1
|
Shein AMS, Hongsing P, Smith OK, Phattharapornjaroen P, Miyanaga K, Cui L, Ishikawa H, Amarasiri M, Monk PN, Kicic A, Chatsuwan T, Pletzer D, Higgins PG, Abe S, Wannigama DL. Current and novel therapies for management of Acinetobacter baumannii-associated pneumonia. Crit Rev Microbiol 2025; 51:441-462. [PMID: 38949254 DOI: 10.1080/1040841x.2024.2369948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/25/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Acinetobacter baumannii is a common pathogen associated with hospital-acquired pneumonia showing increased resistance to carbapenem and colistin antibiotics nowadays. Infections with A. baumannii cause high patient fatalities due to their capability to evade current antimicrobial therapies, emphasizing the urgency of developing viable therapeutics to treat A. baumannii-associated pneumonia. In this review, we explore current and novel therapeutic options for overcoming therapeutic failure when dealing with A. baumannii-associated pneumonia. Among them, antibiotic combination therapy administering several drugs simultaneously or alternately, is one promising approach for optimizing therapeutic success. However, it has been associated with inconsistent and inconclusive therapeutic outcomes across different studies. Therefore, it is critical to undertake additional clinical trials to ascertain the clinical effectiveness of different antibiotic combinations. We also discuss the prospective roles of novel antimicrobial therapies including antimicrobial peptides, bacteriophage-based therapy, repurposed drugs, naturally-occurring compounds, nanoparticle-based therapy, anti-virulence strategies, immunotherapy, photodynamic and sonodynamic therapy, for utilizing them as additional alternative therapy while tackling A. baumannii-associated pneumonia. Importantly, these innovative therapies further require pharmacokinetic and pharmacodynamic evaluation for safety, stability, immunogenicity, toxicity, and tolerability before they can be clinically approved as an alternative rescue therapy for A. baumannii-associated pulmonary infections.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - O'Rorke Kevin Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Phatthranit Phattharapornjaroen
- Department of Emergency Medicine, Center of Excellence, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Surgery, Sahlgrenska Academy, Institute of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Japan
| | - Peter N Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, UK
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in, Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
2
|
Munita JM, Tamma PD. Fighting resistance with redundancy: a path forward for treating antimicrobial-resistant infections? Antimicrob Agents Chemother 2025; 69:e0012125. [PMID: 40084882 PMCID: PMC11963597 DOI: 10.1128/aac.00121-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) remains a major threat, with high mortality and limited effective treatments. Sulbactam-durlobactam has emerged as a promising therapy against CRAB. Sulbactam-durlobactam was combined with imipenem-cilastatin in a clinical trial that led to its United States Food and Drug Administration approval. However, the additive benefit of imipenem remains uncertain. In a recent study (Antimicrob Agents Chemother 69:e01627-24, 2025, https://doi.org/10.1128/aac.01627-24), Veeraraghavan and colleagues provide convincing mechanistic evidence that adding imipenem to sulbactam-durlobactam enhances bacterial killing, likely through complementary inhibition of penicillin binding proteins, leveraging the concept of target redundancy.
Collapse
Affiliation(s)
- Jose M. Munita
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Pranita D. Tamma
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Spernovasilis N, Ishak A, Tsioutis C, Alon-Ellenbogen D, Agouridis AP, Mazonakis N. Sulbactam for carbapenem-resistant Acinetobacter baumannii infections: a literature review. JAC Antimicrob Resist 2025; 7:dlaf055. [PMID: 40224360 PMCID: PMC11992565 DOI: 10.1093/jacamr/dlaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is characterized as a critical priority pathogen with restricted therapeutic options. To date, the most effective antimicrobial treatment against this difficult-to-treat bacterial strain has not been established. Sulbactam is a β-lactamase inhibitor with intrinsic activity against this pathogen, however, as a β-lactam, it can be hydrolysed by β-lactamases produced by A. baumannii. High-dose, extended-infusion treatment with sulbactam can overcome this hydrolysis by β-lactamases and is considered an effective therapeutic strategy against CRAB. The aim of this review is to analyse primary and secondary research studies that compare sulbactam-based with other regimens, such as polymyxin-containing regimens, tigecycline-containing regimens and other antimicrobial combinations against CRAB infections, especially ventilator-associated pneumonia (VAP), hospital-acquired pneumonia (HAP) and bacteraemia. Our findings suggest that results are conflicting, mostly because of high heterogeneity among studies. However, in most studies, sulbactam-based regimens have demonstrated comparable, and in several studies more favourable results in contrast to other antimicrobial treatments with respect to clinical cure and mortality in CRAB-associated pneumonia, yet without reaching statistical significance in most cases. The auspicious novel β-lactam/β-lactamase inhibitor combination sulbactam/durlobactam is also discussed, although real-world clinical data regarding its efficacy in CRAB infections are still scarce. More randomized controlled trials comparing sulbactam-based with other regimens are warranted to determine the most effective antimicrobial combination against CRAB infections. Nevertheless, current data suggest that sulbactam could play a major role in this combination treatment.
Collapse
Affiliation(s)
| | - Angela Ishak
- Department of Internal Medicine, Henry Ford Hospital, 48202 Detroit, MI, USA
| | | | - Danny Alon-Ellenbogen
- Department of Basic and Clinical Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
- Department of Internal Medicine, German Medical Institute, 4108 Limassol, Cyprus
| | - Nikolaos Mazonakis
- Department of Internal Medicine, Thoracic Diseases General Hospital Sotiria, 11527 Athens, Greece
| |
Collapse
|
4
|
Gajic I, Tomic N, Lukovic B, Jovicevic M, Kekic D, Petrovic M, Jankovic M, Trudic A, Mitic Culafic D, Milenkovic M, Opavski N. A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges. Antibiotics (Basel) 2025; 14:221. [PMID: 40149033 PMCID: PMC11939824 DOI: 10.3390/antibiotics14030221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance poses a major public health challenge. The World Health Organization has identified 15 priority pathogens that require prompt development of new antibiotics. This review systematically evaluates the antibacterial resistance of the most significant bacterial pathogens, currently available treatment options, as well as complementary approaches for the management of infections caused by the most challenging multidrug-resistant (MDR) bacteria. For carbapenem-resistant Gram-negative bacteria, treatment options include combinations of beta-lactam antibiotics and beta-lactamase inhibitors, a novel siderophore cephalosporin, known as cefiderocol, as well as older antibiotics like polymixins and tigecycline. Treatment options for Gram-positive bacteria are vancomycin, daptomycin, linezolid, etc. Although the development of new antibiotics has stagnated, various agents with antibacterial properties are currently in clinical and preclinical trials. Non-antibiotic strategies encompass antibiotic potentiators, bacteriophage therapy, antivirulence therapeutics, antimicrobial peptides, antibacterial nanomaterials, host-directed therapy, vaccines, antibodies, plant-based products, repurposed drugs, as well as their combinations, including those used alongside antibiotics. Significant challenges exist in developing new antimicrobials, particularly related to scientific and technical issues, along with policy and economic factors. Currently, most of the alternative options are not part of routine treatment protocols. Conclusions and Future Directions: There is an urgent need to expedite the development of new strategies for treating infections caused by MDR bacteria. This requires a multidisciplinary approach that involves collaboration across research, healthcare, and regulatory bodies. Suggested approaches are crucial for addressing this challenge and should be backed by rational antibiotic use, enhanced infection control practices, and improved surveillance systems for emerging pathogens.
Collapse
Affiliation(s)
- Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Nina Tomic
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Bojana Lukovic
- Academy of Applied Studies Belgrade, College of Health Sciences, 11000 Belgrade, Serbia;
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Milos Petrovic
- University Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje”, 11040 Belgrade, Serbia;
| | - Marko Jankovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Anika Trudic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, 21204 Novi Sad, Serbia
| | | | - Marina Milenkovic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| |
Collapse
|
5
|
Thacharodi A, Vithlani A, Hassan S, Alqahtani A, Pugazhendhi A. Carbapenem-resistant Acinetobacter baumannii raises global alarm for new antibiotic regimens. iScience 2024; 27:111367. [PMID: 39650735 PMCID: PMC11625361 DOI: 10.1016/j.isci.2024.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a top-priority pathogen causing a nosocomial infection that increases morbidity and mortality. Treatment options for CRAB are relatively limited by pharmacokinetic restrictions, such as substantial toxicity. Therefore, we must better understand this pathogen to develop new treatments and control strategies. The review aims to provide an overview of the current understanding of acquired, adaptive, and intrinsic Carbapenem-resistant pathways in A. baumannii, as well as its consequences on healthcare systems, particularly critical care units. The review also provides insights into how CRAB infections are currently managed worldwide and why novel therapeutic regimens are needed. The peculiarity of A. baumannii and its often reported virulence factors have been discussed further. In conclusion, the purpose of this review is to emphasize the current knowledge on CRAB, as it causes major worry in the field of nosocomial infections as well as overall public health.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi’s Laboratories, Department of Research and Development, Puducherry 605005, India
| | - Avadh Vithlani
- Senior Resident, Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, DC 20036 USA
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
6
|
Lai C, Ma Z, Zhang J, Wang J, Wang J, Wu Z, Luo Y. Efficiency of combination therapy versus monotherapy for the treatment of infections due to carbapenem-resistant Gram-negative bacteria: a systematic review and meta-analysis. Syst Rev 2024; 13:309. [PMID: 39702227 DOI: 10.1186/s13643-024-02695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND For resistant Gram-positive bacteria, evidence suggests that combination therapy is more effective. However, for resistant Gram-negative bacteria, no consensus has been reached. This study aims to comprehensively summarize the evidence and evaluate the impact of combination versus monotherapy on infections caused by carbapenem-resistant Gram-negative bacteria (CRGNB). METHODS A systematic search was conducted in PubMed, Cochrane library, Web of Science, and Embase up to June 15, 2024, to identify relevant studies. This study included comparisons of monotherapy and combination therapy for treating infections caused by CRGNB. Topical antibiotics (i.e., inhalational or intratracheal administration) and monotherapy with sulbactam/relebactam was excluded. The primary outcome was mortality, and the secondary outcomes were clinical success and microbiological eradication. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated in order to systematically assess effect of treatment on mortality, clinical success and microbiological eradication. Subgroup analyses, publication bias tests, and sensitivity analyses were also performed. RESULTS A total of 62 studies, including 8342 participants, were analyzed, comprising 7 randomized controlled trials and 55 non-randomized studies. Monotherapy was associated with higher mortality (OR = 1.29, 95%CI: 1.11-1.51), lower clinical success (OR = 0.74, 95%CI: 0.56-0.98), and lower microbiological eradication (OR = 0.71, 95%CI: 0.55-0.91) compared to combination therapy for CRGNB infections. Specifically, patients with carbapenem-resistant Enterobacteriaceae (CRE) infections receiving monotherapy had higher mortality (OR = 1.50, 95%CI: 1.15-1.95), comparable clinical success (OR = 0.57,95%CI: 0.28-1.16), and lower microbiological eradication (OR = 0.48,95%CI:0.25-0.91) than those receiving combination therapy. For carbapenem-resistant Acinetobacter baumannii (CRAB) infections, no significant differences were observed in mortality (OR = 1.15.95%CI: 0.90-1.47), clinical success (OR = 0.95,95%CI: 0.74-1.24) and microbiological eradication (OR = 0.78,95%CI: 0.54-1.12). CONCLUSIONS Monotherapy or combination therapy is controversial. The systematic review and meta-analysis suggested that monotherapy is associated with higher mortality, lower clinical success, and lower microbiological eradication for treating infection caused by CRGNB. The available evidence suggests that treatment should be selected based on the specific bacteria and antibiotic used. Monotherapy for CRE infections may lead to adverse outcomes. For CRAB infections, no significant differences were found between combination therapy and monotherapy. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022331861.
