1
|
Cassiano LMG, Coimbra RS. Impact of Zika virus non-structural protein mutations on hippocampal damage. Neural Regen Res 2025; 20:2307-2308. [PMID: 39359082 PMCID: PMC11759011 DOI: 10.4103/nrr.nrr-d-24-00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Larissa M. G. Cassiano
- Neurogenômica/Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roney S. Coimbra
- Neurogenômica/Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Feng Y, Qiu S, Zou S, Li R, Chen H, Chen K, Ma J, Liu J, Lai X, Liu S, Zou M. Antiviral activity of eicosapentaenoic acid against zika virus and other enveloped viruses. Front Pharmacol 2025; 16:1564504. [PMID: 40255573 PMCID: PMC12006069 DOI: 10.3389/fphar.2025.1564504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Background Zika virus (ZIKV) is an emerging flavivirus that may cause innate microcephaly or neurological disturbances. Yet no antiviral has been approved by FDA against ZIKV infection. It was shown that some unsaturated fatty acids could inactivate enveloped viruses including SARS-CoV-2. However, studies investigating the effect of eicosapentaenoic acid (EPA) on ZIKV infection are lacking. This study aims to evaluate the antiviral effect of EPA against ZIKV and other enveloped viruses. Methods We first explored the toxicities of EPA in vitro and in vivo. Then we examined the antiviral effect of EPA against ZIKV via cell-based immunodetection, qRT-PCR, Western blotting, and so on. To uncover its antiviral mechanism, we performed assays for virus binding, adsorption and entry, and time-of-addition. RNase digestion and ZIKV NS2B-NS3 protease inhibition assays were also adopted. Finally, we detected its effects on dengue virus (DENV)-2, herpes simplex virus (HSV)-1 and influenza A virus via MTT, Western blotting and qRT-PCR assays. Results EPA was found to inhibit ZIKV infection in vitro without causing cytotoxicities. EPA exhibited antiviral activity in the early stages of the ZIKV life cycle quickly. Mechanistic experiments showed that EPA disrupted the membrane integrity of viral particles, leading to the release of viral RNA, together with the interruption of ZIKV from binding, adsorption and entry, and ultimately the inhibition of viral proliferation. Furthermore, EPA exerted antiviral effects against DENV-2, HSV-1, and influenza virus, in a dose-dependent manner. Conclusion These findings suggest that EPA is a promising broad-spectrum antiviral drug candidate.
Collapse
Affiliation(s)
- Yifei Feng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Shenzhen Luohu District People’s Hospital, Shenzhen, China
| | - Shuqi Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuting Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ru Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyu Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kaitian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junbo Ma
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinyu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyun Lai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Min Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Altayb HN, Alatawi HA. Employing Machine Learning-Based QSAR for Targeting Zika Virus NS3 Protease: Molecular Insights and Inhibitor Discovery. Pharmaceuticals (Basel) 2024; 17:1067. [PMID: 39204173 PMCID: PMC11359100 DOI: 10.3390/ph17081067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Zika virus infection is a mosquito-borne viral disease that has become a global health concern recently. Zika virus belongs to the Flavivirus genus and is primarily transmitted by Aedes mosquitoes. Prevention of Zika virus infection involves avoiding mosquito bites by using repellent, wearing protective clothing, and staying in screened areas, especially for pregnant women. Treatment focuses on managing symptoms with rest, fluids, and acetaminophen, with close monitoring for pregnant women. Currently, there is no specific antiviral treatment or vaccine for the Zika virus, highlighting the importance of prevention strategies to control its spread. Therefore, in this study, the Zika virus non-structural protein NS3 was targeted to inhibit Zika infection by identifying the novel inhibitor through an in silico approach. Here, 2864 natural compounds were screened using a machine learning-based QSAR model, and later docking was performed to select the potential target. Subsequently, Tanimoto similarity and clustering were performed to obtain the potential target. The three most potential compounds were obtained: (a) 5297, (b) 432449, and (c) 85137543. The protein-ligand complex's stability and flexibility were then investigated by dynamic modelling. The 300 ns simulation showed that 5297 exhibited the steadiest deviation and constant creation of hydrogen bonds. Compared to the other compounds, 5297 demonstrated a superior binding free energy (ΔG = -20.81 kcal/mol) with the protein when the MM/GBSA technique was used. The study determined that 5297 showed significant therapeutic potential and justifies further experimental investigation as a possible inhibitor of the NS2B-NS3 protease target implicated in Zika virus infection.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University Collage of Haqel, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
5
|
Starvaggi J, Previti S, Zappalà M, Ettari R. The Inhibition of NS2B/NS3 Protease: A New Therapeutic Opportunity to Treat Dengue and Zika Virus Infection. Int J Mol Sci 2024; 25:4376. [PMID: 38673962 PMCID: PMC11050111 DOI: 10.3390/ijms25084376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level.
