1
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
2
|
Goel B, Virmani T, Jain V, Kumar G, Sharma A, Al Noman A. Unveiling the Link Between Breast Cancer Treatment and Osteoporosis: Implications for Anticancer Therapy and Bone Health. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5594542. [PMID: 39574432 PMCID: PMC11581800 DOI: 10.1155/2024/5594542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
Background: The interplay between breast cancer treatment and osteoporosis has important consequences for anticancer therapy and patient bone health. Many breast cancer therapies involve hormonal treatments that lower estrogen levels, which can lead to an increased risk of osteoporosis due to reduced bone mineral density. Aromatase inhibitors, chemotherapy, and surgeries such as oophorectomy can further aggravate bone loss, highlighting the necessity of prioritizing bone health during cancer treatment. Objective: This review is aimed at investigating the complex relationship between breast cancer therapies and bone health by examining the molecular and cellular mechanisms through which anticancer treatments lead to bone loss. It also seeks to assess the effects of various treatment options, such as selective estrogen receptor modulators (SERMs) and bisphosphonates, on reducing bone loss and maintaining bone health during cancer therapy. Method: The review explores the mechanisms underlying bone loss in breast cancer patients undergoing treatment, focusing on factors such as estrogen depletion, inflammatory cytokines, and changes in bone remodelling processes. Additionally, it evaluates the efficacy of different therapeutic interventions, including pharmacological treatments like bisphosphonates and third-generation SERMs, in mitigating bone-related side effects. Results: The findings indicate a critical need to balance the effectiveness of breast cancer treatments with the preservation of bone health. Pharmacological treatments like bisphosphonates and denosumab have been identified as essential for managing bone health in breast cancer patients. Furthermore, third-generation SERMs show potential in reducing bone loss associated with cancer therapy.
Collapse
Affiliation(s)
- Bhawna Goel
- School of Pharmaceutical Sciences, MVN University 121102, Palwal, Haryana, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University, Greater Noida 2011308, Uttar Pradesh, India
| | - Vikas Jain
- Department of Pharmacy, JSS College of Pharmacy, Sri Shivarathreeshwara Nagara 570015, Mysuru, Karnataka, India
| | - Girish Kumar
- Amity Institute of Pharmacy, Amity University, Greater Noida 2011308, Uttar Pradesh, India
| | - Ashwani Sharma
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences Research University, Delhi, India
| | | |
Collapse
|
3
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Zhang Z, Lv ZG, Lu M, Li H, Zhou J. Nerve-tumor crosstalk in tumor microenvironment: From tumor initiation and progression to clinical implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189121. [PMID: 38796026 DOI: 10.1016/j.bbcan.2024.189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
The autonomic nerve system (ANS) innervates organs and tissues throughout the body and maintains functional balance among various systems. Further investigations have shown that excessive activation of ANS not only causes disruption of homeostasis, but also may promote tumor formation. In addition, the dynamic interaction between nerve and tumor cells in the tumor microenvironment also regulate tumor progression. On the one hand, nerves are passively invaded by tumor cells, that is, perineural invasion (PNI). On the other hand, compared with normal tissues, tumor tissues are subject to more abundant innervation, and nerves can influence tumor progression through regulating tumor proliferation, metastasis and drug resistance. A large number of studies have shown that nerve-tumor crosstalk, including PNI and innervation, is closely related to the prognosis of patients, and contributes to the formation of cancer pain, which significantly deteriorates the quality of life for patients. These findings suggest that nerve-tumor crosstalk represents a potential target for anti-tumor therapies and the management of cancer pain in the future. In this review, we systematically describe the mechanism by which nerve-tumor crosstalk regulates tumorigenesis and progression.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Zhen Gang Lv
- Department of Surgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Miao Lu
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China.
| |
Collapse
|
5
|
Wu S, Li M, Chen F, Zeng Y, Xu C. Inhibition of β2-adrenergic receptor regulates necroptosis in prostate cancer cell. Heliyon 2024; 10:e31865. [PMID: 38845899 PMCID: PMC11153256 DOI: 10.1016/j.heliyon.2024.e31865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
As the malignant tumor with the highest incidence in male, prostate cancer poses a significant threat to the reproductive health of elderly men. Our previous studies have shown that promoting necroptosis of cancer cells can effectively inhibit cancer cell proliferation. This study includes lentivirus-mediated knockdown of β2AR which resulted in stable transfectants that exhibited an increased ability to form clones compared to that of the negative control group. In the protein and mRNA levels, necroptosis associated RIP and mixed lineage kinase domain-like (MLKL) were significantly higher in the treatment group than they were in the control group. Furthermore, cells treated with propranolol exhibited necrotic morphology as observed by transmission electron microscopy. The combination of β2AR suppression and necroptosis inhibitors resulted in a more potent suppression of cell proliferation compared to that observed in the control and negative control groups. Additionally, it elevated in the necrosis rate as determined by flow cytometry. Immunofluorescence staining revealed enhanced RIP and MLKL expression in the sh-β2AR group compared to levels in the negative control group. Co-immunoprecipitation experiments detected an interaction between β2AR and RIP. MLKL and RIPK3 levels were significantly higher in xenograft tumor sections from the sh-β2AR group compared to levels in the sh-NC group. To conclude, our research indicates the proliferation of PC-3 and DU-145 cprostate cancer cells can be suppressed by inhibiting β2AR, and this occurs through the RIP/MLKL-mediated pathway of necroptosis.