Collapse
Affiliation(s)
- Chengcheng Lai
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zijun Ma
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjun Wang
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghui Wang
- Department of General Practice, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuanghao Wu
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonggang Luo
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Richards GA, Perovic O, Brink AJ. The challenges of difficult-to-treat Acinetobacter infections. Clin Microbiol Rev 2024; 37:e0009324. [PMID: 39555919 PMCID: PMC11629631 DOI: 10.1128/cmr.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
SUMMARYInfections due to Acinetobacter spp. are among the most difficult to treat. Most are resistant to standard antibiotics, and there is difficulty in distinguishing colonizers from pathogens. This mini-review examines the available antibiotics that exhibit activity against these organisms and provides guidance as to which cultures are relevant and how to treat active infections. Antibiograms describing resistance mechanisms and the minimum inhibitory concentration (MIC) are essential to determine which agent or combination of agents should be used after confirmation of infection, utilizing clinical parameters and biomarkers such as procalcitonin. Directed therapy should be prompt as despite its reputation as a colonizer, the attributable mortality is high. However, although combination therapy is advised, no specific combination has definite evidence of superiority.
Collapse
Affiliation(s)
- Guy A. Richards
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Olga Perovic
- AMR Division at WITS Health Consortium, Pathologist Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses (CHARM), at the National Institute for Communicable Diseases, a division of NHLS and the University of the Witwatersrand, Johannesburg, South Africa
| | - Adrian J. Brink
- Division of Medical Microbiology, Faculty of Health Sciences, National Health Laboratory Services, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Chaudhary M, Kumar D, Meena DS, Midha NK, Bohra GK, Tak V, Samantaray S, Kaur N, Neetha TR, Mohammed S, Sharma A, Kothari N, Bhatia PK, Garg MK. 'Effectiveness of various sulbactam-based combination antibiotic therapy in the management of ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in a tertiary care Health centre'. Indian J Med Microbiol 2024; 52:100737. [PMID: 39349137 DOI: 10.1016/j.ijmmb.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVE Carbapenem-resistant Acinetobacter baumannii (CRAB) is a common cause of ventilator-associated pneumonia (VAP). Some in vitro data favour various combination antibiotic therapy. However, there is a need for more in vivo studies for the management of VAP caused by CRAB. This retrospective study was done to evaluate the effectiveness of various combination antibiotic therapy including sulbactam on outcomes of VAP caused by CRAB. METHODS Adult patients (age ≥18 years) diagnosed with VAP caused by CRAB were included. Patients with polymicrobial infections were excluded from the study. Patients with CRAB associated VAP who were given sulbactam based antibiotic combinations were observed for outcomes. The primary outcome was 28-day mortality after diagnosis of VAP caused by CRAB. Reduction in serum HsCRP (High sensitivity C-reactive protein) during treatment and requirement of inotropes were the secondary outcomes. Outcomes were compared between various sulbactam based antibiotic combination therapies. RESULTS A total of 103 patients were included. A total of 44 (42.7 %) patients received sulbactam and minocycline or sulbactam and polymyxin B dual antibiotic combination, and 59 (57.3 %) patients received sulbactam, polymyxin B and minocycline triple antibiotic combination. The percentage difference in 28 days mortality was 27.51 % (95 % CI 8.03 %-44.06 %; p = 0.005) in dual vs triple sulbactam based antibiotic combination therapy. The percentage difference in requirement of inotropes during therapy and HsCRP reduction after 7 days of therapy was 23.65 % (95 % CI 6.43 %-38.3 %; p = 0.007) and 25.1 % (95%CI 10.1 %-38.2 %; p < 0.001) respectively when compared between dual vs triple sulbactam based antibiotic combination therapy. CONCLUSION Treatment with sulbactam, polymyxin B and minocycline combination antibiotic therapy was associated with significantly lower 28-day mortality. Moreover, the lower requirement of inotropes during treatment and a significant reduction in HsCRP level favours this combination antibiotic therapy in VAP caused by CRAB.
Collapse
Affiliation(s)
- Monika Chaudhary
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Deepak Kumar
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Durga Shankar Meena
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Naresh Kumar Midha
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Gopal Krishana Bohra
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Vibhor Tak
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Subhashree Samantaray
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Navneet Kaur
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - T R Neetha
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Sadik Mohammed
- Department of Critical Care and Anaesthesiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Ankur Sharma
- Department of Critical Care and Anaesthesiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Nikhil Kothari
- Department of Critical Care and Anaesthesiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Pradeep Kumar Bhatia
- Department of Critical Care and Anaesthesiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - M K Garg
- Division of Infectious Diseases, Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
9
|
Tamma PD, Immel S, Karaba SM, Soto CL, Conzemius R, Gisriel E, Tekle T, Stambaugh H, Johnson E, Tornheim JA, Simner PJ. Successful Treatment of Carbapenem-Resistant Acinetobacter baumannii Meningitis With Sulbactam-Durlobactam. Clin Infect Dis 2024; 79:819-825. [PMID: 38630890 PMCID: PMC11478584 DOI: 10.1093/cid/ciae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of carbapenem-resistant Acinetobacter baumannii/calcoaceticus complex (CRAB) presents significant treatment challenges. METHODS We report the case of a 42-year-old woman with CRAB meningitis who experienced persistently positive cerebrospinal fluid (CSF) cultures for 13 days despite treatment with high-dose ampicillin-sulbactam and cefiderocol. On day 13, she was transitioned to sulbactam-durlobactam and meropenem; 4 subsequent CSF cultures remained negative. After 14 days of sulbactam-durlobactam, she was cured of infection. Whole genome sequencing investigations identified putative mechanisms that contributed to the reduced cefiderocol susceptibility observed during cefiderocol therapy. Blood and CSF samples were collected pre-dose and 3-hours post initiation of a sulbactam-durlobactam infusion. RESULTS The CRAB isolate belonged to sequence type 2. An acquired blaOXA-23 and an intrinsic blaOXA-51-like (ie, blaOXA-66) carbapenemase gene were identified. The paradoxical effect (ie, no growth at lower cefiderocol dilutions but growth at higher dilutions) was observed by broth microdilution after 8 days of cefiderocol exposure but not by disk diffusion. Potential markers of resistance to cefiderocol included mutations in the start codon of piuA and piuC iron transport genes and an A515V substitution in PBP3, the primary target of cefiderocol. Sulbactam and durlobactam were detected in CSF at both timepoints, indicating CSF penetration. CONCLUSIONS This case describes successful treatment of refractory CRAB meningitis with the administration of sulbactam-durlobactam and meropenem and highlights the need to be cognizant of the paradoxical effect that can be observed with broth microdilution testing of CRAB isolates with cefiderocol.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanan Immel
- Department of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara M Karaba
- Department of Medicine, Johns Hopkins University of Medicine, Baltimore, Maryland, USA
| | - Caitlin L Soto
- Department of Pharmacy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Emily Gisriel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tsigereda Tekle
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haley Stambaugh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Johnson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Tornheim
- Department of Medicine, Johns Hopkins University of Medicine, Baltimore, Maryland, USA
| | - Patricia J Simner
- Department of Medicine, Johns Hopkins University of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Huang C, Lin L, Kuo S. Comparing the Outcomes of Cefoperazone/Sulbactam-Based and Non-Cefoperazone/Sulbactam-Based Therapeutic Regimens in Patients with Multiresistant Acinetobacter baumannii Infections-A Meta-Analysis. Antibiotics (Basel) 2024; 13:907. [PMID: 39335080 PMCID: PMC11428705 DOI: 10.3390/antibiotics13090907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The addition of sulbactam restores the complete range of cefoperazone activity against bacteria and extends its spectrum of action to include the Acinetobacter species. The effectiveness of cefoperazone/sulbactam against multiresistant Acinetobacter baumannii has not been investigated. The purpose of the current meta-analysis was to compare the efficacy of cefoperazone/sulbactam-based therapeutic regimens and non-cefoperazone/sulbactam-based therapeutic regimens in the treatment of multiresistant Acinetobacter baumannii infections. The current meta-analysis of 10 retrospective studies provides evidence that cefoperazone/sulbactam-based therapeutic regimens are superior to non-cefoperazone/sulbactam-based therapeutic regimens in terms of 30-day mortality and clinical improvement in patients with multiresistant Acinetobacter baumannii infections. The risk of mortality was reduced by 38% among multiresistant Acinetobacter baumannii infections in patients who received cefoperazone/sulbactam-based therapeutic regimens. The cefoperazone/sulbactam-based combination therapy was superior to the cefoperazone/sulbactam monotherapy in terms of 30-day mortality when both therapeutic regimens were compared to the tigecycline monotherapy in patients with multiresistant Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Chienhsiu Huang
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Lichen Lin
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Sufang Kuo
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| |
Collapse
|
11
|
Meschiari M, Asquier-Khati A, Tiseo G, Luque-Paz D, Murri R, Boutoille D, Falcone M, Mussini C, Tattevin P. Treatment of infections caused by multidrug-resistant Gram-negative bacilli: A practical approach by the Italian (SIMIT) and French (SPILF) Societies of Infectious Diseases. Int J Antimicrob Agents 2024; 64:107186. [PMID: 38688353 DOI: 10.1016/j.ijantimicag.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION The emergence of multidrug-resistant Gram-negative bacilli and the development of new antibiotics have complicated the selection of optimal regimens. International guidelines are valuable tools, but are limited by the scarcity of high-quality randomized trials in many situations. METHODS A panel of experts from the French and Italian Societies of Infectious Diseases aimed to address unresolved issues in clinical practice based on their experience, an updated literature review and open discussions. RESULTS The panel reached consensus for the following 'first choices': (i) cefepime for ventilator-acquired pneumonia due to AmpC β-lactamase-producing Enterobacterales; (ii) the β-lactam/β-lactamase inhibitor combination most active in vitro, or cefiderocol combined with fosfomycin, and aerosolized colistin or aminoglycosides, for severe pneumonia due to Pseudomonas aeruginosa resistant to ceftolozane-tazobactam; (iii) high-dose piperacillin-tazobactam (including loading dose and continuous infusion) for complicated urinary tract infections (cUTIs) caused by extended-spectrum β-lactamase-producing Enterobacterales with piperacillin-tazobactam minimum inhibitory concentration (MIC) ≤8 mg/L; (iv) high-dose cefepime for cUTIs due to AmpC β-lactamase-producing Enterobacterales other than Enterobacter spp. if cefepime MIC ≤2 mg/L; (v) ceftolozane-tazobactam or ceftazidime-avibactam plus metronidazole for intra-abdominal infections (IAIs) due to third-generation cephalosporin-resistant Enterobacterales; (vi) ceftazidime-avibactam plus aztreonam plus metronidazole for IAIs due to metallo-β-lactamase-producing Enterobacterales; (vii) ampicillin-sulbactam plus colistin for bloodstream infections (BSIs) caused by carbapenem-resistant Acinetobacter baumannii; (viii) meropenem-vaborbactam for BSIs caused by Klebsiella pneumoniae carbapenemase-producing Enterobacterales; and (ix) ceftazidime-avibactam plus fosfomycin for neurological infections caused by carbapenem-resistant P. aeruginosa. CONCLUSIONS These expert choices were based on the necessary balance between antimicrobial stewardship principles and the need to provide optimal treatment for individual patients in each situation.
