z, Ji X, Ding Y. Hypoxia post-conditioning promoted glycolysis in mice cerebral ischemic model. Brain Res 2020; 1748:147044. [DOI: 10.1016/j.brainres.2020.147044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/10/2023]
|
30
|
Sabet Sarvestani F, Azarpira N. microRNAs Alterations of Myocardium and Brain Ischemia-Reperfusion Injury: Insight to Improve Infarction. Immunol Invest 2020; 51:51-72. [DOI: 10.1080/08820139.2020.1808672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Xu Y, Wang Q, Chen J, Ma Y, Liu X. Updating a Strategy for Histone Deacetylases and Its Inhibitors in the Potential Treatment of Cerebral Ischemic Stroke. DISEASE MARKERS 2020; 2020:8820803. [PMID: 32963637 PMCID: PMC7492879 DOI: 10.1155/2020/8820803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is one of the severe diseases with a pathological condition that leads to nerve cell dysfunction with seldom available therapy options. Currently, there are few proven effective treatments available for improving cerebral ischemic stroke outcome. However, recently, there is increasing evidence that inhibition of histone deacetylase (HDAC) activity exerts a strong protective effect in in vivo and vitro models of ischemic stroke. Review Summary. HDAC is a posttranslational modification that is negatively regulated by histone acetyltransferase (HATS) and histone deacetylase. Based on function and DNA sequence similarity, histone deacetylases (HDACs) are organized into four different subclasses (I-IV). Modifications of histones play a crucial role in cerebral ischemic affair development after translation by modulating disrupted acetylation homeostasis. HDAC inhibitors (HDACi) mainly exert neuroprotective effects by enhancing histone and nonhistone acetylation levels and enhancing gene expression and protein modification functions. This article reviews HDAC and its inhibitors, hoping to find meaningful therapeutic targets. CONCLUSIONS HDAC may be a new biological target for cerebral ischemic stroke. Future drug development targeting HDAC may make it a potentially effective anticerebral ischemic stroke drug.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Jianxin Chen
- Department of Neurology, Jinan First People's Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| |
Collapse
|
32
|
Li M, Li SC, Dou BK, Zou YX, Han HZ, Liu DX, Ke ZJ, Wang ZF. Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia. Acta Pharmacol Sin 2020; 41:1025-1032. [PMID: 32203080 PMCID: PMC7471431 DOI: 10.1038/s41401-020-0386-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Cycloastragenol (CAG) is the active form of astragaloside IV isolated from Astragalus Radix, which displays multiple pharmacological effects. Silent information regulator 1 (SIRT1), a class III histone deacetylase, has been shown to play an important role in neuroprotection against cerebral ischemia. In this study, we investigated whether CAG protected against ischemic brain injury and, if so, whether the beneficial effects were associated with the regulation of SIRT1 in the ischemic brain. Mice were subjected to 45 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. CAG (5, 10, 20 mg/kg) was injected intraperitoneally at the onset of reperfusion, 12 h later and then twice daily for up to three days. CAG dose-dependently reduced brain infarct volume, significantly ameliorated functional deficits, and prevented neuronal cell loss in MCAO mice. Meanwhile, CAG significantly reduced matrix metalloproteinase-9 activity, prevented tight junction degradation and subsequently ameliorated blood-brain barrier disruption. Moreover, CAG significantly upregulated SIRT1 expression in the ischemic brain but did not directly activate its enzymatic activity. Concomitant with SIRT1 upregulation, CAG reduced p53 acetylation and the ratio of Bax to Bcl-2 in the ischemic brain. CAG also inhibited NF-κB p65 nuclear translocation. As a result, CAG suppressed the mRNA expression of pro-inflammatory cytokines, including TNF-α and IL-1β, and inhibited the activation of microglia and astrocytes in the ischemic brain. Our findings suggest that CAG is neuroprotective against ischemic brain injury in mice and that its beneficial effect may involve SIRT1 upregulation and the inhibition of apoptosis and neuroinflammation in the ischemic brain.