Collapse
Affiliation(s)
| | | | - Fangfang Chen
- Institution of Life Science, Chongqing Medical University, Chongqing, China
| | - Yan Zeng
- Institution of Life Science, Chongqing Medical University, Chongqing, China
| | - Chen Xu
- Corresponding author. Institution of Life Science, Chongqing Medical University, 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
6
|
Shu LZ, Ding YD, Zhang JY, He RS, Xiao L, Pan BX, Deng H. Interactions between MDSCs and the Autonomic Nervous System: Opportunities and Challenges in Cancer Neuroscience. Cancer Immunol Res 2024; 12:652-662. [PMID: 38568775 DOI: 10.1158/2326-6066.cir-23-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Myeloid-derived suppressor cells (MDSC) are a population of heterogeneous immune cells that are involved in precancerous conditions and neoplasms. The autonomic nervous system (ANS), which is composed of the sympathetic nervous system and the parasympathetic nervous system, is an important component of the tumor microenvironment that responds to changes in the internal and external environment mainly through adrenergic and cholinergic signaling. An abnormal increase of autonomic nerve density has been associated with cancer progression. As we discuss in this review, growing evidence indicates that sympathetic and parasympathetic signals directly affect the expansion, mobilization, and redistribution of MDSCs. Dysregulated autonomic signaling recruits MDSCs to form an immunosuppressive microenvironment in chronically inflamed tissues, resulting in abnormal proliferation and differentiation of adult stem cells. The two components of the ANS may also be responsible for the seemingly contradictory behaviors of MDSCs. Elucidating the underlying mechanisms has the potential to provide more insights into the complex roles of MDSCs in tumor development and lay the foundation for the development of novel MDSC-targeted anticancer strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Dan Ding
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jin-Yao Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Rui-Shan He
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Xiao
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Deng
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Öz-Arslan D, Durer ZA, Kan B. G protein-coupled receptor-mediated autophagy in health and disease. Br J Pharmacol 2024. [PMID: 38501194 DOI: 10.1111/bph.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse superfamily of mammalian transmembrane proteins. These receptors are involved in a wide range of physiological functions and are targets for more than a third of available drugs in the market. Autophagy is a cellular process involved in degrading damaged proteins and organelles and in recycling cellular components. Deficiencies in autophagy are involved in a variety of pathological conditions. Both GPCRs and autophagy are essential in preserving homeostasis and cell survival. There is emerging evidence suggesting that GPCRs are direct regulators of autophagy. Additionally, autophagic machinery is involved in the regulation of GPCR signalling. The interplay between GPCR and autophagic signalling mechanisms significantly impacts on health and disease; however, there is still an incomplete understanding of the underlying mechanisms and therapeutic implications in different tissues and disease contexts. This review aims to discuss the interactions between GPCR and autophagy signalling. Studies on muscarinic receptors, beta-adrenoceptors, taste receptors, purinergic receptors and adhesion GPCRs are summarized, in relation to autophagy.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
- Department of Biochemistry, Acibadem MAA University, School of Pharmacy, Istanbul, Turkey
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Wang Y, Liu Z, Tian Y, Zhao H, Fu X. Periampullary cancer and neurological interactions: current understanding and future research directions. Front Oncol 2024; 14:1370111. [PMID: 38567163 PMCID: PMC10985190 DOI: 10.3389/fonc.2024.1370111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Periampullary cancer is a malignant tumor occurring around the ampullary region of the liver and pancreas, encompassing a variety of tissue types and sharing numerous biological characteristics, including interactions with the nervous system. The nervous system plays a crucial role in regulating organ development, maintaining physiological equilibrium, and ensuring life process plasticity, a role that is equally pivotal in oncology. Investigations into nerve-tumor interactions have unveiled their key part in controlling cancer progression, inhibiting anti-tumor immune responses, facilitating invasion and metastasis, and triggering neuropathic pain. Despite many mechanisms by which nerve fibers contribute to cancer advancement still being incompletely understood, the growing emphasis on the significance of nerves within the tumor microenvironment in recent years has set the stage for the development of groundbreaking therapies. This includes combining current neuroactive medications with established therapeutic protocols. This review centers on the mechanisms of Periampullary cancer's interactions with nerves, the influence of various types of nerve innervation on cancer evolution, and outlines the horizons for ongoing and forthcoming research.
Collapse
Affiliation(s)
- Yuchen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zi’ang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoliang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Wang J, Wei J, Pu T, Zeng A, Karthikeyan V, Bechtold B, Vo K, Chen J, Lin TP, Chang AP, Corey E, Puhr M, Klocker H, Culig Z, Bland T, Wu BJ. Cholinergic signaling via muscarinic M1 receptor confers resistance to docetaxel in prostate cancer. Cell Rep Med 2024; 5:101388. [PMID: 38262412 PMCID: PMC10897519 DOI: 10.1016/j.xcrm.2023.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Docetaxel is the most commonly used chemotherapy for advanced prostate cancer (PC), including castration-resistant disease (CRPC), but the eventual development of docetaxel resistance constitutes a major clinical challenge. Here, we demonstrate activation of the cholinergic muscarinic M1 receptor (CHRM1) in CRPC cells upon acquiring resistance to docetaxel, which is manifested in tumor tissues from PC patients post- vs. pre-docetaxel. Genetic and pharmacological inactivation of CHRM1 restores the efficacy of docetaxel in resistant cells. Mechanistically, CHRM1, via its first and third extracellular loops, interacts with the SEMA domain of cMET and forms a heteroreceptor complex with cMET, stimulating a downstream mitogen-activated protein polykinase program to confer docetaxel resistance. Dicyclomine, a clinically available CHRM1-selective antagonist, reverts resistance and restricts the growth of multiple docetaxel-resistant CRPC cell lines and patient-derived xenografts. Our study reveals a CHRM1-dictated mechanism for docetaxel resistance and identifies a CHRM1-targeted combinatorial strategy for overcoming docetaxel resistance in PC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Alan Zeng
- Undergraduate Programs, University of Washington, Seattle, WA, USA
| | - Varsha Karthikeyan
- Summer Undergraduate Research Fellowship Program, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA; Department of Integrative Biology, School of Life Sciences, College of Science, Oregon State University, Corvallis, OR, USA
| | - Baron Bechtold
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Karen Vo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA; Summer Undergraduate Research Fellowship Program, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China; Department of Urology, School of Medicine and Shu-Tien Urological Research, National Yang Ming Chiao Tung University, Taipei, Republic of China
| | - Amy P Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Republic of China
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Martin Puhr
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tyler Bland
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA; WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA.