Collapse
Affiliation(s)
| | | | | | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (J.S.); (S.P.); (M.Z.)
| |
Collapse
|
6
|
Calderón-Peláez MA, Maradei Anaya SJ, Bedoya-Rodríguez IJ, González-Ipuz KG, Vera-Palacios D, Buitrago IV, Castellanos JE, Velandia-Romero ML. Zika Virus: A Neurotropic Warrior against High-Grade Gliomas-Unveiling Its Potential for Oncolytic Virotherapy. Viruses 2024; 16:561. [PMID: 38675903 PMCID: PMC11055012 DOI: 10.3390/v16040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 04/28/2024] Open
Abstract
Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.
Collapse
Affiliation(s)
- María-Angélica Calderón-Peláez
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | - Silvia Juliana Maradei Anaya
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | | | - Karol Gabriela González-Ipuz
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Daniela Vera-Palacios
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Isabella Victoria Buitrago
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Jaime E. Castellanos
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | - Myriam L. Velandia-Romero
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| |
Collapse
|
7
|
Pérez-Yanes S, Lorenzo-Sánchez I, Cabrera-Rodríguez R, García-Luis J, Trujillo-González R, Estévez-Herrera J, Valenzuela-Fernández A. The ZIKV NS5 Protein Aberrantly Alters the Tubulin Cytoskeleton, Induces the Accumulation of Autophagic p62 and Affects IFN Production: HDAC6 Has Emerged as an Anti-NS5/ZIKV Factor. Cells 2024; 13:598. [PMID: 38607037 PMCID: PMC11011779 DOI: 10.3390/cells13070598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.
Collapse
Affiliation(s)
- Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Department of Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, 38296 La Laguna, Spain;
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| |
Collapse
|
8
|
Calado AM, Seixas F, Dos Anjos Pires M. Virus as Teratogenic Agents. Methods Mol Biol 2024; 2753:105-142. [PMID: 38285335 DOI: 10.1007/978-1-0716-3625-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Viral infectious diseases are important causes of reproductive disorders, as abortion, fetal mummification, embryonic mortality, stillbirth, and congenital abnormalities in animals and in humans. In this chapter, we provide an overview of some virus, as important agents in teratology.We begin by describing the Zika virus, whose infection in humans had a very significant impact in recent years and has been associated with major health problems worldwide. This virus is a teratogenic agent in humans and has been classified as a public health emergency of international concern (PHEIC).Then, some viruses associated with reproductive abnormalities on animals, which have a significant economic impact on livestock, are described, as bovine herpesvirus, bovine viral diarrhea virus, Schmallenberg virus, Akabane virus, and Aino virus.For all viruses mentioned in this chapter, the teratogenic effects and the congenital malformations associated with fetus and newborn are described, according to the most recent scientific publications.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
9
|
Su H, Liu J, Yu J, Qiu Z, Liang W, Wu W, Mo H, Li H, Zhao W, Gu W. EDIII-Fc induces protective immune responses against the Zika virus in mice and rhesus macaque. PLoS Negl Trop Dis 2023; 17:e0011770. [PMID: 37983259 PMCID: PMC10695381 DOI: 10.1371/journal.pntd.0011770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Zika virus can infect the fetus through the placental barrier, causing ZIKV congenital syndrome and even miscarriage, which can cause great harm to pregnant women and infants. Currently, there is no vaccine and drug available to combat the Zika virus. In this study, we designed a fusion protein named EDIII-Fc, including the EDIII region of Zika E protein and human IgG Fc fragment, and obtained 293T cells that stably secreted EDIII-Fc protein using the lentiviral expression system. Mice were immunized with the EDIII-Fc protein, and it was observed that viral replication was significantly inhibited in the immunized mice compared to non-immunized mice. In rhesus macaques, we found that EDIII-Fc effectively induce the secretion of neutralizing antibodies and T cell immunity. These experimental data provide valid data for further use of Zika virus E protein to prepare an effective, safe, affordable Zika vaccine.