Collapse
Affiliation(s)
- Marianna Meschiari
- Infectious Diseases Unit, Azienda Ospedaliera-Universitaria of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Antoine Asquier-Khati
- Infectious Diseases Department, Nantes University Hospital, INSERM CIC 1413, Nantes, France
| | - Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - David Luque-Paz
- Infectious Diseases and Intensive Care Units, Pontchaillou University Hospital, Rennes, France
| | - Rita Murri
- Infectious Diseases, Fondazione Policlinico Gemelli IRCCS Rome, Italy
| | - David Boutoille
- Infectious Diseases Department, Nantes University Hospital, INSERM CIC 1413, Nantes, France
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Cristina Mussini
- Infectious Diseases Unit, Azienda Ospedaliera-Universitaria of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Pierre Tattevin
- Infectious Diseases and Intensive Care Units, Pontchaillou University Hospital, Rennes, France.
| |
Collapse
|
12
|
Chen L, Zhang T, Liu Z. Molecular epidemiology and risk factors for carbapenem-resistant Enterobacteriaceae infections during 2020-2021 in Northwest China. Microb Pathog 2024:106728. [PMID: 38906492 DOI: 10.1016/j.micpath.2024.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES Severe infection caused by Carbapenem-resistant Enterobacteriaceae (CRE) is a challenge for clinical anti-infective therapy, and clinical intervention to improve control of CRE is of great significance. The study aims to determine the molecular epidemiology and risk factors of CRE infections to provide evidence for effective control of nosocomial infection in patients with CRE. METHODS A total of 192 non-repetitive CRE strains were collected from January 2020 to December 2021 in Northwest China. To explore the risk factors of CRE infection by univariate and Logistic regression analysis, 1:1 case-control study was used to select Carbapenem sensitive Enterobacteriaceae (CSE) infection patients at the same period as the control group. RESULTS Among the 192 CRE strains, the most common isolates included Klebsiella pneumoniae (Kpn) and Enterobacter cloacae (Ecl). The CRE strain showed the lowest rate of resistance to amikacin at 58.3. 185 CRE strains carried carbapenemase resistance genes of concern in this study. KPC-2 (n=94) was the most common carbapenemase, followed by NDM-1 (n=69), NDM-5 (n=22) and IMP-4 (n=5). OXA-48 and VIM were not detected. And KPC-2 was the most common in all strains. Logistic regression analysis implicated days of invasive ventilator-assisted ventilation (OR=1.452; 95 % CI 1.250~1.686), antibiotic combination therapy (OR=2.149; 95 % CI 1.128~4.094), hypoalbuminemia (OR=6.137; 95 % CI 3.161~11.913), history of immunosuppressant use (OR=25.815; 95 % CI 6.821~97.706) and days of hospitalization (OR=1.020; 95 % CI 1.006~1.035) as independent risk factors associated with CRE infection. Age (OR=0.963; 95% CI 0.943~0.984) and history of hormone use (OR=0.119; 95 % CI 0.028~0.504) were protective factors for CRE infection (P < 0.05). CONCLUSIONS The resistance of commonly used antibiotics in clinical is severe, and CRE strains mainly carry KPC-2 and NDM-1. Multiple risk factors for CRE infection and their control can effectively prevent the spread of CRE.
Collapse
Affiliation(s)
- Lin Chen
- Tsinghua University Affiliated Chuiyangliu Hospital, Department of Infectious Diseases, Beijing 100022, China; The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Tiantian Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhiwu Liu
- Department of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
13
|
Choi SJ, Kim ES. Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence. Infect Chemother 2024; 56:171-187. [PMID: 38960737 PMCID: PMC11224036 DOI: 10.3947/ic.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii complex (CRAB) poses a significant global health challenge owing to its resistance to multiple antibiotics and limited treatment options. Polymyxin-based therapies have been widely used to treat CRAB infections; however, they are associated with high mortality rates and common adverse events such as nephrotoxicity. Recent developments include numerous observational studies and randomized clinical trials investigating antibiotic combinations, repurposing existing antibiotics, and the development of novel agents. Consequently, recommendations for treating CRAB are undergoing significant changes. The importance of colistin is decreasing, and the role of sulbactam, which exhibits direct antibacterial activity against A. baumannii complex, is being reassessed. High-dose ampicillin-sulbactam-based combination therapies, as well as combinations of sulbactam and durlobactam, which prevent the hydrolysis of sulbactam and binds to penicillin-binding protein 2, have shown promising results. This review introduces recent advancements in CRAB infection treatment based on clinical trial data, highlighting the need for optimized treatment protocols and comprehensive clinical trials to combat the evolving threat of CRAB effectively.
Collapse
Affiliation(s)
- Seong Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
14
|
Snowdin JW, Mercuro NJ, Madaio MP, Rawlings SA. Case report: Successful treatment of OXA-23 Acinetobacter baumannii neurosurgical infection and meningitis with sulbactam-durlobactam combination therapy. Front Med (Lausanne) 2024; 11:1381123. [PMID: 38813376 PMCID: PMC11135601 DOI: 10.3389/fmed.2024.1381123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Meningitis caused by Acinetobacter species is a rare complication of neurosurgical procedures, although it is associated with high morbidity and mortality. Carbapenem-resistant Acinetobacter is particularly difficult to treat, considering the limited selection and tolerability of effective antimicrobials. Sulbactam-durlobactam was approved by the FDA in 2023 for treatment of hospital-acquired and ventilator-associated pneumonia due to susceptible strains of Acinetobacter, including carbapenem-resistant Acinetobacter baumannii. Here, we present a case of carbapenem-resistant Acinetobacter baumannii neurosurgical infection and meningitis successfully treated with sulbactam-durlobactam combination therapy.
Collapse
Affiliation(s)
| | | | | | - Stephen A. Rawlings
- Department of Infectious Diseases, Maine Medical Center, Portland, ME, United States
| |
Collapse
|
15
|
Franzone JP, Mackow N, van Duin D. Current treatment options for pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Curr Opin Infect Dis 2024; 37:137-143. [PMID: 38179988 PMCID: PMC10922681 DOI: 10.1097/qco.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS In a multicenter, randomized, and controlled trial the novel β-lactam-β-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.
Collapse
Affiliation(s)
- John P. Franzone
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Natalie Mackow
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Najafabadi MK, Soltani R. Carbapenem-resistant Acinetobacter baumannii and Ventilator-associated Pneumonia; Epidemiology, Risk Factors, and Current Therapeutic Approaches. J Res Pharm Pract 2024; 13:33-40. [PMID: 39830948 PMCID: PMC11737613 DOI: 10.4103/jrpp.jrpp_50_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 01/22/2025] Open
Abstract
Acinetobacter baumannii is one of the primary pathogens responsible for healthcare-associated infections. It is related to high rates of morbidity and mortality globally, mainly because of its high capacity to develop resistance to antimicrobials. Nowadays, carbapenem-resistant A. baumannii (CRAB) has increased and represents a significant concern among carbapenem-resistant organisms. It is also a key pathogen associated with ventilator-associated pneumonia. CRAB was placed on the critical group of the universal priority list of the World Health Organization for antibiotic-resistant bacteria, to mention the importance of research development and the urgency of new antibiotics. Patients with severe CRAB infections currently face significant treatment challenges. Some approaches have been taken to deal with CRAB, such as combination therapy and the synergistic effect of certain antibiotics, but the best antibiotic regimen is still unknown. In this narrative review, we attempt to clarify the issues, including epidemiology, risk factors, and current treatment options for CRAB.
Collapse
Affiliation(s)
- Malihe Kazemi Najafabadi
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Rafailidis P, Panagopoulos P, Koutserimpas C, Samonis G. Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:261. [PMID: 38534696 DOI: 10.3390/antibiotics13030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The treatment of Acinetobacter baumannii infections remains a challenge for physicians worldwide in the 21st century. The bacterium possesses a multitude of mechanisms to escape the human immune system. The consequences of A. baumannii infections on morbidity and mortality, as well on financial resources, remain dire. Furthermore, A. baumannii superinfections have also occurred during the COVID-19 pandemic. While prevention is important, the antibiotic armamentarium remains the most essential factor for the treatment of these infections. The main problem is the notorious resistance profile (including resistance to carbapenems and colistin) that this bacterium exhibits. While newer beta lactam/beta-lactamase inhibitors have entered clinical practice, with excellent results against various infections due to Enterobacteriaceae, their contribution against A. baumannii infections is almost absent. Hence, we have to resort to at least one of the following, sulbactam, polymyxins E or B, tigecycline or aminoglycosides, against multidrug-resistant (MDR) and extensively drug-resistant (XDR) A. baumannii infections. Furthermore, the notable addition of cefiderocol in the fight against A. baumannii infections represents a useful addition. We present herein the existing information from the last decade regarding therapeutic advances against MDR/XDR A. baumannii infections.