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
10
|
Yamanishi K, Hata M, Gamachi N, Watanabe Y, Yamanishi C, Okamura H, Matsunaga H. Molecular Mechanisms of IL18 in Disease. Int J Mol Sci 2023; 24:17170. [PMID: 38139000 PMCID: PMC10743479 DOI: 10.3390/ijms242417170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin 18 (IL18) was originally identified as an inflammation-induced cytokine that is secreted by immune cells. An increasing number of studies have focused on its non-immunological functions, with demonstrated functions for IL18 in energy homeostasis and neural stability. IL18 is reportedly required for lipid metabolism in the liver and brown adipose tissue. Furthermore, IL18 (Il18) deficiency in mice leads to mitochondrial dysfunction in hippocampal cells, resulting in depressive-like symptoms and cognitive impairment. Microarray analyses of Il18-/- mice have revealed a set of genes with differential expression in liver, brown adipose tissue, and brain; however, the impact of IL18 deficiency in these tissues remains uncertain. In this review article, we discuss these genes, with a focus on their relationships with the phenotypic disease traits of Il18-/- mice.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Masaki Hata
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Naomi Gamachi
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, Hirakata 573-0122, Osaka, Japan; (Y.W.); (C.Y.)
| | - Chiaki Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata 573-0122, Osaka, Japan; (Y.W.); (C.Y.)
| | - Haruki Okamura
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| |
Collapse
|
11
|
Ni B, Yin Y, Li Z, Wang J, Wang X, Wang K. Crosstalk Between Peripheral Innervation and Pancreatic Ductal Adenocarcinoma. Neurosci Bull 2023; 39:1717-1731. [PMID: 37347365 PMCID: PMC10603023 DOI: 10.1007/s12264-023-01082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy, characterized by late diagnosis, aggressive growth, and therapy resistance, leading to a poor overall prognosis. Emerging evidence shows that the peripheral nerve is an important non-tumor component in the tumor microenvironment that regulates tumor growth and immune escape. The crosstalk between the neuronal system and PDAC has become a hot research topic that may provide novel mechanisms underlying tumor progression and further uncover promising therapeutic targets. In this review, we highlight the mechanisms of perineural invasion and the role of various types of tumor innervation in the progression of PDAC, summarize the potential signaling pathways modulating the neuronal-cancer interaction, and discuss the current and future therapeutic possibilities for this condition.
Collapse
Affiliation(s)
- Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zekun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Junjin Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
12
|
Nguyen TM, Ngoc DTM, Choi JH, Lee CH. Unveiling the Neural Environment in Cancer: Exploring the Role of Neural Circuit Players and Potential Therapeutic Strategies. Cells 2023; 12:1996. [PMID: 37566075 PMCID: PMC10417274 DOI: 10.3390/cells12151996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
The regulation of the immune environment within the tumor microenvironment has provided new opportunities for cancer treatment. However, an important microenvironment surrounding cancer that is often overlooked despite its significance in cancer progression is the neural environment surrounding the tumor. The release of neurotrophic factors from cancer cells is implicated in cancer growth and metastasis by facilitating the infiltration of nerve cells into the tumor microenvironment. This nerve-tumor interplay can elicit cancer cell proliferation, migration, and invasion in response to neurotransmitters. Moreover, it is possible that cancer cells could establish a network resembling that of neurons, allowing them to communicate with one another through neurotransmitters. The expression levels of players in the neural circuits of cancers could serve as potential biomarkers for cancer aggressiveness. Notably, the upregulation of certain players in the neural circuit has been linked to poor prognosis in specific cancer types such as breast cancer, pancreatic cancer, basal cell carcinoma, and stomach cancer. Targeting these players with inhibitors holds great potential for reducing the morbidity and mortality of these carcinomas. However, the efficacy of anti-neurogenic agents in cancer therapy remains underexplored, and further research is necessary to evaluate their effectiveness as a novel approach for cancer treatment. This review summarizes the current knowledge on the role of players in the neural circuits of cancers and the potential of anti-neurogenic agents for cancer therapy.
Collapse
Affiliation(s)
- Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Dinh Thi Minh Ngoc
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Jung-Hye Choi
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| |
Collapse
|
13
|
Yu H, Qu T, Yang J, Dai Q. Serotonin acts through YAP to promote cell proliferation: mechanism and implication in colorectal cancer progression. Cell Commun Signal 2023; 21:75. [PMID: 37046308 PMCID: PMC10100184 DOI: 10.1186/s12964-023-01096-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a key messenger that mediates several central and peripheral functions in the human body. Emerging evidence indicates that serotonin is critical in tumorigenesis, but its role in colorectal cancer remains elusive. Herein, we report that serotonin transporter (SERT) transports serotonin into colorectal cancer cells, enhancing Yes-associated protein (YAP) expression and promoting in vitro and in vivo colon cancer cell growth. Once within the cells, transglutaminase 2 (TG2) mediates RhoA serotonylated and activates RhoA-ROCK1/2 signalling to upregulate YAP expression in SW480 and SW1116 cells. Blocking SERT with citalopram reversed the serotonin-induced YAP expression and cell proliferation, inhibiting serotonin's effects on tumour formation in mice. Moreover, SERT expression was correlated with YAP in pathological human colorectal cancer samples and the levels of 5-HT were highly significant in the serum of patients with colorectal cancer. Together, our findings suggested that serotonin enters cells via SERT to activate RhoA/ROCK/YAP signalling to promote colon cancer carcinogenesis. Consequently, targeting serotonin-SERT-YAP axis may be a potential therapeutic strategy for colorectal cancer. Video abstract.