Collapse
Affiliation(s)
- Hailong Su
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenzhen Qiu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenhan Liang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Wangsheng Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Haifeng Mo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weiwang Gu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res 2023; 197:106978. [PMID: 37923027 DOI: 10.1016/j.phrs.2023.106978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Dangui He
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macao.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Arora H, Prajapati B, Seth P. Potential role of lncRNA in impairing cellular properties of human neural progenitor cells following exposure to Zika virus E protein. Exp Neurol 2023; 368:114493. [PMID: 37479020 DOI: 10.1016/j.expneurol.2023.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Zika virus (ZIKV) infection during the first trimester of the pregnancy may lead to Congenital zika syndrome in the neonates. The viral infection hampers foetal brain development and causes microcephaly. Human neural progenitor cells (hNPCs) play an important role in brain development, however they are highly susceptible to ZIKV infection. In this study, we elucidated the molecular mechanisms that lead to cellular alterations in hNPCs due to ZIKV E-protein. We investigated proliferation, differentiation, migration and inflammation in hNPCs, which may lead to microcephaly. In our study, we found that ZIKV E-protein causes cell cycle arrest, decrease in proliferation and increase in mitotic length of the dividing hNPCs. We observed CyclinD1 and upstream molecules (p21 and p53) of the pathway are dysregulated, and intracellular calcium at basal level as well as upon ATP stimulation were reduced following over expression of ZIKV E-protein. ZIKV E-protein transfected hNPCs exhibited pre-mature differentiation with pro-neural genes upregulated. Furthermore, ZIKV E-protein disrupted migrational properties of hNPCs and caused elevated levels of inflammatory chemokines and cytokines. To gain insights into molecular mechanisms of these effects on hNPCs, we explored the possible involvement of long non coding RNAs in ZIKV neuropathogenesis. We have shortlisted lncRNAs associated with differentially expressed genes from publicly available transcriptomic data and found some of those lncRNAs are differentially expressed upon E-protein transfection of hNPCs. Gene ontology analysis suggest these lncRNAs play an important role in regulation of viral life cycle, host's defence response and cell proliferation.
Collapse
Affiliation(s)
- Himali Arora
- Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurugram, Haryana, India
| | - Bharat Prajapati
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurugram, Haryana, India.
| |
Collapse
|
12
|
Gomes JA, Sgarioni E, Kowalski TW, Giudicelli GC, Recamonde-Mendoza M, Fraga LR, Schüler-Faccini L, Vianna FSL. Downregulation of Microcephaly-Causing Genes as a Mechanism for ZIKV Teratogenesis: A Meta-analysis of RNA-Seq Studies. J Mol Neurosci 2023; 73:566-577. [PMID: 37428363 DOI: 10.1007/s12031-023-02126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023]
Abstract
Zika virus (ZIKV) is a neurotropic teratogen that causes congenital Zika syndrome (CZS), characterized by brain and eye anomalies. Impaired gene expression in neural cells after ZIKV infection has been demonstrated; however, there is a gap in the literature of studies comparing whether the differentially expressed genes in such cells are similar and how it can cause CZS. Therefore, the aim of this study was to compare the differential gene expression (DGE) after ZIKV infection in neural cells through a meta-analysis approach. Through the GEO database, studies that evaluated DGE in cells exposed to the Asian lineage of ZIKV versus cells, of the same type, not exposed were searched. From the 119 studies found, five meet our inclusion criteria. Raw data of them were retrieved, pre-processed, and evaluated. The meta-analysis was carried out by comparing seven datasets, from these five studies. We found 125 upregulated genes in neural cells, mainly interferon-stimulated genes, such as IFI6, ISG15, and OAS2, involved in the antiviral response. Furthermore, 167 downregulated, involved with cellular division. Among these downregulated genes, classic microcephaly-causing genes stood out, such as CENPJ, ASPM, CENPE, and CEP152, demonstrating a possible mechanism by which ZIKV impairs brain development and causes CZS.
