1
|
Mike-Ogburia MI, Eze CC, Okoli MO, Ekada I, Uhegbu CU, Ugwu C, Ogbakiri PA, Alozie FC, Ideozu NO, Amesi AW, Ifeanyi MA. Cholera in Nigeria: A review of outbreaks, trends, contributing factors, and public health responses. Niger Med J 2024; 65:824-843. [PMID: 39877509 PMCID: PMC11770646 DOI: 10.60787/nmj.v65i6.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Cholera remains a significant public health challenge in Nigeria, with recurrent outbreaks exacerbated by inadequate water, sanitation, and hygiene (WASH) infrastructure, as well as conflict and displacement. This review examines cholera outbreaks in Nigeria from 2010 to 2024, analyzing epidemiological trends, contributing factors, and public health responses. Seasonal peaks during periods of heavy rainfall and flooding have consistently facilitated Vibrio cholerae transmission, with Northern regions disproportionately affected due to poor infrastructure and ongoing conflicts. Displacement into overcrowded camps has heightened vulnerability, particularly in conflict-affected areas such as Borno and Adamawa. The outbreaks have exhibited multiple epidemic waves within single periods, reflecting persistent transmission dynamics. Recent outbreaks have seen higher incidence rates among children under the age of five and vulnerable populations, highlighting the need for targeted interventions. Public health responses have focused on improving surveillance, case management, and WASH infrastructure, with coordinated efforts from national and international agencies. Vaccination campaigns, particularly in high-risk areas, have proven effective in controlling outbreaks. However, challenges remain, including inadequate healthcare capacity, vaccine stockouts, and the emergence of antimicrobial-resistant Vibrio cholerae strains (serogroup O1) resistant to antibiotics such as tetracycline, doxycycline, ampicillin, and trimethoprim-sulfamethoxazole, complicating treatment efforts. The COVID-19 pandemic further strained Nigeria's healthcare system, underscoring the need for an integrated health system to be strengthened to manage concurrent public health crises. This review emphasizes the importance of a multi-sectoral approach to cholera prevention and control, addressing underlying social determinants and ensuring sustained investments in public health infrastructure to mitigate future outbreaks.
Collapse
Affiliation(s)
- Moore Ikechi Mike-Ogburia
- Department of Medical Microbiology, Rivers State University, Port Harcourt, Nigeria
- School of Public Health, University of Port Harcourt, Nigeria
| | - Chinemerem Cynthia Eze
- Department of Haematology and Blood Transfusion Science, Rivers State University, Port Harcourt, Nigeria
| | | | - Inimuvie Ekada
- Department of Clinical Pharmacy and Public Health, Afe-Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Chioma Ugwu
- Department of Medical Laboratory, Cedarcrest Hospitals, Abuja, Nigeria
| | | | | | - Nancy Obutor Ideozu
- Department of Medical Microbiology, Rivers State University, Port Harcourt, Nigeria
| | | | - Margaret Afor Ifeanyi
- Department of Medical Laboratory Services, Federal Medical Center, Yenagoa, Bayelsa State, Nigeria
| |
Collapse
|
2
|
Bitew A, Gelaw A, Wondimeneh Y, Ayenew Z, Getie M, Tafere W, Gebre-Eyesus T, Yimer M, Beyene GT, Bitew M, Abayneh T, Abebe M, Mihret A, Yeshitela B, Teferi M, Gelaw B. Prevalence and antimicrobial susceptibility pattern of Vibrio cholerae isolates from cholera outbreak sites in Ethiopia. BMC Public Health 2024; 24:2071. [PMID: 39085873 PMCID: PMC11292863 DOI: 10.1186/s12889-024-19621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cholera is an acute infectious disease caused by ingestion of contaminated food or water with Vibrio cholerae. Cholera remains a global threat to public health and an indicator of inequity and lack of social development. The aim of this study was to assess the prevalence and antimicrobial susceptibility pattern of V. cholerae from cholera outbreak sites in Ethiopia. METHODS Across-sectional study was conducted from May 2022 to October 2023 across different regions in Ethiopia: Oromia National Regional State, Amhara National Regional State and Addis Ababa City Administration. A total of 415 fecal samples were collected from the three regions. Two milliliter fecal samples were collected from each study participants. The collected samples were cultured on Blood Agar, MacConkey Agar and Thiosulfate Citrate Bile Salt Sucrose Agar. A series of biochemical tests Oxidase test, String test, Motility, Indole, Citrate, Gas production, H2S production, Urease test were used to identify V. cholerae species. Both polyvalent and monovalent antisera were used for agglutination tests to identify and differentiate V. cholerae serogroup and serotypes. In addition, Kirby-Bauer Disk diffusion antibiotic susceptibility test method was done. Data were registered in epi-enfo version 7 and analyzed by Statistical Package for Social Science version 25. Descriptive statistics were used to determine the prevalence of Vibrio cholerae. Logistic regression model was fitted and p-value < 0.05 was considered as statically significant. RESULTS The prevalence of V. cholerae in the fecal samples was 30.1%. Majority of the isolates were from Oromia National Regional State 43.2% (n = 54) followed by Amhara National Regional State 31.2% (n = 39) and Addis Ababa City Administration 25.6% (n = 32). Most of the V. cholerae isolates were O1 serogroups 90.4% (n = 113) and Ogawa serotypes 86.4% (n = 108). Majority of the isolates were susceptible to ciprofloxacin 100% (n = 125), tetracycline 72% (n = 90) and gentamycin 68% (n = 85). More than half of the isolates were resistant to trimethoprim-sulfamethoxazole 62.4% (n = 78) and ampicillin 56.8% (n = 71). In this study, participants unable to read and write were about four times more at risk for V. cholerae infection (AOR: 3.8, 95% CI: 1.07-13.33). In addition, consumption of river water were about three times more at risk for V. cholerae infection (AOR: 2.8, 95% CI: 1.08-7.08). CONCLUSION our study revealed a high prevalence of V. cholerae from fecal samples. The predominant serogroups and serotypes were O1 and Ogawa, respectively. Fortunately, the isolates showed susceptible to most tested antibiotics. Drinking water from river were the identified associated risk factor for V. cholerae infection. Protecting the community from drinking of river water and provision of safe and treated water could reduce cholera outbreaks in the study areas.