Collapse
Affiliation(s)
- Huangfei Yu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China.
- Clinical Cancer Center of Zunyi, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China.
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China.
| | - Tianyin Qu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
- Clinical Cancer Center of Zunyi, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
| | - Jinlan Yang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
| | - Qing Dai
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563003, Guizhou, China
| |
Collapse
|
14
|
Doepner M, Lee I, Natale CA, Brathwaite R, Venkat S, Kim SH, Wei Y, Vakoc CR, Capell BC, Katzenellenbogen JA, Katzenellenbogen BS, Feigin ME, Ridky TW. Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling. SCIENCE ADVANCES 2022; 8:eabn4007. [PMID: 36054350 PMCID: PMC10848963 DOI: 10.1126/sciadv.abn4007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/14/2022] [Indexed: 05/18/2023]
Abstract
Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin. We used both high-throughput pharmacologic and genetic in vivo CRISPR screens to determine that DOPA limits melanocyte and melanoma cell proliferation by inhibiting the muscarinic acetylcholine receptor M1 (CHRM1) signaling. Pharmacologic CHRM1 antagonism in melanoma leads to depletion of c-Myc and FOXM1, both of which are proliferation drivers associated with aggressive melanoma. In preclinical mouse melanoma models, pharmacologic inhibition of CHRM1 or FOXM1 inhibited tumor growth. CHRM1 and FOXM1 may be new therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Miriam Doepner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inyoung Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roderick Brathwaite
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sung Hoon Kim
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Brian C. Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Katzenellenbogen
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S. Katzenellenbogen
- Departments of Molecular and Integrative Physiology and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Todd W. Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Aronowitz AL, Ali SR, Glaun MDE, Amit M. Acetylcholine in Carcinogenesis and Targeting Cholinergic Receptors in Oncology. Adv Biol (Weinh) 2022; 6:e2200053. [PMID: 35858206 DOI: 10.1002/adbi.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tumor cells modulate and are modulated by their microenvironments, which include the nervous system. Accumulating evidence links the overexpression and activity of nicotinic and muscarinic cholinergic receptor subtypes to tumorigenesis in breast, ovarian, prostate, gastric, pancreatic, and head and neck cancers. Nicotinic and muscarinic receptors have downstream factors are associated with angiogenesis, cell proliferation and migration, antiapoptotic signaling, and survival. Clinical trials analyzing the efficacy of various therapies targeting cholinergic signaling or downstream pathways of acetylcholine have shed promising light on novel cancer therapeutics. Although the evidence for cholinergic signaling involvement in tumor development is substantial, a more detailed understanding of the acetylcholine-induced mechanisms of tumorigenesis remains to be unlocked. Such an understanding would enable the development of clinical applications ranging from the identification of novel biomarkers to the utilization of existing drugs to modulate cholinergic signaling to the development of novel cancer therapies, as discussed in this review.
Collapse
Affiliation(s)
- Alexandra L Aronowitz
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,McGovern Medical School at UTHealth, Houston, TX, 77555, USA
| | - Shahrukh R Ali
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Medical Branch, Galveston, TX, 77030, USA
| | - Mica D E Glaun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otolaryngology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Autophagy Induced by Muscarinic Acetylcholine Receptor 1 Mediates Migration and Invasion Targeting Atg5 via AMPK/mTOR Pathway in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6523195. [PMID: 35720225 PMCID: PMC9203210 DOI: 10.1155/2022/6523195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/12/2021] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Increasing numbers of researchers discovered the expression of muscarinic acetylcholine receptor 1 in human cancers, while its function in human prostate cancer is still unclear. Our present study focused on CHRM1 to clarify its role in mediating autophagy in prostate cancer. We used immunohistochemistry, western blotting, and immunofluorescence experiments to observe the expression of muscarinic acetylcholine receptor 1 both in nude mice with subcutaneous tumors and in prostate cancer cells. The autophagy was observed through transmission electron microscopy, western blotting, quantitative real-time PCR, and immunofluorescence. After that, we used lentivirus to establish CHRM1 and Atg5 knockdown models. Then, the migration and invasion abilities after knocking down muscarinic acetylcholine receptor 1 and Atg5 were detected by transwell assays. In addition, the AMPK/mTOR pathway-related targets were detected by western blotting. We found that muscarinic acetylcholine receptor 1 was abundantly expressed both in vitro and in vivo in prostate cancer. The overexpression of muscarinic acetylcholine receptor 1 positively regulated migration and invasion in tumor cells as well as the activation of autophagy. Muscarinic acetylcholine receptor 1 was highly correlated with Atg5 and activated the AMPK/mTOR signaling pathway. Downregulation of Atg5 inhibited cell autophagy in prostate cancer cells and the migration and invasion of prostate cancer cells. Meanwhile, abnormal expressions of AMPK/mTOR pathway-related proteins were found. In conclusion, the present findings indicated that muscarinic acetylcholine receptor 1 is highly expressed in prostate cancer cells and promotes cell invasion and migration of prostate cancer. Autophagy is activated in prostate cancer cells and the activation of muscarinic acetylcholine receptor 1 positively regulates autophagy in prostate cancer cells. Moreover, muscarinic acetylcholine receptor 1 induces autophagy-mediated cell migration and invasion by targeting Atg5 in prostate cancer cells via AMPK/mTOR pathway, which uncovered that regulating muscarinic acetylcholine receptor 1, identified in this study, can be a promising solution for treating prostate cancer.