Collapse
Affiliation(s)
- Julia A Gomes
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
| | - Eduarda Sgarioni
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thayne W Kowalski
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- CESUCA - Centro Universitário, Cachoeirinha, Brazil
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Giovanna C Giudicelli
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas R Fraga
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda S L Vianna
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
13
|
Kaur G, Pant P, Bhagat R, Seth P. Zika virus E protein modulates functions of human brain microvascular endothelial cells and astrocytes: implications on blood-brain barrier properties. Front Cell Neurosci 2023; 17:1173120. [PMID: 37545876 PMCID: PMC10399241 DOI: 10.3389/fncel.2023.1173120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Neurotropic viruses can cross the otherwise dynamically regulated blood-brain barrier (BBB) and affect the brain cells. Zika virus (ZIKV) is an enveloped neurotropic Flavivirus known to cause severe neurological complications, such as encephalitis and fetal microcephaly. In the present study, we employed human brain microvascular endothelial cells (hBMECs) and astrocytes derived from human progenitors to establish a physiologically relevant BBB model. We used this model to investigate the effects of ZIKV envelope (E) protein on properties of cells comprising the BBB. E protein is the principal viral protein involved in interaction with host cell surface receptors, facilitating the viral entry. Our findings show that the presence of ZIKV E protein leads to activation of both hBMECs and astrocytes. In hBMECs, we observed a decrease in the expression of crucial endothelial junction proteins such as ZO-1, Occludin and VE-Cadherin, which are vital in establishment and maintenance of the BBB. Consequently, the ZIKV E protein induced changes in BBB integrity and permeability. We also found upregulation of genes involved in leukocyte recruitment along with increased proinflammatory chemokines and cytokines upon exposure to E protein. Additionally, the E protein also led to astrogliosis, evident from the elevated expression of GFAP and Vimentin. Both cell types comprising the BBB exhibited inflammatory response upon exposure to E protein which may influence viral access into the central nervous system (CNS) and subsequent infection of other CNS cells. Overall, our study provides valuable insights into the transient changes that occur at the site of BBB upon ZIKV infection.