Collapse
Affiliation(s)
- Petros Rafailidis
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Periklis Panagopoulos
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, "251" Hellenic Air Force General Hospital of Athens, 115 25 Athens, Greece
| | - George Samonis
- Department of Oncology, Metropolitan Hospital, 185 47 Athens, Greece
- Department of Medicine, University of Crete, 715 00 Heraklion, Greece
| |
Collapse
|
18
|
Wantanatavatod M, Wongkulab P. Clinical Efficacy of Sitafloxacin-Colistin-Meropenem and Colistin-Meropenem in Patients with Carbapenem-Resistant and Multidrug-Resistant Acinetobacter baumannii Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) in One Super-Tertiary Hospital in Bangkok, Thailand: A Randomized Controlled Trial. Antibiotics (Basel) 2024; 13:137. [PMID: 38391523 PMCID: PMC10886248 DOI: 10.3390/antibiotics13020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Carbapenem-resistant A. baumannii (CRAB) hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) is now a therapeutic problem worldwide. METHOD An open-label, randomized, superiority, single-blind trial was conducted in Rajavithi Hospital, a super-tertiary care facility in Bangkok, Thailand. CRAB HAP/VAP patients were randomly assigned to receive either sitafloxacin-colistin-meropenem or colistin-meropenem. Outcomes in the two groups were then assessed with respect to mortality, clinical response, and adverse effects. RESULT Between April 2021 and April 2022, 77 patients were treated with combinations of either sitafloxacin plus colistin plus meropenem (n = 40) or colistin plus meropenem (n = 37). There were no significant differences between the two groups with respect to all-cause mortality rates at 7 days and 14 days (respectively, 7.5% vs. 2.7%; p = 0.616, and 10% vs. 10%; p = 1). Patients who received sitafloxacin-colistin-meropenem showed improved clinical response compared with patients who received colistin-meropenem in terms of both intention-to-treat (87.5% vs. 62.2%; p = 0.016) and per-protocol analysis (87.2% vs. 67.7%; p = 0.049). There were no significant differences between the two groups with respect to adverse effects. CONCLUSIONS Adding sitafloxacin as a third agent to meropenem plus colistin could improve clinical outcomes in CRAB HAP/VAP with little or no impact on adverse effects. In short, sitafloxacin-meropenem-colistin could be another therapeutic option for combatting CRAB HAP/VAP.
Collapse
Affiliation(s)
- Manasawee Wantanatavatod
- Division of Infectious Disease, Department of Medicine, Rajavithi Hospital, Bangkok 10400, Thailand
| | - Panuwat Wongkulab
- Division of Infectious Disease, Department of Medicine, Rajavithi Hospital, Bangkok 10400, Thailand
| |
Collapse
|
19
|
Bouza E, Muñoz P, Burillo A. How to treat severe Acinetobacter baumannii infections. Curr Opin Infect Dis 2023; 36:596-608. [PMID: 37930071 DOI: 10.1097/qco.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW To update the management of severe Acinetobacter baumannii infections (ABI), particularly those caused by multi-resistant isolates. RECENT FINDINGS The in vitro activity of the various antimicrobial agents potentially helpful in treating ABI is highly variable and has progressively decreased for many of them, limiting current therapeutic options. The combination of more than one drug is still advisable in most circumstances. Ideally, two active first-line drugs should be used. Alternatively, a first-line and a second-line drug and, if this is not possible, two or more second-line drugs in combination. The emergence of new agents such as Cefiderocol, the combination of Sulbactam and Durlobactam, and the new Tetracyclines offer therapeutic options that need to be supported by clinical evidence. SUMMARY The apparent limitations in treating infections caused by this bacterium, the rapid development of resistance, and the serious underlying situation in most cases invite the search for alternatives to antibiotic treatment, the most promising of which seems to be bacteriophage therapy.
Collapse
Affiliation(s)
- Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
| |
Collapse
|
20
|
Prayag PS, Patwardhan SA, Joshi RS, Panchakshari SP, Rane T, Prayag AP. Enzyme Patterns and Factors Associated with Mortality among Patients with Carbapenem Resistant AcinetobacterBaumannii (CRAB) Bacteremia: Real World Evidence from a Tertiary Center in India. Indian J Crit Care Med 2023; 27:663-668. [PMID: 37719354 PMCID: PMC10504652 DOI: 10.5005/jp-journals-10071-24534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction In the Indian setting, antimicrobial resistance in A. baumannii is a considerable problem, especially in intensive care units (ICUs). Due to the limited data, clinicians are left with very few choices except polymyxins for treating serious infections caused by A. baumannii. There is sparse data regarding the local mechanisms of resistance. Given the current therapeutic challenges, it is critical to know the local enzymatic patterns and antibiograms. Materials and methods A retrospective analysis of 50 episodes of bacteremia caused by CRAB. We analyzed the enzyme patterns and the susceptibility rates to various antibiotics. Results The resistance rates for amikacin, tigecycline, minocycline, and fluoroquinolones were 88, 82, 50, and 88% respectively. OXA-23 was the most commonly isolated enzyme (86% of the isolates produced OXA-23) followed by OXA-51 and NDM. The overall mortality was high (58%). On univariate analysis, pneumonia, and higher Pitt's bacteremia score were significantly associated with mortality (p = 0.04 and p = 0.001 respectively). Of the total patients who received combination therapy, a majority (58%) received polymyxin plus meropenem. Combination therapy using polymyxins as a backbone was not associated with reduced mortality (p = 0.1). Conclusion A. baumannii is associated with significant morbidity and mortality, as shown in our study. The rates of resistance for aminoglycosides were very high, and minocycline showed better susceptibility rates in comparison with tigecycline. In our study, OXA-23 and NDM remained the most important enzymes. The routine use of the combination of polymyxin and meropenem may not offer a significant advantage over monotherapy. How to cite this article Prayag PS, Patwardhan SA, Joshi RS, Panchakshari SP, Rane T, Prayag AP. Enzyme Patterns and Factors Associated with Mortality among Patients with Carbapenem Resistant Acinetobacter Baumannii (CRAB) Bacteremia: Real World Evidence from a Tertiary Center in India. Indian J Crit Care Med 2023;27(9):663-668.
Collapse
Affiliation(s)
| | - Sampada A Patwardhan
- Department of Microbiology, Deenanath Mangeshkar Hospital & Research Center, Pune, India
| | - Rasika S Joshi
- Department of Infectious Diseases, Deenanath Mangeshkar Hospital & Research Center, Pune, India
| | - Shweta P Panchakshari
- Department of Infectious Diseases, Deenanath Mangeshkar Hospital & Research Center, Pune, India
| | - Tejashree Rane
- Department of Clinical Pharmacology, Deenanath Mangeshkar Hospital & Research Center, Pune, India
| | - Amrita P Prayag
- Department of In house research, Deenanath Mangeshkar Hospital & Research Center, Pune, India
| |
Collapse
|
21
|
Zeng M, Xia J, Zong Z, Shi Y, Ni Y, Hu F, Chen Y, Zhuo C, Hu B, Lv X, Li J, Liu Z, Zhang J, Yang W, Yang F, Yang Q, Zhou H, Li X, Wang J, Li Y, Ren J, Chen B, Chen D, Wu A, Guan X, Qu J, Wu D, Huang X, Qiu H, Xu Y, Yu Y, Wang M. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:653-671. [PMID: 36868960 DOI: 10.1016/j.jmii.2023.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
The dissemination of carbapenem-resistant Gram-negative bacilli (CRGNB) is a global public health issue. CRGNB isolates are usually extensively drug-resistant or pandrug-resistant, resulting in limited antimicrobial treatment options and high mortality. A multidisciplinary guideline development group covering clinical infectious diseases, clinical microbiology, clinical pharmacology, infection control, and guideline methodology experts jointly developed the present clinical practice guidelines based on best available scientific evidence to address the clinical issues regarding laboratory testing, antimicrobial therapy, and prevention of CRGNB infections. This guideline focuses on carbapenem-resistant Enterobacteriales (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), and carbapenem-resistant Pseudomonas aeruginosa (CRPA). Sixteen clinical questions were proposed from the perspective of current clinical practice and translated into research questions using PICO (population, intervention, comparator, and outcomes) format to collect and synthesize relevant evidence to inform corresponding recommendations. The grading of recommendations, assessment, development and evaluation (GRADE) approach was used to evaluate the quality of evidence, benefit and risk profile of corresponding interventions and formulate recommendations or suggestions. Evidence extracted from systematic reviews and randomized controlled trials (RCTs) was considered preferentially for treatment-related clinical questions. Observational studies, non-controlled studies, and expert opinions were considered as supplementary evidence in the absence of RCTs. The strength of recommendations was classified as strong or conditional (weak). The evidence informing recommendations derives from studies worldwide, while the implementation suggestions combined the Chinese experience. The target audience of this guideline is clinician and related professionals involved in management of infectious diseases.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 200032, China
| | - Jun Xia
- The Nottingham Ningbo GRADE Centre, University of Nottingham Ningbo China, Ningbo, China; Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuxing Ni
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Yijian Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Chao Zhuo
- Department of Infectious Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Zhengyin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Wenjie Yang
- Department of Infectious Diseases, Tianjin First Center Hospital, Tianjin 300192, China
| | - Fan Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Qiwen Yang
- Department and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha 410015, China
| | - Jianhua Wang
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yimin Li
- Department of Critical Care Medicine,State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jian'an Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Baiyi Chen
- Divison of Infectious Diseases, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing 100044, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yingchun Xu
- Department and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China.
| |
Collapse
|
22
|
Passerotto RA, Lamanna F, Farinacci D, Dusina A, Di Giambenedetto S, Ciccullo A, Borghetti A. Ventilator-associated pneumonia (VAP) and pleural empyema caused by multidrug-resistant Acinetobacter baumannii in HIV and COVID 19 infected patient: A case report. INFECTIOUS MEDICINE 2023; 2:143-147. [PMID: 38013739 PMCID: PMC9984230 DOI: 10.1016/j.imj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
We analyzed the case of a 49-year-old woman with HIV infection off-therapy with poor viro-immunological compensation, not vaccinated for SARS-COV-2, hospitalized for lobar pneumonia and severe COVID19-related respiratory failure in intensive care unit (ICU). The hospitalization was complicated by bacteraemic ventilator-associated pneumonia (VAP) caused by multidrug-resistant Acinetobacter baumannii (MDR-AB) isolated on pleural fluid culture, treated with colistin and cefiderocol for about 3 weeks. The molecular research of MDR-AB on transtracheal aspirate was negative following this therapy. The aim is to show the safety, efficacy and tolerability of colistin-based combination therapy with cefiderocol for Acinetobacter baumannii infection in HIV-infected patient.