Collapse
|
33
|
Ren Q, Hu Z, Jiang Y, Tan X, Botchway BOA, Amin N, Lin G, Geng Y, Fang M. SIRT1 Protects Against Apoptosis by Promoting Autophagy in the Oxygen Glucose Deprivation/Reperfusion-Induced Injury. Front Neurol 2019; 10:1289. [PMID: 31920915 PMCID: PMC6915092 DOI: 10.3389/fneur.2019.01289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Silent information regulator 1 (SIRT1) contributes to cellular regulation. Previous studies have reported SIRT1 to be abnormally expressed in the ischemic penumbra of cerebral ischemia/reperfusion (I/R) injury rat model. We investigated the effect of SIRT1 on oxygen and glucose deprivation/reperfusion (OGD/R) cell injury. Over-expressed or silenced SIRT1 pheochromocytoma 12 (PC12) cells were exposed to an in-vitro OGD/R injury. Western blot, TUNEL staining and immunofluorescence analyses were performed to assess apoptosis and autophagy. We found autophagy and apoptosis to be up-regulated and down-regulated, respectively, following the over-expression of SIRT1 in the OGD/R-induced PC12 cells. We also found the silencing of SIRT1 to culminate in the down-regulation and up-regulation of autophagy and apoptosis, respectively. On the basis of our results, we surmise that SIRT1 can promote autophagy and inhibit apoptosis in-vitro, and thus exhibit potential neuroprotection against OGD/R-induced injury. This could facilitate in the development of therapeutic approaches for cerebral I/R injury.
Collapse
Affiliation(s)
- Qiannan Ren
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Yuting Jiang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Gaoping Lin
- Department of Neurology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yu Geng
- Department of Neurology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Zhang H, Lee JY, Borlongan CV, Tajiri N. A brief physical activity protects against ischemic stroke. Brain Circ 2019; 5:112-118. [PMID: 31620657 PMCID: PMC6785942 DOI: 10.4103/bc.bc_32_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
With restricted therapeutic opportunities, stroke remains a relevant, critical disease necessitating study. Due to the unique aspect of ischemic strokes, finding approaches to maintain the vigor of the cerebral vasculature, such as increased angiogenesis, may protect against stroke. Ischemic strokes are caused by disruptions in blood movement in the brain, resulting in a torrent of harmful cerebrovasculature modifications. In an investigation by Pianta et al., Sprague-Dawley rats have been separated into those that undergo exercise prior to middle cerebral artery occlusion (MCAO) and those that were not exposed to physical activity preceding MCAO. The outcomes and results of the current study gave new insights into the capacity of exercise to help prevent ischemic strokes or mitigate poststroke effects. The data collected from the study suggested that rats that went through a short bout of exercise before MCAO presented superior motor performance, more active cells in the peri-infarct region, and reduced infarct sizes. When compared to the control group, the rats that went through exercise also had heightened angiogenesis and improved neuroprotection. Thus, a brief bout of physical activity preceding a stroke may provide neuroprotection by enhancing the strength of the cerebrovasculature in the brain. This notion that even an instant of physical exercise before a stroke is induced can help dampen the effects of ischemic stroke, which could lead to future techniques in preventing the ischemic stroke so that it never happens at all.