Collapse
|
14
|
Feng Y, Yang Y, Zou S, Qiu S, Yang H, Hu Y, Lin G, Yao X, Liu S, Zou M. Identification of alpha-linolenic acid as a broad-spectrum antiviral against zika, dengue, herpes simplex, influenza virus and SARS-CoV-2 infection. Antiviral Res 2023:105666. [PMID: 37429528 DOI: 10.1016/j.antiviral.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Zika virus (ZIKV) has garnered global attention due to its association with severe congenital defects including microcephaly. However, there are no licensed vaccines or drugs against ZIKV infection. Pregnant women have the greatest need for treatment, making drug safety crucial. Alpha-linolenic acid (ALA), a polyunsaturated ω-3 fatty acid, has been used as a health-care product and dietary supplement due to its potential medicinal properties. Here, we demonstrated that ALA inhibits ZIKV infection in cells without loss of cell viability. Time-of-addition assay revealed that ALA interrupts the binding, adsorption, and entry stages of ZIKV replication cycle. The mechanism is probably that ALA disrupts the membrane integrity of the virions to release ZIKV RNA, inhibiting viral infectivity. Further examination revealed that ALA inhibits DENV-2, HSV-1, influenza virus and SARS-CoV-2 infection dose-dependently. ALA is a promising broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Yifei Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Qiu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guifen Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Brand C, Deschamps-Francoeur G, Bullard-Feibelman KM, Scott MS, Geiss BJ, Bisaillon M. Kunjin Virus, Zika Virus, and Yellow Fever Virus Infections Have Distinct Effects on the Coding Transcriptome and Proteome of Brain-Derived U87 Cells. Viruses 2023; 15:1419. [PMID: 37515107 PMCID: PMC10385720 DOI: 10.3390/v15071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
As obligate intracellular parasites, viruses rely heavily on host cells for replication, and therefore dysregulate several cellular processes for their benefit. In return, host cells activate multiple signaling pathways to limit viral replication and eradicate viruses. The present study explores the complex interplay between viruses and host cells through next generation RNA sequencing as well as mass spectrometry (SILAC). Both the coding transcriptome and the proteome of human brain-derived U87 cells infected with Kunjin virus, Zika virus, or Yellow Fever virus were compared to the transcriptome and the proteome of mock-infected cells. Changes in the abundance of several hundred mRNAs and proteins were found in each infection. Moreover, the alternative splicing of hundreds of mRNAs was found to be modulated upon viral infection. Interestingly, a significant disconnect between the changes in the transcriptome and those in the proteome of infected cells was observed. These findings provide a global view of the coding transcriptome and the proteome of Flavivirus-infected cells, leading to a better comprehension of Flavivirus-host interactions.
Collapse
Affiliation(s)
- Carolin Brand
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada; (C.B.); (G.D.-F.); (M.S.S.)
| | - Gabrielle Deschamps-Francoeur
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada; (C.B.); (G.D.-F.); (M.S.S.)
| | - Kristen M. Bullard-Feibelman
- Department of Microbiology, Immunology, and Pathology, School of Biomedical Engineering, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA; (K.M.B.-F.); (B.J.G.)
| | - Michelle S. Scott
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada; (C.B.); (G.D.-F.); (M.S.S.)
| | - Brian J. Geiss
- Department of Microbiology, Immunology, and Pathology, School of Biomedical Engineering, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA; (K.M.B.-F.); (B.J.G.)
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada; (C.B.); (G.D.-F.); (M.S.S.)
| |
Collapse
|
16
|
Zhou GF, Li F, Xue JX, Qian W, Gu XR, Zheng CB, Li C, Yang LM, Xiong SD, Zhou GC, Zheng YT. Antiviral effects of the fused tricyclic derivatives of indoline and imidazolidinone on ZIKV infection and RdRp activities of ZIKV and DENV. Virus Res 2023; 326:199062. [PMID: 36746341 DOI: 10.1016/j.virusres.2023.199062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The prevalence and ravages of Zika virus (ZIKV) seriously endanger human health, especially causing significant neurological defects in both neonates as pediatric microcephaly and adults as Guillain-Barré syndrome. In this work, we studied anti-ZIKV effects of the fused tricyclic derivatives of indoline and imidazolidinone and discovered that some of them are valuable leads for drug discovery of anti-ZIKV agents. The current results show that certain compounds are broad-spectrum inhibitors of ZIKV- and dengue virus (DENV)-infection while distinctive compounds are selective ZIKV inhibitors or selective DENV inhibitors. Compounds of 12, 17 and 28 are more active against Asian ZIKV SZ-VIV01 strain than African ZIKV MR766 strain. It is valued that silylation makes six TBS compounds of 4-nitrophenyl hydrazine series and phenyl hydrazine series more active against ZIKV infection than their phenols. Time-of-addition and withdrawal studies indicate that compound 12 majorly acts on post-infection of RNA synthesis stage of ZIKV life cycle. Moreover, compounds of 12, 17 and 18 are anti-ZIKV agents with the inhibitory activities to ZIKV NS5 RdRp while 12 doesn't inhibit DENV infection even though it is a DENV RdRp inhibitor, 17 is an active agent against DENV infection but is only a weak DENV NS5 RdRp inhibitor, and 28 is inactive against DENV infection and not a DENV NS5 RdRp inhibitor. As a result, a compound's antiviral difference between ZIKV and DENV is not always related to anti-RdRp difference between ZIKV RdRp and DENV RdRp, and structural features of a compound play important roles in executing antiviral and anti-RdRp functions. Further discovery of highly potent broad-spectrum or selective agents against infection by ZIKV and DENV will be facilitated.