Collapse
|
17
|
Calaf GM, Crispin LA, Muñoz JP, Aguayo F, Bleak TC. Muscarinic Receptors Associated with Cancer. Cancers (Basel) 2022; 14:cancers14092322. [PMID: 35565451 PMCID: PMC9100020 DOI: 10.3390/cancers14092322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Recently, cancer research has described the presence of the cholinergic machinery, specifically muscarinic receptors, in a wide variety of cancers due to their activation and signaling pathways associated with tumor progression and metastasis, providing a wide overview of their contribution to different cancer formation and development for new antitumor targets. This review focused on determining the molecular signatures associated with muscarinic receptors in breast and other cancers and the need for pharmacological, molecular, biochemical, technological, and clinical approaches to improve new therapeutic targets. Abstract Cancer has been considered the pathology of the century and factors such as the environment may play an important etiological role. The ability of muscarinic agonists to stimulate growth and muscarinic receptor antagonists to inhibit tumor growth has been demonstrated for breast, melanoma, lung, gastric, colon, pancreatic, ovarian, prostate, and brain cancer. This work aimed to study the correlation between epidermal growth factor receptors and cholinergic muscarinic receptors, the survival differences adjusted by the stage clinical factor, and the association between gene expression and immune infiltration level in breast, lung, stomach, colon, liver, prostate, and glioblastoma human cancers. Thus, targeting cholinergic muscarinic receptors appears to be an attractive therapeutic alternative due to the complex signaling pathways involved.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Correspondence:
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
18
|
Lin M, Li P, Liu W, Niu T, Huang L. Germacrone alleviates okadaic acid-induced neurotoxicity in PC12 cells via M1 muscarinic receptor-mediated Galphaq (Gq)/phospholipase C beta (PLCβ)/ protein kinase C (PKC) signaling. Bioengineered 2022; 13:4898-4910. [PMID: 35156515 PMCID: PMC8974147 DOI: 10.1080/21655979.2022.2036918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder with prominent individual morbidity and mortality among elderly people. Germacrone (Germ) has been reported to exert dominant protective roles in multiple human diseases, and neurological diseases are also included. The intention of this paper is to determine the impacts of Germ on okadaic acid (OA)-treated PC12 cells and confirm the hidden regulatory mechanism. First, PC12 cells were induced by OA in the absence or presence of Germ. Cell counting kit-8 assay was to monitor cell proliferation. Western blot was to test the protein levels of cholinergic muscarinic M1 receptor (CHRM1), Galphaq (Gq), phospholipase C beta (PLCβ) and protein kinase C (PKC). The levels of reactive oxygen species (ROS) and other oxidative stress markers were evaluated using corresponding kits. ELISA was used to estimate the levels of AD markers. RT-qPCR was used to examine the mRNA levels of beta-site amyloid-precursor-protein-cleaving enzyme 1 (BACE-1) and apolipoprotein E (APOE). The results uncovered that Germ enhanced the proliferation of OA-insulted PC12 cells, elevated the protein level of CHRM1 and activated the Gq/PLCβ/PKC signaling. Moreover, after OA-induced PC12 cells were administered with Germ, insufficiency of CHRM1 impeded cell proliferation, enhanced oxidative stress and neuron injury and inactivated the Gq/PLCβ/PKC signaling. Furthermore, the addition of Gq inhibitor UBO-QIC, PLCβ inhibitor U73122 or PKC inhibitor Go6983 reversed the enhanced proliferation, the reduced oxidative stress and neuron injury in OA-treated PC12 cells caused by Germ. Collectively, Germ modulated M1 muscarinic receptor-mediated Gq/PLCβ/PKC signaling, thereby alleviating OA-induced PC12 cell injury.
Collapse
Affiliation(s)
- Mingqin Lin
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan, China
| | - Peiqiong Li
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan, China
| | - Wei Liu
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan, China
| | - Tianqi Niu
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan, China
| | - Liping Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| |
Collapse
|
19
|
Schledwitz A, Sundel MH, Alizadeh M, Hu S, Xie G, Raufman JP. Differential Actions of Muscarinic Receptor Subtypes in Gastric, Pancreatic, and Colon Cancer. Int J Mol Sci 2021; 22:ijms222313153. [PMID: 34884958 PMCID: PMC8658119 DOI: 10.3390/ijms222313153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cancers arising from gastrointestinal epithelial cells are common, aggressive, and difficult to treat. Progress in this area resulted from recognizing that the biological behavior of these cancers is highly dependent on bioactive molecules released by neurocrine, paracrine, and autocrine mechanisms within the tumor microenvironment. For many decades after its discovery as a neurotransmitter, acetylcholine was thought to be synthesized and released uniquely from neurons and considered the sole physiological ligand for muscarinic receptor subtypes, which were believed to have similar or redundant actions. In the intervening years, we learned this former dogma is not tenable. (1) Acetylcholine is not produced and released only by neurons. The cellular machinery required to synthesize and release acetylcholine is present in immune, cancer, and other cells, as well as in lower organisms (e.g., bacteria) that inhabit the gut. (2) Acetylcholine is not the sole physiological activator of muscarinic receptors. For example, selected bile acids can modulate muscarinic receptor function. (3) Muscarinic receptor subtypes anticipated to have overlapping functions based on similar G protein coupling and downstream signaling may have unexpectedly diverse actions. Here, we review the relevant research findings supporting these conclusions and discuss how the complexity of muscarinic receptor biology impacts health and disease, focusing on their role in the initiation and progression of gastric, pancreatic, and colon cancers.