Collapse
Affiliation(s)
- Rosa Anna Passerotto
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Lamanna
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Farinacci
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alex Dusina
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Simona Di Giambenedetto
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Arturo Ciccullo
- Infectious Diseases Unit, San Salvatore Hospital, 67100 L'Aquila, Italy
| | - Alberto Borghetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
23
|
Thy M, Timsit JF, de Montmollin E. Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:antibiotics12050860. [PMID: 37237763 DOI: 10.3390/antibiotics12050860] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Aminoglycosides are a family of rapidly bactericidal antibiotics that often remain active against resistant Gram-negative bacterial infections. Over the past decade, their use in critically ill patients has been refined; however, due to their renal and cochleovestibular toxicity, their indications in the treatment of sepsis and septic shock have been gradually reduced. This article reviews the spectrum of activity, mode of action, and methods for optimizing the efficacy of aminoglycosides. We discuss the current indications for aminoglycosides, with an emphasis on multidrug-resistant Gram-negative bacteria, such as extended-spectrum β-lactamase-producing Enterobacterales, carbapenemase-producing Enterobacterales, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii. Additionally, we review the evidence for the use of nebulized aminoglycosides.
Collapse
Affiliation(s)
- Michaël Thy
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Equipe d'accueil (EA) 7323, Department of Pharmacology and Therapeutic Evaluation in Children and Pregnant Women, Université Paris Cité, 75018 Paris, France
| | - Jean-François Timsit
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Unité mixte de Recherche (UMR) 1137, Infection, Antimicrobials, Modelization, Epidemiology (IAME), Institut National de la Recherche Médicale (INSERM), Université Paris Cité, 75018 Paris, France
| | - Etienne de Montmollin
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Unité mixte de Recherche (UMR) 1137, Infection, Antimicrobials, Modelization, Epidemiology (IAME), Institut National de la Recherche Médicale (INSERM), Université Paris Cité, 75018 Paris, France
| |
Collapse
|
24
|
Shields RK, Paterson DL, Tamma PD. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin Infect Dis 2023; 76:S179-S193. [PMID: 37125467 PMCID: PMC10150276 DOI: 10.1093/cid/ciad094] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRAB) is one of the top-priority pathogens for new antibiotic development. Unlike other antibiotic-resistant threats, none of the available therapies have been shown to consistently reduce mortality or improve patient outcomes in clinical trials. Antibiotic combination therapy is routinely used in clinical practice; however, the preferred combination has not been defined. This narrative review focuses on evidence-based solutions for the treatment of invasive CRAB infections. We dissect the promise and perils of traditional agents used in combination, such as colistin, sulbactam, and the tetracyclines, and offer clinical pearls based on our interpretation of the available data. Next, we investigate the merits of newly developed β-lactam agents like cefiderocol and sulbactam-durlobactam, which have demonstrated contrasting results in recent randomized clinical trials. The review concludes with the authors' perspective on the evolving treatment landscape for CRAB infections, which is complicated by limited clinical data, imperfect treatment options, and a need for future clinical trials. We propose that effective treatment for CRAB infections requires a personalized approach that incorporates host factors, the site of infection, pharmacokinetic-pharmacodynamic principles, local molecular epidemiology of CRAB isolates, and careful interpretation of antibiotic susceptibility testing results. In most clinical scenarios, a dose-optimized, sulbactam-based regimen is recommended with the addition of at least one other in vitro active agent. Should sulbactam-durlobactam receive regulatory approval, recommendations will need to be re-evaluated with the most recent evidence.
Collapse
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
26
|
Kogilathota Jagirdhar GS, Rama K, Reddy ST, Pattnaik H, Qasba RK, Elmati PR, Kashyap R, Schito M, Gupta N. Efficacy of Cefoperazone Sulbactam in Patients with Acinetobacter Infections: A Systematic Review of the Literature. Antibiotics (Basel) 2023; 12:582. [PMID: 36978449 PMCID: PMC10044834 DOI: 10.3390/antibiotics12030582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
INTRODUCTION Acinetobacter baumannii (AB) is a multidrug-resistant pathogen commonly associated with nosocomial infections. The resistance profile and ability to produce biofilm make it a complicated organism to treat effectively. Cefoperazone sulbactam (CS) is commonly used to treat AB, but the associated data are scarce. METHODS We conducted a systematic review of articles downloaded from Cochrane, Embase, PubMed, Scopus, and Web of Science (through June 2022) to study the efficacy of CS in treating AB infections. Our review evaluated patients treated with CS alone and CS in combination with other antibiotics separately. The following outcomes were studied: clinical cure, microbiological cure, and mortality from any cause. RESULTS We included 16 studies where CS was used for the treatment of AB infections. This included 11 studies where CS was used alone and 10 studies where CS was used in combination. The outcomes were similar in both groups. We found that the pooled clinical cure, microbiological cure, and mortality with CS alone for AB were 70%, 44%, and 20%, respectively. The pooled clinical cure, microbiological cure, and mortality when CS was used in combination with other antibiotics were 72%, 43%, and 21%, respectively. CONCLUSIONS CS alone or in combination needs to be further explored for the treatment of AB infections. There is a need for randomized controlled trials with comparator drugs to evaluate the drug's effectiveness.
Collapse
Affiliation(s)
| | - Kaanthi Rama
- Gandhi Medical College and Hospital, Secunderabad 500003, Telangana, India
| | - Shiva Teja Reddy
- Gandhi Medical College and Hospital, Secunderabad 500003, Telangana, India
| | | | | | - Praveen Reddy Elmati
- Interventional Pain Medicine, University of Louisville, Louisville, KY 40208, USA
| | - Rahul Kashyap
- Critical Care Medicine, Department of Anesthesiology, Mayo Clinic, Rochester, MN 55092, USA
| | - Marco Schito
- CURE Drug Repurposing Collaboratory (CDRC), Critical Path Institute, 1730 E River Rd, Tucson, AZ 85718, USA
| | - Nitin Gupta
- Department of Infectious Disease, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
27
|
Reina R, León-Moya C, Garnacho-Montero J. Treatment of Acinetobacter baumannii severe infections. Med Intensiva 2022; 46:700-710. [PMID: 36272902 DOI: 10.1016/j.medine.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Acinetobacter baumannii is a Gram-negative, multidrug-resistant (MDR) pathogen that causes nosocomial infections, especially in intensive care units (ICUs) and immunocompromised patients. A. baumannii has developed a broad spectrum of antimicrobial resistance, associated with a higher mortality rate among infected patients compared with other non-baumannii species. In terms of clinical impact, resistant strains are associated with increases in both in-hospital length of stay and mortality. A. baumannii can cause a variety of infections, especially ventilator-associated pneumonia, bacteremia, and skin wound infections, among others. The most common risk factors for the acquisition of MDR A. baumannii are previous antibiotic use, mechanical ventilation, length of ICU and hospital stay, severity of illness, and use of medical devices. Current efforts are focused on addressing all the antimicrobial resistance mechanisms described in A. baumannii, with the objective of identifying the most promising therapeutic scheme.
Collapse
Affiliation(s)
- R Reina
- Cátedra Terapia Intensiva, Facultad de Medicina, Universidad Nacional de La Plata, Argentina, Sociedad Argentina de Terapia Intensiva (SATI), La Plata, Provincia de Buenos Aires, Argentina.
| | - C León-Moya
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - J Garnacho-Montero
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
28
|
Clancy CJ, Nguyen MH. Management of Highly Resistant Gram-Negative Infections in the Intensive Care Unit in the Era of Novel Antibiotics. Infect Dis Clin North Am 2022; 36:791-823. [DOI: 10.1016/j.idc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Lee CM, Kim CJ, Kim SE, Park KH, Bae JY, Choi HJ, Jung Y, Lee SS, Choe PG, Park WB, Kim ES, Song JE, Kwak YG, Lee SH, Lee S, Cheon S, Kim YS, Kang YM, Bang JH, Jung SI, Song KH, Kim HB. Risk factors for early mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteraemia. J Glob Antimicrob Resist 2022; 31:45-51. [PMID: 35981691 DOI: 10.1016/j.jgar.2022.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/18/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Although many deaths due to carbapenem-resistant Acinetobacter baumannii (CRAB) bacteraemia occur within a few days after the onset of bacteraemia, risk factors for early mortality (EM) have not been deeply investigated. We aimed to determine the risk factors for EM and the difference between risk factors associated with EM and late mortality (LM) in CRAB bacteraemia. METHODS Clinical information on all patients with CRAB bacteraemia in 10 hospitals during a 1-year period was collected. Among the cases with mortality within 30 days, EM and LM were defined as death within 3 and more than 5 calendar days from the first positive blood culture, respectively. RESULTS In total, 212 CRAB bacteraemia cases were included in the analysis. Of 122 (57.5%) patients with 30-day mortality, EM was observed in 75 (61.5%) patients and LM in 39 (32.0%) patients. The proportion of severe sepsis or septic shock, Pitt score, and Sequential Organ Failure Assessment (SOFA) score was significantly higher in patients with EM than those with LM. Although urinary tract infection as the site of infection and the severity of illness were independent predictors of LM, only factors representing the severity of illness were independent risk factors for EM. CONCLUSION Our results suggest that a large proportion of CRAB bacteraemia with high severity progresses to a rapidly fatal course, regardless of the underlying diseases or source of infection. Further studies might be needed to investigate the microbiological factors associated with CRAB and pathogen-host interaction in patients with EM.