Collapse
Affiliation(s)
- Guang-Feng Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; College of Pharmacy, Soochow University, Suzhou 215021, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jian-Xia Xue
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Medical College, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Weiyi Qian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xue-Rong Gu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chunyan Li
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Si-Dong Xiong
- College of Pharmacy, Soochow University, Suzhou 215021, China.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
17
|
Zhou GF, Xie CQ, Xue JX, Wang JB, Yang YZ, Zheng CB, Luo RH, Yang RH, Chen W, Yang LM, Wang YP, Zhang HB, He YP, Zheng YT. Identification of 6ω-cyclohexyl-2-(phenylamino carbonylmethylthio)pyrimidin-4(3H)-ones targeting the ZIKV NS5 RNA dependent RNA polymerase. Front Chem 2022; 10:1010547. [PMID: 36311427 PMCID: PMC9605737 DOI: 10.3389/fchem.2022.1010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a global health concern because of its association with severe neurological disorders such as neonatal microcephaly and adult Guillain-Barre syndrome. Although many efforts have been made to combat ZIKV infection, there is currently no approved vaccines or antiviral drugs available and there is an urgent need to develop effective anti-ZIKV agents. In this study, 26 acetylarylamine-S-DACOs derivatives were prepared, and eight of them were found to have inhibitory activity against Zika virus. Among these substances, 2-[(4-cyclohexyl-5-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio]-N-(3,5-difluorophenyl)acetamide (4w) with the best anti-ZIKV activity was selected for in-depth study of antiviral activity and mechanism of action. Here, we discovered 4w targeted on the ZIKV NS5 RNA -dependent RNA polymerase (RdRp), which exhibited good in vitro antiviral activity without cell species specificity, both at the protein level and at the RNA level can significantly inhibit ZIKV replication. Preliminary molecular docking studies showed that 4w preferentially binds to the palm region of NS5A RdRp through hydrogen bonding with residues such as LYS468, PHE466, GLU465, and GLY467. ZIKV NS5 RdRp enzyme activity experiment showed that 4w could directly inhibit ZIKV RdRp activity with EC50 = 11.38 ± 0.51 μM. In antiviral activity studies, 4w was found to inhibit ZIKV RNA replication with EC50 = 6.87 ± 1.21 μM. ZIKV-induced plaque formation was inhibited with EC50 = 7.65 ± 0.31 μM. In conclusion, our study disclosed that acetylarylamine-S-DACOs is a new active scaffolds against ZIKV, among which compound 4w was proved to be a potent novel anti-ZIKV compound target ZIKV RdRp protein. These promising results provide a future prospective for the development of ZIKV RdRp inhibitors.
Collapse
Affiliation(s)
- Guang-Feng Zhou
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- College of Pharmacy, Soochow University, Suzhou, China
| | - Cong-Qiang Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Jian-Xia Xue
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Medical College, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing-Bo Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Yu-Zhuo Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Chang-Bo Zheng
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ren-Hua Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Liu-Meng Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yue-Ping Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
- *Correspondence: Hong-Bin Zhang, ; Yan-Ping He, ; Yong-Tang Zheng,
| | - Yan-Ping He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan Provincial Center for Research and Development of Natural Products, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, China
- *Correspondence: Hong-Bin Zhang, ; Yan-Ping He, ; Yong-Tang Zheng,
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Hong-Bin Zhang, ; Yan-Ping He, ; Yong-Tang Zheng,
| |
Collapse
|