Collapse
Affiliation(s)
- Henry Zhang
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| |
Collapse
|
35
|
Mild hypothermia improves neurological outcome in mice after cardiopulmonary resuscitation through Silent Information Regulator 1-actviated autophagy. Cell Death Discov 2019; 5:129. [PMID: 31428461 PMCID: PMC6690976 DOI: 10.1038/s41420-019-0209-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/16/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023] Open
Abstract
Mild hypothermia treatment (MHT) improves the neurological function of cardiac arrest (CA) patients, but the exact mechanisms of recovery remain unclear. Herein, we generated a CA and cardiopulmonary resuscitation (CPR) mouse model to elucidate such function. Naïve mice were randomly divided into two groups, a normothemia (NT) group, in which animals had normal body temperature, and a MHT group, in which animals had a body temperature of 33 °C (range: 32–34 °C), after the return of spontaneous circulation (ROSC), followed by CA/CPR. MHT significantly improved the survival rate of CA/CPR mice compared with NT. Mechanistically, MHT increased the expression of Silent Information Regulator 1 (Sirt1) and decreased P53 phosphorylation (p-P53) in the cortex of CA/CPR mice, which coincided with the elevated autophagic flux. However, Sirt1 deletion compromised the neuroprotection offered by MHT, indicating that Sirt1 plays an important role. Consistent with the observations obtained from in vivo work, our in vitro study utilizing cultured neurons subjected to oxygen/glucose deprivation and reperfusion (OGD/R) also indicated that Sirt1 knockdown increased OGD/R-induced neuron necrosis and apoptosis, which was accompanied by decreased autophagic flux and increased p-P53. However, the depletion of P53 did not suppress neuron death, suggesting that P53 was not critically involved in MHT-induced neuroprotection. In contrast, the application of autophagic inhibitor 3-methyladenine attenuated MHT-improved neuron survival after OGD/R, further demonstrating that increased autophagic flux significantly contributes to MHT-linked neuroprotection of CA/CRP mice. Our findings indicate that MHT improves neurological outcome of mice after CA/CPR through Sirt1-mediated activation of autophagic flux.
Collapse
|
36
|
Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses. Mol Neurobiol 2019; 56:8477-8488. [PMID: 31257559 PMCID: PMC6835038 DOI: 10.1007/s12035-019-01679-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/10/2019] [Indexed: 12/02/2022]
Abstract
Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate protein restriction not resulting in energy deprivation was recently suggested to protect against perinatal hypoxia-ischemia. Male C57BL6/j mice were exposed to moderate protein restriction by providing a normocaloric diet containing 8% protein (control: 20% protein) for 7, 14, or 30 days. Intraluminal middle cerebral artery occlusion was then induced. Mice were sacrificed 24 h later. Irrespective of the duration of food modification (that is, 7–30 days), protein restriction reduced neurological impairment of ischemic mice revealed by a global and focal deficit score. Prolonged protein restriction over 30 days also reduced infarct volume, brain edema, and blood-brain barrier permeability and increased the survival of NeuN+ neurons in the core of the stroke (i.e., striatum). Neuroprotection by prolonged protein restriction went along with reduced brain infiltration of CD45+ leukocytes and reduced expression of inducible NO synthase and interleukin-1β. As potential mechanisms, increased levels of the NAD-dependent deacetylase sirtuin-1 and anti-oxidant glutathione peroxidase-3 were noted in ischemic brain tissue. Irrespective of the protein restriction duration, a shift from pro-oxidant oxidative stress markers (NADPH oxidase-4) to anti-oxidant markers (superoxide dismutase-1/2, glutathione peroxidase-3 and catalase) was found in the liver. Moderate protein restriction protects against ischemia in the adult brain. Accordingly, dietary modifications may be efficacious strategies promoting stroke outcome.