Collapse
Affiliation(s)
- Chan Mi Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Seong Eun Kim
- Department of Infectious diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung-Hwa Park
- Department of Infectious diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ji Yun Bae
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hee Jung Choi
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Younghee Jung
- Graduate School of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Soon Lee
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Je Eun Song
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Yee Gyung Kwak
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Sun Hee Lee
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Shinwon Lee
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Shinhye Cheon
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Yeon Sook Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yu Min Kang
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Republic of Korea; Present address: Department of Internal Medicine, Myongji Hospital, Goyang, Republic of Korea
| | - Ji Hwan Bang
- Department of Internal Medicine, Seoul Metropolitan Boramae Hospital, Seoul, Republic of Korea
| | - Sook-In Jung
- Department of Infectious diseases, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | | |
Collapse
|
30
|
Sirijatuphat R, Thawornkaew S, Ruangkriengsin D, Thamlikitkul V. Colistin Monotherapy versus Colistin plus Sitafloxacin for Therapy of Carbapenem-Resistant Acinetobacter baumannii Infections: A Preliminary Study. Antibiotics (Basel) 2022; 11:antibiotics11121707. [PMID: 36551364 PMCID: PMC9774251 DOI: 10.3390/antibiotics11121707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The in vitro study of sitafloxacin against carbapenem-resistant (CR) Acinetobacter baumannii demonstrated activity against most strains of CR A. baumannii, and the combination of colistin and sitafloxacin showed an in vitro synergistic effect against CR A. baumannii. This study aimed to compare efficacy and safety between colistin plus sitafloxacin with colistin alone for therapy for CR A. baumannii infection. This randomized controlled trial enrolled 56 patients with CR A. baumannii infection (28/group) during 2018-2021, and the treatment duration was 7-14 days. The study outcomes were 28-day mortality, clinical and microbiological responses, and adverse events. There was no significant difference in 28-day mortality between groups (32.1% combination vs. 32.1% monotherapy, p = 1.000). Favorable clinical response at the end of treatment was comparable between groups (81.5% combination vs. 77.8% monotherapy, p = 0.788). Microbiological response at the end of treatment was also comparable between groups (73.1% combination vs. 74.1% monotherapy, p = 0.934). Acute kidney injury was found in 53.8% of the combination group, and in 45.8% of the monotherapy group (p = 0.571). In conclusion, there was no significant difference in 28-day mortality between the colistin monotherapy and the colistin plus sitafloxacin groups. There was also no significant difference in adverse events between groups.
Collapse
|
31
|
Wang JL, Xiang BX, Song XL, Que RM, Zuo XC, Xie YL. Prevalence of polymyxin-induced nephrotoxicity and its predictors in critically ill adult patients: A meta-analysis. World J Clin Cases 2022; 10:11466-11485. [PMID: 36387815 PMCID: PMC9649555 DOI: 10.12998/wjcc.v10.i31.11466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Polymyxin-induced nephrotoxicity is a major safety concern in clinical practice due to long-term adverse outcomes and high mortality.
AIM To conducted a systematic review and meta-analysis of the prevalence and potential predictors of polymyxin-induced nephrotoxicity in adult intensive care unit (ICU) patients.
METHODS PubMed, EMBASE, the Cochrane Library and Reference Citation Analysis database were searched for relevant studies from inception through May 30, 2022. The pooled prevalence of polymyxin-induced nephrotoxicity and pooled risk ratios of associated factors were analysed using a random-effects or fixed-effects model by Stata SE ver. 12.1. Additionally, subgroup analyses and meta-regression were conducted to assess heterogeneity.
RESULTS A total of 89 studies involving 12234 critically ill adult patients were included in the meta-analysis. The overall pooled incidence of polymyxin-induced nephrotoxicity was 34.8%. The pooled prevalence of colistin-induced nephrotoxicity was not higher than that of polymyxin B (PMB)-induced nephrotoxicity. The subgroup analyses showed that nephrotoxicity was significantly associated with dosing interval, nephrotoxicity criteria, age, publication year, study quality and sample size, which were confirmed in the univariable meta-regression analysis. Nephrotoxicity was significantly increased when the total daily dose was divided into 2 doses but not 3 or 4 doses. Furthermore, older age, the presence of sepsis or septic shock, hypoalbuminemia, and concomitant vancomycin or vasopressor use were independent risk factors for polymyxin-induced nephrotoxicity, while an elevated baseline glomerular filtration rate was a protective factor against colistin-induced nephrotoxicity.
CONCLUSION Our findings indicated that the incidence of polymyxin-induced nephrotoxicity among ICU patients was high. It emphasizes the importance of additional efforts to manage ICU patients receiving polymyxins to decrease the risk of adverse outcomes.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Bi-Xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Li Song
- Department of Pharmacy, Sanya Central Hospital, Sanya 572000, Hainan Province, China
| | - Rui-Man Que
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
32
|
Ahmadpour F, Shaseb E, Izadpanah M, Rakhshan A, Hematian F. Optimal dosing interval of intravenous Colistin monotherapy versus combination therapy: A systematic review and meta-analysis. Eur J Transl Myol 2022; 32:10833. [PMID: 36533669 PMCID: PMC9830404 DOI: 10.4081/ejtm.2022.10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 01/13/2023] Open
Abstract
We aimed to maximize the clinical response and effectiveness of colistin antibiotics in patients with multi-drug (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria, there is an increasing interest in colistin combination therapy with other antibiotics and extended interval dosing regimens. This systematic review and meta-analysis aim is to evaluate if the combination therapy is superior to monotherapy with colistin regarding increased survival and also which dose interval is the most effective to utilize. English language, peer-reviewed journal publications from the first date available to 25 January 2022 were identified by searching the PubMed and Web of Science databases. Forest plots for overall and subgroups and funnel plots were graphed. 42 studies were included in the study. Among them, 38 studies were on combination therapy, and four on dose interval. The overall pooled odds ratio is 0.77 (CI: 0.62; 0.95) (p value < 0.017). The I^2 value was 43% (p value < 0.01). The Begg correlation test of funnel plot asymmetry showed no significant publication bias (0.064). The overall pooled odds ratio for Carbapenem is 0.74 (CI: 0.48; 1.13). A prospective randomized controlled trials (RCT) on 40 adults intensive care unit (ICU) patients with ventilator-associated pneumonia (VAP), comparing the mortality and ICU length of stay of 8- or 24- hour intervals regimens, showed that the ICU length of stay and ICU mortality were; 31.31, 35.3 days, and 32.06, 22.2% in groups 24-h interval and 8- hour interval (p value: 0.39, 0.87), respectively. It seems that combination therapy is associated with drug synergism and increased survival. The extended interval colistin administration may result in higher peak concentration and bacterial eradication. In both cases, we face a dearth of literature.
Collapse
Affiliation(s)
- Forouzan Ahmadpour
- Department of Pharmacotherapy, School of Pharmacy, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Elnaz Shaseb
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mandana Izadpanah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Rakhshan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Hematian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Assistant professor of clinical pharmacy, Department of Clinical Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. ORCID ID: 0000-0001-7062-4669
| |
Collapse
|
33
|
Tratamiento de infecciones graves por Acinetobacter baumannii. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
35
|
Reply to Epling and Powers, "Cefiderocol and the Need for Higher-Quality Evidence: Methods Matter for Patients". Antimicrob Agents Chemother 2022; 66:e0079522. [PMID: 35867525 PMCID: PMC9380543 DOI: 10.1128/aac.00795-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
36
|
Tiseo G, Brigante G, Giacobbe DR, Maraolo AE, Gona F, Falcone M, Giannella M, Grossi P, Pea F, Rossolini GM, Sanguinetti M, Sarti M, Scarparo C, Tumbarello M, Venditti M, Viale P, Bassetti M, Luzzaro F, Menichetti F, Stefani S, Tinelli M. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int J Antimicrob Agents 2022; 60:106611. [PMID: 35697179 DOI: 10.1016/j.ijantimicag.2022.106611] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
Abstract
Management of patients with infections caused by multidrug-resistant organisms is challenging and requires a multidisciplinary approach to achieve successful clinical outcomes. The aim of this paper is to provide recommendations for the diagnosis and optimal management of these infections, with a focus on targeted antibiotic therapy. The document was produced by a panel of experts nominated by the five endorsing Italian societies, namely the Italian Association of Clinical Microbiologists (AMCLI), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Society of Microbiology (SIM), the Italian Society of Infectious and Tropical Diseases (SIMIT) and the Italian Society of Anti-Infective Therapy (SITA). Population, Intervention, Comparison and Outcomes (PICO) questions about microbiological diagnosis, pharmacological strategies and targeted antibiotic therapy were addressed for the following pathogens: carbapenem-resistant Enterobacterales; carbapenem-resistant Pseudomonas aeruginosa; carbapenem-resistant Acinetobacter baumannii; and methicillin-resistant Staphylococcus aureus. A systematic review of the literature published from January 2011 to November 2020 was guided by the PICO strategy. As data from randomised controlled trials (RCTs) were expected to be limited, observational studies were also reviewed. The certainty of evidence was classified using the GRADE approach. Recommendations were classified as strong or conditional. Detailed recommendations were formulated for each pathogen. The majority of available RCTs have serious risk of bias, and many observational studies have several limitations, including small sample size, retrospective design and presence of confounders. Thus, some recommendations are based on low or very-low certainty of evidence. Importantly, these recommendations should be continually updated to reflect emerging evidence from clinical studies and real-world experience.
Collapse
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Gioconda Brigante
- Clinical Pathology Laboratory, ASST Valle Olona, Busto Arsizio, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Floriana Gona
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy, and Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo 'A. Gemelli', Rome, Italy
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Scarparo
- Clinical Microbiology Laboratory, Angel's Hospital, AULSS3 Serenissima, Mestre, Venice, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario Venditti
- Policlinico 'Umberto I', Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy.
| | - Stefania Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Marco Tinelli
- Infectious Diseases Consultation Service, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
37
|
Giacobbe DR, Roberts JA, Abdul-Aziz MH, de Montmollin E, Timsit JF, Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: a contemporary, multidisciplinary ESGCIP perspective. Expert Rev Anti Infect Ther 2022; 20:963-979. [PMID: 35385681 DOI: 10.1080/14787210.2022.2063838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : In the past 15 years, treatment of VAP caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) has represented an intricate challenge for clinicians. AREAS COVERED In this perspective article, we discuss the available clinical data about novel agents for the treatment of CR-GNB VAP, together with general PK/PD principles for the treatment of VAP, in the attempt to provide some suggestions for optimizing antimicrobial therapy of CR-GNB VAP in the daily clinical practice. EXPERT OPINION Recently, novel BL and BL/BLI combinations have become available that have shown potent in vitro activity against CR-GNB and have attracted much interest as novel, less toxic, and possibly more efficacious options for the treatment of CR-GNB VAP compared with previous standard of care. Besides randomized controlled trials, a good solution to enrich our knowledge on how to use these novel agents at best in the near future, while at the same time remaining adherent to current evidence-based guidelines, is to improve our collaboration to conduct larger multinational observational studies to collect sufficiently large populations treated in real life with those novel agents for which guidelines currently do not provide a recommendation (in favor or against) for certain causative organisms.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| | - Jason A Roberts
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| |
Collapse
|
38
|
The Role of Colistin in the Era of New β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics (Basel) 2022; 11:antibiotics11020277. [PMID: 35203879 PMCID: PMC8868358 DOI: 10.3390/antibiotics11020277] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
With the current crisis related to the emergence of carbapenem-resistant Gram-negative bacteria (CR-GNB), classical treatment approaches with so-called “old-fashion antibiotics” are generally unsatisfactory. Newly approved β-lactam/β-lactamase inhibitors (BLBLIs) should be considered as the first-line treatment options for carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) infections. However, colistin can be prescribed for uncomplicated lower urinary tract infections caused by CR-GNB by relying on its pharmacokinetic and pharmacodynamic properties. Similarly, colistin can still be regarded as an alternative therapy for infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) until new and effective agents are approved. Using colistin in combination regimens (i.e., including at least two in vitro active agents) can be considered in CRAB infections, and CRE infections with high risk of mortality. In conclusion, new BLBLIs have largely replaced colistin for the treatment of CR-GNB infections. Nevertheless, colistin may be needed for the treatment of CRAB infections and in the setting where the new BLBLIs are currently unavailable. In addition, with the advent of rapid diagnostic methods and novel antimicrobials, the application of personalized medicine has gained significant importance in the treatment of CRE infections.