Collapse
Affiliation(s)
- Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
| | - Margaret H. Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shien Hu
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-328-8728
| |
Collapse
|
20
|
Tolaymat M, Sundel MH, Alizadeh M, Xie G, Raufman JP. Potential Role for Combined Subtype-Selective Targeting of M 1 and M 3 Muscarinic Receptors in Gastrointestinal and Liver Diseases. Front Pharmacol 2021; 12:786105. [PMID: 34803723 PMCID: PMC8600121 DOI: 10.3389/fphar.2021.786105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023] Open
Abstract
Despite structural similarity, the five subtypes comprising the cholinergic muscarinic family of G protein-coupled receptors regulate remarkably diverse biological functions. This mini review focuses on the closely related and commonly co-expressed M1R and M3R muscarinic acetylcholine receptor subtypes encoded respectively by CHRM1 and CHRM3. Activated M1R and M3R signal via Gq and downstream initiate phospholipid turnover, changes in cell calcium levels, and activation of protein kinases that alter gene transcription and ultimately cell function. The unexpectedly divergent effects of M1R and M3R activation, despite similar receptor structure, distribution, and signaling, are puzzling. To explore this conundrum, we focus on the gastrointestinal (GI) tract and liver because abundant data identify opposing effects of M1R and M3R activation on the progression of gastric, pancreatic, and colon cancer, and liver injury and fibrosis. Whereas M3R activation promotes GI neoplasia, M1R activation appears protective. In contrast, in murine liver injury models, M3R activation promotes and M1R activation mitigates liver fibrosis. We analyze these findings critically, consider their therapeutic implications, and review the pharmacology and availability for research and therapeutics of M1R and M3R-selective agonists and antagonists. We conclude by considering gaps in knowledge and other factors that hinder the application of these drugs and the development of new agents to treat GI and liver diseases.
Collapse
Affiliation(s)
- Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Nagaya N, Rosenfeld J, Lee GT, Kim IY. RNA-seq profile of African American men with a clinically localized prostate cancer. Prostate Int 2021; 9:125-131. [PMID: 34692584 PMCID: PMC8498718 DOI: 10.1016/j.prnil.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Prostate cancer in African American (AA) men has a poor prognosis. This study aimed to identify potential genetic risk factors for prostate cancer in AA men. Methods We used prostate cancer tissue from 61 patients who underwent radical prostatectomy. We compared somatic gene expression in Caucasian (CA) and AA men using RNA sequencing. Results By comparing the RNA-seq data obtained from prostate cancer tissue between AA and CA men, this study showed a significant difference in expression levels of 45 genes. Pathway analysis of 45 genes using Kyoto Encyclopedia of Genes and Genomesenrichment analysis revealed a neuroactive ligand–receptor interaction signal. In addition, the results of the Ingenuity Pathway Analysis showed pathways involved sphingosine-1-phosphate signaling. Furthermore, validating 45 genes in the The Cancer Genome Atlas (TCGA) Provisional cohort, cholinergic receptor muscarinic 3 expression level was significantly lower in AA than in CA men, and the results showed a significantly higher rate of biochemical recurrence in patients with low expression. Conclusions We identified genetic differences of clinically localized prostate cancer in AAs and CAs by RNA sequencing.
Collapse
Affiliation(s)
- Naoya Nagaya
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jeffrey Rosenfeld
- Pathology and Laboratory Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Geun Taek Lee
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Isaac Yi Kim
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
22
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
23
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
24
|
Ozenil M, Aronow J, Millard M, Langer T, Wadsak W, Hacker M, Pichler V. Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:530. [PMID: 34199622 PMCID: PMC8229778 DOI: 10.3390/ph14060530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Jonas Aronow
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| |
Collapse
|
25
|
Karmacharya U, Chaudhary P, Lim D, Dahal S, Awasthi BP, Park HD, Kim JA, Jeong BS. Synthesis and anticancer evaluation of 6-azacyclonol-2,4,6-trimethylpyridin-3-ol derivatives: M3 muscarinic acetylcholine receptor-mediated anticancer activity of a cyclohexyl derivative in androgen-refractory prostate cancer. Bioorg Chem 2021; 110:104805. [PMID: 33725508 DOI: 10.1016/j.bioorg.2021.104805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
We recently reported 2,4,5-trimethylpyridin-3-ol with C(6)-azacyclonol, whose code name is BJ-1207, showing a promising anticancer activity by inhibiting NOX-derived ROS in A549 human lung cancer cells. The present study was focused on structural modification of the azacyclonol moiety of BJ-1207 to find a compound with better anticancer activity. Ten new compounds (3A-3J) were prepared and evaluated their inhibitory actions against proliferation of eighteen cancer cell lines as a primary screening. Among the ten derivatives of BJ-1207, the effects of compounds 3A and 3J on DU145 and PC-3, androgen-refractory cancer cell lines (ARPC), were greater than the parent compound, and compound 3A showed better activity than 3J. Antitumor activity of compound 3A was also observed in DU145-xenografted chorioallantoic membrane (CAM) tumor model. In addition, the ligand-based target prediction and molecular docking study using DeepZema® server showed compound 3A was a ligand to M3 muscarinic acetylcholine receptor (M3R) which is overexpressed in ARPC. Carbachol, a muscarinic receptor agonist, concentration dependently increased proliferation of DU145 in the absence of serum, and it also activated NADPH oxidase (NOX). The carbachol-induced proliferation and NOX activity was significantly blocked by compounds 3A in a concentration-dependent manner. This finding might become a new milestone in the development of pyridinol-based anti-cancer agents against ARPC.