Collapse
Affiliation(s)
- Abebaw Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
- Department of Medical Microbiology, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia.
| | - Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayih Wondimeneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zeleke Ayenew
- Department of Bacteriology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Michael Getie
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Wudu Tafere
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Tsehaynesh Gebre-Eyesus
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Marechign Yimer
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Getachew Tesfaye Beyene
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Molalegne Bitew
- Bio and Emerging Technology Institute of Ethiopia, Addis Ababa, Ethiopia
| | | | - Markos Abebe
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Biruk Yeshitela
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mekonnen Teferi
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Xu Y, Zheng Z, Sun R, Ye L, Chan EWC, Chen S. Epidemiological and genetic characterization of multidrug-resistant non-O1 and non-O139 Vibrio cholerae from food in southern China. Int J Food Microbiol 2024; 418:110734. [PMID: 38759293 DOI: 10.1016/j.ijfoodmicro.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.
Collapse
Affiliation(s)
- Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhiwei Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Ruanyang Sun
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
4
|
Luo Y, Payne M, Kaur S, Octavia S, Jiang J, Lan R. Emergence and genomic insights of non-pandemic O1 Vibrio cholerae in Zhejiang, China. Microbiol Spectr 2023; 11:e0261523. [PMID: 37819129 PMCID: PMC10871787 DOI: 10.1128/spectrum.02615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE It is well recognized that only Vibrio cholerae O1 causes cholera pandemics. However, not all O1 strains cause pandemic-level disease. In this study, we analyzed non-pandemic O1 V. cholerae isolates from the 1960s to the 1990s from China and found that they fell into three lineages, one of which shared the most recent common ancestor with pandemic O1 strains. Each of these non-pandemic O1 lineages has unique properties that contribute to their capacity to cause cholera. The findings of this study enhanced our understanding of the emergence and evolution of both pandemic and non-pandemic O1 V. cholerae.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Zou M, Wang K, Zhao J, Lu H, Yang H, Huang M, Wang L, Wang G, Huang J, Min X. DegS protease regulates the motility, chemotaxis, and colonization of Vibrio cholerae. Front Microbiol 2023; 14:1159986. [PMID: 37089576 PMCID: PMC10113495 DOI: 10.3389/fmicb.2023.1159986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
In bacteria, DegS protease functions as an activating factor of the σE envelope stress response system, which ultimately activates the transcription of stress response genes in the cytoplasm. On the basis of high-throughput RNA sequencing, we have previously found that degS knockout inhibits the expression of flagellum synthesis- and chemotaxis-related genes, thereby indicating that DegS may be involved in the regulation of V. cholerae motility. In this study, we examined the relationships between DegS and motility in V. cholerae. Swimming motility and chemotaxis assays revealed that degS or rpoE deletion promotes a substantial reduction in the motility and chemotaxis of V. cholerae, whereas these activities were restored in ΔdegS::degS and ΔdegSΔrseA strains, indicating that DegS is partially dependent on σE to positively regulate V. cholerae activity. Gene-act network analysis revealed that the cAMP-CRP-RpoS signaling pathway, which plays an important role in flagellar synthesis, is significantly inhibited in ΔdegS mutants, whereas in response to the overexpression of cyaA/crp and rpoS in the ΔdegS strain, the motility and chemotaxis of the ΔdegS + cyaA/crp and ΔdegS + rpoS strains were partially restored compared with the ΔdegS strain. We further demonstrated that transcription levels of the flagellar regulatory gene flhF are regulated by DegS via the cAMP-CRP-RpoS signaling pathway. Overexpression of the flhF gene in the ΔdegS strain partially restored motility and chemotaxis. In addition, suckling mouse intestinal colonization experiments indicated that the ΔdegS and ΔrpoE strains were characterized by the poor colonization of mouse intestines, whereas colonization efficacy was restored in the ΔdegSΔrseA, ΔdegS + cyaA/crp, ΔdegS + rpoS, and ΔdegS + flhF strains. Collectively, our findings indicate that DegS regulates the motility and chemotaxis of V. cholerae via the cAMP-CRP-RpoS-FlhF pathway, thereby influencing the colonization of suckling mouse intestines.