Collapse
|
39
|
Paul M, Carrara E, Retamar P, Tängdén T, Bitterman R, Bonomo RA, de Waele J, Daikos GL, Akova M, Harbarth S, Pulcini C, Garnacho-Montero J, Seme K, Tumbarello M, Lindemann PC, Gandra S, Yu Y, Bassetti M, Mouton JW, Tacconelli E, Baño JR. European Society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by Multidrug-resistant Gram-negative bacilli (endorsed by ESICM -European Society of intensive care Medicine). Clin Microbiol Infect 2021; 28:521-547. [PMID: 34923128 DOI: 10.1016/j.cmi.2021.11.025] [Citation(s) in RCA: 502] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
SCOPE These ESCMID guidelines address the targeted antibiotic treatment of 3rd generation cephalosporin-resistant Enterobacterales (3GCephRE) and carbapenem-resistant Gram-negative bacteria, focusing on the effectiveness of individual antibiotics and on combination vs. monotherapy. METHODS An expert panel was convened by ESCMID. A systematic review was performed including randomized controlled trials and observational studies, examining different antibiotic treatment regimens for the targeted treatment of infections caused by the 3GCephRE, carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA) and carbapenem-resistant Acinetobacter baumanni (CRAB). Treatments were classified as head-to-head comparisons between individual antibiotics and monotherapy vs. combination therapy regimens, including defined monotherapy and combination regimens only. The primary outcome was all-cause mortality, preferably at 30 days and secondary outcomes included clinical failure, microbiological failure, development of resistance, relapse/recurrence, adverse events and length of hospital stay. The last search of all databases was conducted in December 2019, followed by a focused search for relevant studies up until ECCMID 2021. Data were summarized narratively. The certainty of the evidence for each comparison between antibiotics and between monotherapy vs. combination therapy regimens was classified by the GRADE recommendations. The strength of the recommendations for or against treatments was classified as strong or conditional (weak). RECOMMENDATIONS The guideline panel reviewed the evidence per pathogen, preferably per site of infection, critically appraising the existing studies. Many of the comparisons were addressed in small observational studies at high risk of bias only. Notably, there was very little evidence on the effects of the new, recently approved, beta-lactam beta-lactamase inhibitors on infections caused by carbapenem-resistant Gram-negative bacteria. Most recommendations are based on very-low and low certainty evidence. A high value was placed on antibiotic stewardship considerations in all recommendations, searching for carbapenem-sparing options for 3GCephRE and limiting the recommendations of the new antibiotics for severe infections, as defined by the sepsis-3 criteria. Research needs are addressed.
Collapse
Affiliation(s)
- Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Pilar Retamar
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Roni Bitterman
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Robert A Bonomo
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Medical Service, Research Service, and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA;; VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA
| | - Jan de Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George L Daikos
- First Department of Medicine, National and Kapodistrian University of Athens
| | - Murat Akova
- Hacettepe University School of Medicine, Department Of Infectious Diseases, Ankara, Turkey
| | - Stephan Harbarth
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Celine Pulcini
- Université de Lorraine, APEMAC, Nancy, France; Université de Lorraine, CHRU-Nancy, Infectious Diseases Department, Nancy, France
| | | | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Italy
| | | | - Sumanth Gandra
- Division of Infectious Diseases, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; Clinica Malattie Infettive, San Martino Policlinico Hospital, Genoa, Italy
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| | - Jesus Rodriguez Baño
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| |
Collapse
|
40
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
41
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
42
|
O'Donnell JN, Putra V, Lodise TP. Treatment of patients with serious infections due to carbapenem-resistant Acinetobacter baumannii: How viable are the current options? Pharmacotherapy 2021; 41:762-780. [PMID: 34170571 DOI: 10.1002/phar.2607] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
This review critically appraises the published microbiologic and clinical data on the treatment of patients with carbapenem-resistant Acinetobacter baumannii infections. Despite being recognized as an urgent threat pathogen by the CDC and WHO, optimal treatment of patients with serious CRAB infections remains ill-defined. Few commercially available agents exhibit reliable in vitro activity against CRAB. Historically, polymyxins have been the most active agents in vitro, though interpretations of susceptibility data are difficult given issues surrounding MIC testing methodologies and lack of correlation between MICs and clinical outcomes. Most available preclinical and clinical data involve use of polymyxins, tetracyclines, and sulbactam, alone and in combination. As the number of viable treatment options is limited, combination therapy with a polymyxin is often used for patients with CRAB infections, despite the significant risk of nephrotoxicity. However, no treatment regimen has been found to reduce mortality, which exceeds 40% across most studies, or substantially improve clinical response. While some newer agents, such as eravacycline and cefiderocol, have demonstrated in vitro activity, clinical efficacy has not been fully established. New agents with clinically relevant activity against CRAB isolates and favorable toxicity profiles are sorely needed.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Vibert Putra
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
43
|
Mohd Sazlly Lim S, Heffernan AJ, Zowawi HM, Roberts JA, Sime FB. Semi-mechanistic PK/PD modelling of meropenem and sulbactam combination against carbapenem-resistant strains of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 2021; 40:1943-1952. [PMID: 33884516 DOI: 10.1007/s10096-021-04252-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022]
Abstract
Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are commonly used. In this study, we explored the potential efficacy of meropenem-sulbactam combination (MEM/SUL) against CR-AB. The checkerboard method was used to screen for synergistic activity of MEM/SUL against 50 clinical CR-AB isolates. Subsequently, time-kill studies against two CR-AB isolates were performed. Time-kill data were described using a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Subsequently, Monte Carlo simulations were performed to estimate the probability of 2-log kill, 1-log kill or stasis at 24-h following combination therapy. The MEM/SUL demonstrated synergy against 28/50 isolates. No antagonism was observed. The MIC50 and MIC90 of MEM/SUL were decreased fourfold, compared to the monotherapy MIC. In the time-kill studies, the combination displayed synergistic killing against both isolates at the highest clinically achievable concentrations. At concentrations equal to the fractional inhibitory concentration, synergism was observed against one isolate. The PK/PD model adequately delineated the data and the interaction between meropenem and sulbactam. The effect of the combination was driven by sulbactam, with meropenem acting as a potentiator. The simulations of various dosing regimens revealed no activity for the monotherapies. At best, the MEM/SUL regimen of 2 g/4 g every 8 h demonstrated a probability of target attainment of 2-log10 kill at 24 h of 34%. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that MEM/SUL may potentially be effective against some CR-AB infections.
Collapse
Affiliation(s)
- Sazlyna Mohd Sazlly Lim
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Level 4, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Aaron J Heffernan
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Level 4, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- School of Medicine, Griffith University, Southport, Australia
| | - Hosam M Zowawi
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Jason A Roberts
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Level 4, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Fekade B Sime
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Level 4, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia.
| |
Collapse
|
44
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
45
|
Bacteria Broadly-Resistant to Last Resort Antibiotics Detected in Commercial Chicken Farms. Microorganisms 2021; 9:microorganisms9010141. [PMID: 33435450 PMCID: PMC7826917 DOI: 10.3390/microorganisms9010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
Resistance to last resort antibiotics in bacteria is an emerging threat to human and animal health. It is important to identify the source of these antimicrobial resistant (AMR) bacteria that are resistant to clinically important antibiotics and evaluate their potential transfer among bacteria. The objectives of this study were to (i) detect bacteria resistant to colistin, carbapenems, and β-lactams in commercial poultry farms, (ii) characterize phylogenetic and virulence markers of E. coli isolates to potentiate virulence risk, and (iii) assess potential transfer of AMR from these isolates via conjugation. Ceca contents from laying hens from conventional cage (CC) and cage-free (CF) farms at three maturity stages were randomly sampled and screened for extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, carbapenem-resistant Acinetobacter (CRA), and colistin resistant Escherichia coli (CRE) using CHROMagar™ selective media. We found a wide-spread abundance of CRE in both CC and CF hens across all three maturity stages. Extraintestinal pathogenic Escherichia coli phylogenetic groups B2 and D, as well as plasmidic virulence markers iss and iutA, were widely associated with AMR E. coli isolates. ESBL-producing Enterobacteriaceae were uniquely detected in the early lay period of both CC and CF, while multidrug resistant (MDR) Acinetobacter were found in peak and late lay periods of both CC and CF. CRA was detected in CF hens only. blaCMY
was detected in ESBL-producing E. coli in CC and CF and MDR Acinetobacter spp. in CC. Finally, the blaCMY
was shown to be transferrable via an IncK/B plasmid in CC. The presence of MDR to the last-resort antibiotics that are transferable between bacteria in food-producing animals is alarming and warrants studies to develop strategies for their mitigation in the environment.