Collapse
|
37
|
Laouafa S, Roussel D, Marcouiller F, Soliz J, Gozal D, Bairam A, Joseph V. Roles of oestradiol receptor alpha and beta against hypertension and brain mitochondrial dysfunction under intermittent hypoxia in female rats. Acta Physiol (Oxf) 2019; 226:e13255. [PMID: 30635990 DOI: 10.1111/apha.13255] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
AIM Chronic intermittent hypoxia (CIH) induces systemic (hypertension) and central alterations (mitochondrial dysfunction underlying cognitive deficits). We hypothesized that agonists of oestradiol receptors (ER) α and β prevent CIH-induced hypertension and brain mitochondrial dysfunction. METHODS Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh), the ERα agonist propylpyraoletriol (PPT - 30 μg/kg/day) or the ERβ agonist diarylpropionitril (DPN - 100 μg/kg/day). Animals were exposed to CIH (21%-10% FI O2 - 10 cycles/hour - 8 hours/day - 7 days) or normoxia. Arterial blood pressure was measured after CIH or normoxia exposures. Mitochondrial respiration and H2 O2 production were measured in brain cortex with high-resolution respirometry, as well as activity of complex I and IV of the electron transport chain, citrate synthase, pyruvate, and lactate dehydrogenase (PDH and LDH). RESULTS Propylpyraoletriol but not DPN prevented the rise of arterial pressure induced by CIH. CIH exposures decreased O2 consumption, complex I activity, and increased H2 O2 production. CIH had no effect on citrate synthase activity, but decreased PDH activity and increased LDH activity indicating higher anaerobic glycolysis. Propylpyraoletriol and DPN treatments prevented all these alterations. CONCLUSIONS We conclude that in OVX female rats, the ERα agonist prevents from CIH-induced hypertension while both ERα and ERβ agonists prevent the brain mitochondrial dysfunction and metabolic switch induced by CIH. These findings may have implications for menopausal women suffering of sleep apnoea regarding hormonal therapy.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Damien Roussel
- CNRS, UMR 5023 Université Claude Bernard Lyon 1 Villeurbanne France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - David Gozal
- Department of Child Health University of Missouri School of Medicine Columbia Missouri
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| |
Collapse
|
38
|
de Carvalho TS, Sanchez-Mendoza EH, Nascentes Melo LM, Schultz Moreira AR, Sardari M, Dzyubenko E, Kleinschnitz C, Hermann DM. Neuroprotection Induced by Energy and Protein-Energy Undernutrition Is Phase-Dependent After Focal Cerebral Ischemia in Mice. Transl Stroke Res 2019; 11:135-146. [PMID: 30887279 PMCID: PMC6957545 DOI: 10.1007/s12975-019-00700-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022]
Abstract
Malnutrition predisposes to poor stroke outcome. In animal models, undernutrition protected against ischemic injury in some, but not in other studies. In view of diverse stroke models and food restriction paradigms, the consequences of undernutrition are poorly understood. Herein, we exposed mice to energy-reduced and protein-energy-reduced diets for 7–30 days and subsequently induced intraluminal middle cerebral artery occlusion. Undernutrition phase dependently influenced ischemic injury. Short-lasting 7 days of protein-energy undernutrition, but not energy undernutrition, decreased post-ischemic brain leukocyte infiltration and microglial activation and reduced brain Il-1β mRNA, but did not protect against ischemic injury. Fourteen days of energy and protein-energy undernutrition, on the other hand, reduced ischemic injury despite absence of anti-inflammatory effects. Anti-oxidant genes (Sod-1, Sod-2, and Cat mRNAs) were regulated in the liver and, to a lesser extent, the ischemic brain, indicating an adapted, compensated stage. Conversely, 30 days of energy and protein-energy undernutrition caused progressive animal exhaustion associated with post-ischemic hypoperfusion, rise of metabolic markers (Sirt-1 and Glut-1 mRNAs, Sirt-1 protein) in the ischemic brain, and reregulation of pro- and anti-oxidant markers (now also Nox-4 and Gpx-3 mRNAs) in the liver. In the latter condition, no neuroprotection was noted. Our study suggests an adaptation of metabolic systems that provides neuroprotection in a circumscribed time window.
Collapse
Affiliation(s)
| | | | - Luiza M Nascentes Melo
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | | | - Maryam Sardari
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Egor Dzyubenko
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| |
Collapse
|
39
|
Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule. Biomolecules 2019; 9:biom9010034. [PMID: 30669679 PMCID: PMC6359187 DOI: 10.3390/biom9010034] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) is a nucleotide that is most recognized for its role as an intermediate of nicotinamide adenine dinucleotide (NAD+) biosynthesis. Although the biosynthetic pathway of NMN varies between eukaryote and prokaryote, two pathways are mainly followed in case of eukaryotic human-one is through the salvage pathway using nicotinamide while the other follows phosphorylation of nicotinamide riboside. Due to the unavailability of a suitable transporter, NMN enters inside the mammalian cell in the form of nicotinamide riboside followed by its subsequent conversion to NMN and NAD+. This particular molecule has demonstrated several beneficial pharmacological activities in preclinical studies, which suggest its potential therapeutic use. Mostly mediated by its involvement in NAD+ biosynthesis, the pharmacological activities of NMN include its role in cellular biochemical functions, cardioprotection, diabetes, Alzheimer's disease, and complications associated with obesity. The recent groundbreaking discovery of anti-ageing activities of this chemical moiety has added a valuable essence in the research involving this molecule. This review focuses on the biosynthesis of NMN in mammalian and prokaryotic cells and mechanism of absorption along with the reported pharmacological activities in murine model.