Collapse
Affiliation(s)
- Ujjwala Karmacharya
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Dongchul Lim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Sadan Dahal
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Bhuwan Prasad Awasthi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Hee Dong Park
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
26
|
Lucianò AM, Perciballi E, Fiore M, Del Bufalo D, Tata AM. The Combination of the M2 Muscarinic Receptor Agonist and Chemotherapy Affects Drug Resistance in Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21228433. [PMID: 33182656 PMCID: PMC7697391 DOI: 10.3390/ijms21228433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
One of the major limits of chemotherapy is depending on the ability of the cancer cells to elude and adapt to different drugs. Recently, we demonstrated how the activation of the M2 muscarinic receptor could impair neuroblastoma cell proliferation. In the present paper, we investigate the possible effects mediated by the preferential M2 receptor agonist arecaidine propargyl ester (APE) on drug resistance in two neuroblastoma cell lines, SK-N-BE and SK-N-BE(2C), a sub-clone presenting drug resistance. In both cell lines, we compare the expression of the M2 receptor and the effects mediated by the M2 agonist APE on cell cycle, demonstrating a decreased percentage of cells in S phase and an accumulation of SK-N-BE cells in G1 phase, while the APE treatment of SK-N-BE(2C) cells induced a block in G2/M phase. The withdrawal of the M2 agonist from the medium shows that only the SK-N-BE(2C) cells are able to rescue cell proliferation. Further, we demonstrate that the co-treatment of low doses of APE with doxorubicin or cisplatin significantly counteracts cell proliferation when compared with the single treatment. Analysis of the expression of ATP-binding cassette (ABC) efflux pumps demonstrates the ability of the M2 agonist to downregulate their expression and that this negative modulation may be dependent on N-MYC decreased expression induced by the M2 agonist. Our data demonstrate that the combined effect of low doses of conventional drugs and the M2 agonist may represent a new promising therapeutic approach in neuroblastoma treatment, in light of its significant impact on drug resistance and the possible reduction in the side effects caused by high doses of chemotherapy drugs.
Collapse
Affiliation(s)
- Anna Maria Lucianò
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (A.M.L.); (E.P.)
| | - Elisa Perciballi
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (A.M.L.); (E.P.)
| | - Mario Fiore
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy;
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; (A.M.L.); (E.P.)
- Research Centre of Neurobiology Daniel Bovet, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
27
|
Dragomir MP, Moisoiu V, Manaila R, Pardini B, Knutsen E, Anfossi S, Amit M, Calin GA. A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment. J Clin Med 2020; 9:jcm9113529. [PMID: 33142779 PMCID: PMC7693842 DOI: 10.3390/jcm9113529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
One of the limitations of cancer research has been the restricted focus on tumor cells and the omission of other non-malignant cells that are constitutive elements of this systemic disease. Current research is focused on the bidirectional communication between tumor cells and other components of the tumor microenvironment (TME), such as immune and endothelial cells, and nerves. A major success of this bidirectional approach has been the development of immunotherapy. Recently, a more complex landscape involving a multi-lateral communication between the non-malignant components of the TME started to emerge. A prime example is the interplay between immune and endothelial cells, which led to the approval of anti-vascular endothelial growth factor-therapy combined with immune checkpoint inhibitors and classical chemotherapy in non-small cell lung cancer. Hence, a paradigm shift approach is to characterize the crosstalk between different non-malignant components of the TME and understand their role in tumorigenesis. In this perspective, we discuss the interplay between nerves and immune cells within the TME. In particular, we focus on exosomes and microRNAs as a systemic, rapid and dynamic communication channel between tumor cells, nerves and immune cells contributing to cancer progression. Finally, we discuss how combinatorial therapies blocking this tumorigenic cross-talk could lead to improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
- Institute of Pathology, Charité University Hospital, 10117 Berlin, Germany
- Correspondence: (M.P.D.); (G.A.C.)
| | - Vlad Moisoiu
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Roxana Manaila
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania;
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (M.P.D.); (G.A.C.)
| |
Collapse
|
28
|
Functional Characterization of Cholinergic Receptors in Melanoma Cells. Cancers (Basel) 2020; 12:cancers12113141. [PMID: 33120929 PMCID: PMC7693616 DOI: 10.3390/cancers12113141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
In the last two decades, the scientific community has come to terms with the importance of non-neural acetylcholine in light of its multiple biological and pathological functions within and outside the nervous system. Apart from its well-known physiological role both in the central and peripheral nervous systems, in the autonomic nervous system, and in the neuromuscular junction, the expression of the acetylcholine receptors has been detected in different peripheral organs. This evidence has contributed to highlight new roles for acetylcholine in various biological processes, (e.g., cell viability, proliferation, differentiation, migration, secretion). In addition, growing evidence in recent years has also demonstrated new roles for acetylcholine and its receptors in cancer, where they are involved in the modulation of cell proliferation, apoptosis, angiogenesis, and epithelial mesenchymal transition. In this review, we describe the functional characterization of acetylcholine receptors in different tumor types, placing attention on melanoma. The latest set of data accessible through literature, albeit limited, highlights how cholinergic receptors both of muscarinic and nicotinic type can play a relevant role in the migratory processes of melanoma cells, suggesting their possible involvement in invasion and metastasis.
Collapse
|
29
|
Sympathetic and parasympathetic innervation in cancer: therapeutic implications. Clin Auton Res 2020; 31:165-178. [PMID: 32926324 DOI: 10.1007/s10286-020-00724-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The autonomic nervous system, consisting of sympathetic and parasympathetic/vagal nerves, is known to control the functions of any organ, maintaining whole-body homeostasis under physiological conditions. Recently, there has been increasing evidence linking sympathetic and parasympathetic/vagal nerves to cancers. The present review aimed to summarize recent developments from studies addressing the relationship between sympathetic and parasympathetic/vagal nerves and cancer behavior. METHODS Literature review. RESULTS Human and animal studies have revealed that sympathetic and parasympathetic/vagal nerves innervate the cancer microenvironment and alter cancer behavior. The sympathetic nerves have cancer-promoting effects on prostate cancer, breast cancer, and melanoma. On the other hand, while the parasympathetic/vagal nerves have cancer-promoting effects on prostate, gastric, and colorectal cancers, they have cancer-suppressing effects on breast and pancreatic cancers. These neural effects may be mediated by β-adrenergic or muscarinic receptors and can be explained by changes in cancer cell behavior, angiogenesis, tumor-associated macrophages, and adaptive antitumor immunity. CONCLUSIONS Sympathetic nerves innervating the tumor microenvironment promote cancer progression and are related to stress-induced cancer behavior. The parasympathetic/vagal nerves have variable (promoting or suppressing) effects on different cancer types. Approaches directed toward the sympathetic and parasympathetic/vagal nerves can be developed as a new cancer therapy. In addition to existing pharmacological, surgical, and electrical approaches, a recently developed virus vector-based genetic local neuroengineering technology is a powerful approach that selectively manipulates specific types of nerve fibers innervating the cancer microenvironment and leads to the suppression of cancer progression. This technology will enable the creation of "cancer neural therapy" individually tailored to different cancer types.