Collapse
|
46
|
Wagenlehner F, Lucenteforte E, Pea F, Soriano A, Tavoschi L, Steele VR, Henriksen AS, Longshaw C, Manissero D, Pecini R, Pogue JM. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin Microbiol Infect 2021; 27:S1198-743X(20)30764-3. [PMID: 33359542 DOI: 10.1016/j.cmi.2020.12.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nephrotoxicity and neurotoxicity are commonly associated with polymyxin treatment; however, the emergence of multidrug-resistant Gram-negative bacteria with limited therapeutic options has resulted in increased use of polymyxins. OBJECTIVES To determine the rates of nephrotoxicity and neurotoxicity during polymyxin treatment and whether any factors influence these. DATA SOURCES Medline, Embase and Cochrane Library databases were searched on 2 January 2020. STUDY ELIGIBILITY CRITERIA Studies reporting nephrotoxicity and/or neurotoxicity rates in patients with infections treated with polymyxins were included. Reviews, meta-analyses and reports not in English were excluded. PARTICIPANTS Patients hospitalized with infections treated with systemic or inhaled polymyxins were included. For comparative analyses, patients treated with non-polymyxin-based regimens were also included. METHODS Meta-analyses were performed using a random-effects model; subgroup meta-analyses were conducted where data permitted using a mixed-effects model. RESULTS In total, 237 reports of randomized controlled trials, cohort and case-control studies were eligible for inclusion; most were single-arm observational studies. Nephrotoxic events in 35,569 patients receiving polymyxins were analysed. Overall nephrotoxicity rate was 0.282 (95% confidence interval (CI) 0.259-0.307). When excluding studies where >50% of patients received inhaled-only polymyxin treatment or nephrotoxicity assessment was by methods other than internationally recognized criteria (RIFLE, KDIGO or AKIN), the nephrotoxicity rate was 0.391 (95% CI 0.364-0.419). The odds of nephrotoxicity were greater with polymyxin therapies compared to non-polymyxin-based regimens (odds ratio 2.23 (95% CI 1.58-3.15); p < 0.001). Meta-analyses showed a significant effect of polymyxin type, dose, patient age, number of concomitant nephrotoxins and use of diuretics, glycopeptides or vasopressors on the rate of nephrotoxicity. Polymyxin therapies were not associated with a significantly different rate of neurotoxicity than non-polymyxin-based regimens (p 0.051). The overall rate of neurotoxicity during polymyxin therapy was 0.030 (95% CI 0.020-0.043). CONCLUSIONS Polymyxins are associated with a higher risk of nephrotoxicity than non-polymyxin-based regimens.
Collapse
Affiliation(s)
- Florian Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pea
- Department of Medicine, University of Udine and Institute of Clinical Pharmacology, SM Misericordia University Hospital, ASUIUD, Udine, Italy
| | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic of Barcelona, University of Barcelona IDIBAPS, Barcelona, Spain
| | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Davide Manissero
- University College of London, Institute for Global Health, London, UK
| | | | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Samal S, Samir SB, Patra SK, Rath A, Dash A, Nayak B, Mohanty D. Polymyxin Monotherapy vs. Combination Therapy for the Treatment of Multidrug-resistant Infections: A Systematic Review and Meta-analysis. Indian J Crit Care Med 2021; 25:199-206. [PMID: 33707900 PMCID: PMC7922466 DOI: 10.5005/jp-journals-10071-23720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives The objective of this review was to compare the effectiveness of Colistin monotherapy and combination therapy for the treatment of multidrug-resistant gram-negative bacterial infections. Data sources PubMed, Cochrane Library. Study eligibility interventions and exclusions In this systematic review, we included all retrospective and prospective studies and randomized controlled trials (RCTs) that compared intravenous polymyxin monotherapy and combination therapy with any other antibiotic for treating multidrug-resistant infections. Studies using inhaled polymyxins with 5 or less than 5 patients were excluded. The primary outcome was 30-day all-cause mortality and if not reported at day 30 we extracted and documented the closest time point. Both crude outcome rates and adjusted effect estimates were extracted for mortality. Study appraisal data extraction and synthesis Search string used was "(Colistin OR polymyxin) AND (Enterobacteriaceae OR Klebsiella OR Acinetobacter OR Escherichia coli OR Pseudomonas) AND (random OR prospective OR retrospective OR cohort OR observational OR blind)." Thirty-nine studies were included in our analysis; out of which 6 RCTs were included and 9 studies used carbapenem as the adjunctive antibiotic. Each study was screened and reviewed for eligibility independently by two authors and data extrapolated on an Excel sheet. Results The meta-analysis of polymyxin monotherapy vs. combination therapy in multidrug-resistant infections yielded an odds ratio (OR) of 0.81 (95% confidence interval [CI]: 0.65-1.01) with minimal heterogeneity (I 2 = 40%), whereas pooled analysis of this comparison in studies that included carbapenem as combination therapy yielded an OR of 0.64 (CI: 0.40-1.03; I 2 = 62%). Likewise, the pooled analysis of the RCTs yielded an OR of 0.82 (95% CI: 0.58-1.16, I 2 = 22%). All these showed no statistical significance. However, it was seen that polymyxin combination therapy was more effective in multidrug-resistant infections compared to polymyxin monotherapy. The effectiveness was more glaring when carbapenems were used as the combination drug instead of any other antibiotic and more so in many in vitro studies that used polymyxin combination therapy. Conclusion Although statistically insignificant, it would be prudent to use polymyxin combination therapy to treat multidrug-resistant gram-negative bacilli (GNB) infection over monotherapy with preference to use carbapenem as the adjunct alongside polymyxins. How to cite this article Samal S, Mishra SB, Patra SK, Rath A, Dash A, Nayak B, et al. Polymyxin Monotherapy vs. Combination Therapy for the Treatment of Multidrug-resistant Infections: A Systematic Review and Meta-analysis. Indian J Crit Care Med 2021;25(2):199-206.
Collapse
Affiliation(s)
- Samir Samal
- Department of Critical Care Medicine, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Shakti B Samir
- Department of Critical Care Medicine, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Shantanu K Patra
- Department of Critical Care Medicine, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Arun Rath
- Department of Critical Care Medicine, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Abhilash Dash
- Department of Critical Care Medicine, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Biswajit Nayak
- Department of Critical Care Medicine, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Diganta Mohanty
- Department of Critical Care Medicine, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| |
Collapse
|
48
|
Karvouniaris M, Pontikis K, Nitsotolis T, Poulakou G. New perspectives in the antibiotic treatment of mechanically ventilated patients with infections from Gram-negatives. Expert Rev Anti Infect Ther 2020; 19:825-844. [PMID: 33270485 DOI: 10.1080/14787210.2021.1859369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Ventilator-associated pneumonia (VAP) is a common and potentially fatal complication of mechanical ventilation that is often caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB). Despite the repurposing of older treatments and the novel antimicrobials, many resistance mechanisms cannot be confronted, and novel therapies are needed.Areas covered: We searched the literature for keywords regarding the treatment of GNB infections in mechanically ventilated patients. This narrative review presents new data on antibiotics and non-antibiotic approaches focusing on Phase 3 trials against clinically significant GNB that cause VAP.Expert opinion: Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam stand out as new options for infections by Klebsiella pneumoniae carbapenemase-producing bacteria, whereas ceftolozane-tazobactam adds therapeutic flexibility in Pseudomonas aeruginosa infections with multiple resistance mechanisms. Ceftazidime-avibactam and ceftolozane-tazobactam have relevant literature. Aztreonam-avibactam holds promise for the treatment of infections by metallo-β-lactamase (MBL)-producing organisms. Recently approved cefiderocol possesses an extended antibacterial spectrum, including KPC- and MBL-producers. However, recently published data have toned down optimism about treating VAP caused by carbapenem-resistant Acinetobacter baumannii. For the latter, eravacycline may provide additional hope, pending pertinent data. Non-antibiotic treatments currently being considered as adjunct therapeutic approaches are welcome. Nevertheless, they will hopefully substitute current antimicrobials in the future.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Konstantinos Pontikis
- ICU First Department of Respiratory Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Thomas Nitsotolis
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
49
|
Acquired Genetic Elements that Contribute to Antimicrobial Resistance in Frequent Gram-Negative Causative Agents of Healthcare-Associated Infections. Am J Med Sci 2020; 360:631-640. [PMID: 32747008 DOI: 10.1016/j.amjms.2020.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is a worldwide public health problem that reduces therapeutic options and increases the risk of death. The causative agents of healthcare-associated infections (HAIs) are drug-resistant microorganisms of the nosocomial environment, which have developed different mechanisms of AMR. The hospital-associated microbiota has been proposed to be a reservoir of genes associated with AMR and an environment where the transfer of genetic material among organisms may occur. The ESKAPE group (Enterococcus faecalis and Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes and Escherichia coli) is a frequent causative agents of HAIs. In this review, we address the issue of acquired genetic elements that contribute to AMR in the most frequent Gram-negative of ESKAPE, with a focus on last resort antimicrobial agents and the role of transference of genetic elements for the development of AMR.
Collapse
|
50
|
Zheng JY, Huang SS, Huang SH, Ye JJ. Colistin for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 53:854-865. [PMID: 31607573 DOI: 10.1016/j.jmii.2019.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate clinical and microbiological response, and 30-day mortality of pneumonia involving multidrug-resistant (MDR) Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex treated with colistin, and identify associated factors of these outcomes. METHODS A retrospective study of 183 adult patients with colistin treatment for at least 7 days between January 2014 and October 2017. RESULTS The mean age was 76.8 years, and mean Acute Physiology and Chronic Health Evaluation II score was 17.7. Eighteen (9.8%) and 128 (69.9%) patients had intravenous (IV) colistin alone and inhaled (IH) colistin alone, respectively. Thirty-seven patients had both IV and IH colistin, including 5 (2.7%) with concurrent, and 32 (17.5%) with non-concurrent use of IV and IH colistin. The 30-day mortality rate was 19.1% and 131 (71.6%) patients had clinical response. In the 175 patients with available data, 126 (72%) had microbiological eradication. The multivariate analyses revealed that IH colistin alone was an independent predictor for 30-day survival, clinical response, and microbiological eradication, and IV colistin alone was an independent predictor for clinical failure. Patients with IV colistin alone had a significantly higher nephrotoxicity rate than IH colistin alone (37.5% vs 6.1%, P = 0.001). Sub-group analysis of 52 patients with IV colistin for ≧ 4 days revealed that 14 (26.9%) patients had inappropriate dose, and inappropriate dose was an independent predictor for 30-day mortality. CONCLUSIONS IH colistin provided good outcomes with few side effects, and appropriate dosing of IV colistin was important to avoid excess mortality.
Collapse
Affiliation(s)
- Jun-Yuan Zheng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Kee-Lung, Kee-Lung, Taiwan.
| | - Shie-Shian Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Kee-Lung, Kee-Lung, Taiwan.
| | - Shu-Huan Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Kee-Lung, Kee-Lung, Taiwan.
| | - Jung-Jr Ye
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Kee-Lung, Kee-Lung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|