Collapse
|
40
|
Marin C, Langdon C, Alobid I, Fuentes M, Bonastre M, Mullol J. Recovery of Olfactory Function After Excitotoxic Lesion of the Olfactory Bulbs Is Associated with Increases in Bulbar SIRT1 and SIRT4 Expressions. Mol Neurobiol 2019; 56:5643-5653. [DOI: 10.1007/s12035-019-1472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
|
41
|
Davis CK, Jain SA, Bae ON, Majid A, Rajanikant GK. Hypoxia Mimetic Agents for Ischemic Stroke. Front Cell Dev Biol 2019; 6:175. [PMID: 30671433 PMCID: PMC6331394 DOI: 10.3389/fcell.2018.00175] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Every year stroke claims more than 6 million lives worldwide. The majority of them are ischemic stroke. Small molecule-based therapeutics for ischemic stroke has attracted a lot of attention, but none has been shown to be clinically useful so far. Hypoxia-inducible factor-1 (HIF-1) plays a crucial role in the transcriptional adaptation of cells to hypoxia. Small molecule-based hypoxia-mimetic agents either stabilize HIF-1α via HIF-prolyl hydroxylases (PHDs) inhibition or through other mechanisms. In both the cases, these agents have been shown to confer ischemic neuroprotection in vitro and in vivo. The agents which act via PHD inhibition are mainly classified into iron chelators, iron competitors, and 2 oxoglutarate (2OG) analogs. This review discusses HIF structure and key players in the HIF-1 degradation pathway as well as the genes, proteins and chemical molecules that are connected to HIF-1 and how they affect cell survival following ischemic injury. Furthermore, this review gives a summary of studies that used PHD inhibitors and other HIF-1α stabilizers as hypoxia-mimetic agents for the treatment of ischemic injury.
Collapse
Affiliation(s)
- Charles K. Davis
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Saurabh A. Jain
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - G. K. Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
42
|
Xu J, Jackson CW, Khoury N, Escobar I, Perez-Pinzon MA. Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection. Front Endocrinol (Lausanne) 2018; 9:702. [PMID: 30532738 PMCID: PMC6265504 DOI: 10.3389/fendo.2018.00702] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Sirtuins are evolutionarily conserved proteins that use nicotinamide adenine dinucleotide (NAD+) as a co-substrate in their enzymatic reactions. There are seven proteins (SIRT1-7) in the human sirtuin family, among which SIRT1 is the most conserved and characterized. SIRT1 in the brain, in particular, within the hypothalamus, plays crucial roles in regulating systemic energy homeostasis and circadian rhythm. Apart from this, SIRT1 has also been found to mediate beneficial effects in neurological diseases. In this review, we will first summarize how SIRT1 in the brain relates to obesity, type 2 diabetes, and circadian synchronization, and then we discuss the neuroprotective roles of brain SIRT1 in the context of cerebral ischemia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Xu
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charlie W. Jackson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Iris Escobar
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
43
|
Liang X, Liu Y, Jia S, Xu X, Dong M, Wei Y. SIRT1: The Value of Functional Outcome, Stroke-Related Dementia, Anxiety, and Depression in Patients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 28:205-212. [PMID: 30361109 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/15/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The outcome of ischemic stroke depends on multiple factors and their function of each other. Studies have shown that Sirtuin1 (SIRT1) plays a chief role in the key procedure during ischemia/hypoxia by protecting against cellular stress and controlling the metabolic pathways. AIMS To explore the alterations in serum SIRT1 concentrations in acute ischemic stroke (AIS) patients and the relationship