Collapse
|
30
|
Hutchings C, Phillips JA, Djamgoz MBA. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim Biophys Acta Rev Cancer 2020; 1874:188411. [PMID: 32828885 DOI: 10.1016/j.bbcan.2020.188411] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
It is well known that tumours arising in different organs are innervated and that 'perineural invasion' (cancer cells escaping from the tumour by following the nerve trunk) is a negative prognostic factor. More surprisingly, increasing evidence suggests that the nerves can provide active inputs to tumours and there is two-way communication between nerves and cancer cells within the tumour microenvironment. Cells of the immune system also interact with the nerves and cancer cells. Thus, the nerve connections can exert significant control over cancer progression and modulating these (physically or chemically) can affect significantly the cancer process. Nerve inputs to tumours are derived mainly from the sympathetic (adrenergic) and the parasympathetic (cholinergic) systems, which are interactive. An important component of the latter is the vagus nerve, the largest of the cranial nerves. Here, we present a two-part review of the nerve inputs to tumours and their effects on tumorigenesis. First, we review briefly some relevant general issues including ultrastructural aspects, stemness, interactions between neurones and primary tumours, and communication between neurones and metastasizing tumour cells. Ultrastructural characteristics include synaptic vesicles, tumour microtubes and gap junctions enabling formation of cellular networks. Second, we evaluate the pathophysiology of the nerve input to five major carcinomas: cancers of prostate, stomach, colon, lung and pancreas. For each cancer, we present (i) the nerve inputs normally present in the cancer organ and (ii) how these interact and influence the cancer process. The best clinical evidence for the role of nerves in promoting tumorigenesis comes from prostate cancer patients where metastatic progression has been shown to be suppressed significantly in cases of spinal cord injury. The balance of the sympathetic and parasympathetic contributions to early versus late tumorigenesis varies amongst the different cancers. Different branches of the vagus provide functional inputs to several of the carcinomas and, in two-way interaction with the sympathetic nervous system, affect different stages of the cancer process. Overall, the impact of the vagus nerve can be 'direct' or 'indirect'. Directly, the effect of the vagus is primarily to promote tumorigenesis and this is mediated through cholinergic receptor mechanisms. Indirectly, pro- and anti-tumour effects can occur by stimulation or inhibition of the sympathetic nervous system, respectively. Less well understood are the 'indirect' anti-tumour effect of the vagus nerve via immunomodulation/inflammation, and the role of sensory innervation. A frequent occurrence in the nerve-tumour interactions is the presence of positive feedback driven by agents like nerve growth factor. We conclude that the nerve inputs to tumours can actively and dynamically impact upon cancer progression and are open to clinical exploitation.
Collapse
Affiliation(s)
- Charlotte Hutchings
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Jade A Phillips
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey.
| |
Collapse
|
31
|
Hermanowicz JM, Kwiatkowska I, Pawlak D. Important players in carcinogenesis as potential targets in cancer therapy: an update. Oncotarget 2020; 11:3078-3101. [PMID: 32850012 PMCID: PMC7429179 DOI: 10.18632/oncotarget.27689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of cancer is a problem that has accompanied mankind for years. The growing number of cases, emerging drug resistance, and the need to reduce the serious side effects of pharmacotherapy are forcing scientists to better understand the complex mechanisms responsible for the initiation, promotion, and progression of the disease. This paper discusses the modulation of the particular stages of carcinogenesis by selected physiological factors, including: acetylcholine (ACh), peroxisome proliferator-activated receptors (PPAR), fatty acid-binding proteins (FABPs), Bruton's tyrosine kinase (Btk), aquaporins (AQPs), insulin-like growth factor-2 (IGF-2), and exosomes. Understanding their role may contribute to the development of more effective and safer therapies based on new binding sites.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| |
Collapse
|
32
|
Chen J, Cheuk IWY, Shin VY, Kwong A. Acetylcholine receptors: Key players in cancer development. Surg Oncol 2019; 31:46-53. [PMID: 31536927 DOI: 10.1016/j.suronc.2019.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/15/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) was first identified as a classic neuromodulator and transmit signals through two subgroups of receptors, namely muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs). Apart from its well-established physiological role in central nervous system (CNS) and peripheral nervous system (PNS), autonomic nervous system and neuromuscular junction, the widely distributed expression of AChRs in different human organs suggests roles in other biological processes in addition to synaptic transmission. Accumulating evidence revealed that cancer cell processes such as proliferation, apoptosis, angiogenesis and even epithelial-mesenchymal transition (EMT) are mediated by overexpression of AChRs in different kinds of tumors. In breast cancer, α7-nAChR and α9-nAChR were reported to be oncogenic. On the other hand, research on the role of mAChRs in breast cancer tumorgenesis is limited and confined to M3 receptor only. Since AChRs distributed in both CNS and PNS even non-neuronal tissues, there is an urgent need for the development of subtype-specific AChR antagonist which inhibits cancer cell progression with minimal intervention on the normal acetylcholine-regulated system within human body.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | | | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong; Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong; Centre of Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Hong Kong.
| |
Collapse
|