between SIRT1 and poststroke dementia, anxiety, and depression. METHODS One hundred and twenty four consecutive patients with clinically diagnosed AIS were recruited to participate in the study. Serum SIRT1 levels were measured using a commercially available ELISA equipment for SIRT1 (Cusabio, Wuhan, China). In 1 year after admission, the severity of stroke was assessed with the National Institutes of Health Stroke Scale score, and the functional outcome was measured by a modified Rankin scale, the Hamilton Anxiety Scale scores were evaluated to define patients with or without anxiety, and the Hamilton Depression Scale scores for depression. RESULTS We found the levels of serum SIRT1 was significantly higher (P = .036) in AIS patients (.62 ± .77 ng/mL) compared with healthy control subjects (.45 ± .69 ng/mL), but not significantly higher SIRT1 concentration (.58 ± .69 versus .64 ± .81 ng/mL, P = .298) than patients in the unfavorable functional outcome group. CONCLUSIONS There is no potential diagnostic and prognostic role of SIRT1 in AIS-related dementia, anxiety, and depression. The role of SIRT1 in AIS among human race needs to be further investigated.
Collapse
Affiliation(s)
- Xue Liang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Shiyu Jia
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Xiaomin Xu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Meixue Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Youdong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| |
Collapse
|
44
|
Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ. SIRT1 Activation: A Potential Strategy for Harnessing Endogenous Protection Against Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Neurosurgery 2018; 65:1-5. [PMID: 31076789 DOI: 10.1093/neuros/nyy201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Julian Clarke
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| |
Collapse
|
45
|
Jackson CW, Escobar I, Xu J, Perez-Pinzon MA. Effects of ischemic preconditioning on mitochondrial and metabolic neruoprotection: 5' adenosine monophosphate-activated protein kinase and sirtuins. Brain Circ 2018; 4:54-61. [PMID: 30276337 PMCID: PMC6126241 DOI: 10.4103/bc.bc_7_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
Stroke and cardiac arrest result in cerebral ischemia, a highly prevalent medical issue around the world, which is characterized by a reduction or loss of blood flow to the brain. The loss of adequate nutrient supply in the brain during ischemia results in neuronal cell death contributing to cognitive and motor deficits that are usually permanent. Current effective therapies for cerebral ischemia are only applicable after the fact. Thus, the development of preventative therapies of ischemia is imperative. A field of research that continues to show promise in developing therapies for cerebral ischemia is ischemic preconditioning (IPC). IPC is described as exposure to sublethal ischemic events, which induce adaptive changes that provide tolerance to future ischemic events. Through either transient sub-lethal ischemic events, or the actions of a preconditioning molecular mimetic, IPC typically results in augmented gene expression and cellular metabolism. A pivotal target of such changes in gene expression and metabolism is the mitochondrion. Direct and indirect effects on mitochondria by IPC can result in the activation of 5’ adenosine monophosphate-activated protein kinase (AMPK), a master regulator of cellular metabolism. Changes in the activity of the posttranslational modifiers, SIRT1 and SIRT5, also contribute to the overall adaptive processes in cellular metabolism and mitochondrial functioning. In this review, we present recently collected evidence to highlight the neuroprotective interactions of mitochondria with AMPK, SIRT1, and SIRT5 in IPC. To produce this review, we utilized PubMed and previous reviews to target and to consolidate the relevant studies and lines of evidence.
Collapse
Affiliation(s)
- Charles W Jackson
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Iris Escobar
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jing Xu
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
46
|
Tian F, Yuan C, Yue H. MiR-138/SIRT1 axis is implicated in impaired learning and memory abilities of cerebral ischemia/reperfusion injured rats. Exp Cell Res 2018; 367:232-240. [DOI: 10.1016/j.yexcr.2018.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
47
|
Khoury N, Koronowski KB, Young JI, Perez-Pinzon MA. The NAD +-Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxid Redox Signal 2018; 28:691-710. [PMID: 28683567 PMCID: PMC5824497 DOI: 10.1089/ars.2017.7258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Sirtuins are an evolutionarily conserved family of NAD+-dependent lysine deacylases and ADP ribosylases. Their requirement for NAD+ as a cosubstrate allows them to act as metabolic sensors that couple changes in the energy status of the cell to changes in cellular physiological processes. NAD+ levels are affected by several NAD+-producing and NAD+-consuming pathways as well as by cellular respiration. Thus their intracellular levels are highly dynamic and are misregulated in a spectrum of metabolic disorders including cerebral ischemia. This, in turn, compromises several NAD+-dependent processes that may ultimately lead to cell death. Recent Advances: A number of efforts have been made to replenish NAD+ in cerebral ischemic injuries as well as to understand the functions of one its important mediators, the sirtuin family of proteins through the use of pharmacological modulators or genetic manipulation approaches either before or after the insult. Critical Issues and Future Directions: The results of these studies have regarded the sirtuins as promising therapeutic targets for cerebral ischemia. Yet, additional efforts are needed to understand the role of some of the less characterized members and to address the sex-specific effects observed with some members. Sirtuins also exhibit cell-type-specific expression in the brain as well as distinct subcellular and regional localizations. As such, they are involved in diverse and sometimes opposing cellular processes that can either promote neuroprotection or further contribute to the injury; which also stresses the need for the development and use of sirtuin-specific pharmacological modulators. Antioxid. Redox Signal. 28, 691-710.
Collapse
Affiliation(s)
- Nathalie Khoury
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kevin B. Koronowski
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan I. Young
- Dr. John T. Macdonald Foundation Department of Human Genetics; Hussman Institute for Human Genomics, and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Miguel A. Perez-Pinzon
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
48
|
Phosphodiesterase-4 inhibition confers a neuroprotective efficacy against early brain injury following experimental subarachnoid hemorrhage in rats by attenuating neuronal apoptosis through the SIRT1/Akt pathway. Biomed Pharmacother 2018; 99:947-955. [DOI: 10.1016/j.biopha.2018.01.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
|
49
|
Wong SY, Tang BL. SIRT1 as a therapeutic target for Alzheimer's disease. Rev Neurosci 2018; 27:813-825. [PMID: 27497424 DOI: 10.1515/revneuro-2016-0023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/12/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia in the aging population worldwide. SIRT1 deacetylation of histones and transcription factors impinge on multiple neuronal and non-neuronal targets, and modulates stress response, energy metabolism and cellular senescence/death pathways. Collectively, SIRT1 activity could potentially affect multiple aspects of hippocampal and cortical neuron function and survival, thus modifying disease onset and progression. In this review, the known and potential mechanisms of action of SIRT1 with regard to AD, and its potential as a therapeutic target, are discussed.
Collapse
|
50
|
Yang T, Li Q, Zhang F. Regulation of gene expression in ischemic preconditioning in the brain. CONDITIONING MEDICINE 2017; 1:47-56. [PMID: 30035270 PMCID: PMC6051752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stroke is the third leading cause of death and the leading cause of long-term disability, with very few effective treatments and limited progress in the effort to search for novel therapeutic approaches. The phenomenon that a sublethal ischemic insult induces protection against a subsequent severe ischemia, termed ischemic preconditioning (IPC), represents an endogenous protective approach against ischemic brain injury, and may direct a breakthrough to future therapeutic strategies. It is broadly accepted that new protein synthesis is required for IPC-mediated long-term neuroprotection; however, their relative regulatory mechanisms are poorly understood. In the present review, we summarize genomic-based studies on alterations in gene expression and protein synthesis, particularly categorizing potential pathways regulated by IPC. We also review the role of epigenetics, an inheritable genetic regulatory mechanism without changes in DNA sequence, in IPC-mediated neuroprotection.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA
| |
Collapse
|