Collapse
Affiliation(s)
- Mei Zou
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kaiying Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiajun Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huifang Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Meirong Huang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lu Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Shaw S, Samanta P, Chowdhury G, Ghosh D, Dey TK, Deb AK, Ramamurthy T, Miyoshi SI, Ghosh A, Dutta S, Mukhopadhyay AK. Altered Molecular Attributes and Antimicrobial Resistance Patterns of Vibrio cholerae O1 El Tor Strains Isolated from the Cholera Endemic Regions of India. J Appl Microbiol 2022; 133:3605-3616. [PMID: 36000378 DOI: 10.1111/jam.15794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed to document the comparative analysis of differential hyper-virulent features of Vibrio cholerae O1 strains isolated during 2018 from cholera endemic regions in Gujarat and Maharashtra (Western India) and West Bengal (Eastern India). METHODS AND RESULTS A total of 87 V. cholerae O1 clinical strains from Western India and 48 from Eastern India were analyzed for a number of biotypic and genotypic features followed by antimicrobial resistance (AMR) profile. A novel PCR was designed to detect a large fragment deletion in the Vibrio seventh pandemic island II (VSP-II) genomic region, which is a significant genetic feature of the V. cholerae strains that has caused Yemen cholera outbreak. All the strains from Western India were belong to the Ogawa serotype, polymyxin B-sensitive, hemolytic, had a deletion in VSP-II (VSP-IIC) region and carried Haitian genetic alleles of ctxB, tcpA and rtxA. Conversely, 14.6% (7/48) of the strains from Eastern India belonged to the Inaba serotype, polymyxin B-resistant, non-hemolytic, harbored VSP-II other than VSP-IIC type, classical ctxB, Haitian tcpA and El Tor rtxA alleles. Resistance to tetracycline and chloramphenicol has been observed in strains from both the regions. CONCLUSIONS This study showed hyper-virulent, polymyxin B-sensitive epidemic causing strains in India along with the strains with polymyxin B-resistant and non-hemolytic traits that may spread and cause serious disease outcome in future. SIGNIFICANCE AND IMPACT OF THE STUDY The outcomes of this study can help to improve the understanding of the hyper-pathogenic property of recently circulating pandemic V. cholerae strains in India. A special attention is also needed on the monitoring of AMR surveillance because V. cholerae strains are losing susceptibility to many antibiotics used as a second line of defense in the treatment of cholera.
Collapse
Affiliation(s)
- Sreeja Shaw
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debjani Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Tanmoy Kumar Dey
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok Kumar Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
7
|
Ng′ombe H, Simuyandi M, Mwaba J, Luchen CC, Alabi P, Chilyabanyama ON, Mubanga C, Hatyoka LM, Muchimba M, Bosomprah S, Chilengi R, Kwenda G, Chisenga CC. Immunogenicity and waning immunity from the oral cholera vaccine (Shanchol™) in adults residing in Lukanga Swamps of Zambia. PLoS One 2022; 17:e0262239. [PMID: 34986195 PMCID: PMC8730422 DOI: 10.1371/journal.pone.0262239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction In cholera endemic areas, the periodicity of cholera outbreaks remains unpredictable, making it difficult to organize preventive efforts. Lack of data on duration of protection conferred by oral cholera vaccines further makes it difficult to determine when to deploy preemptive vaccination. We report on the immunogenicity and waning of immunity to Shanchol™ in Lukanga Swamps. Methods We enrolled a cohort of 223 participants aged between 18 and 65 years old from whom serum samples were collected at baseline, day 28 before administration of the second dose, and consecutively at 6, 12, 24, 30, 36, and 48 months. Vibriocidal antibody titres were measured and expressed as geometric mean titres. Box plots and 95% CI were computed at each visit for both Inaba and Ogawa. Seroconversion was defined as a four fold or greater increase in antibody titres compared to baseline titres. Results Overall, seroconversion against V. cholerae Inaba and Ogawa after 1st dose was 35/134 (26%) and 34/134 (25%) respectively. We observed a statistical difference in seroconversion between the two subgroups of baseline titres (low <80 and high ≥80) for both Inaba (p = 0.02) and Ogawa (p<0.0001). From a baseline of 13.58, anti-Ogawa GMT increased to 21.95 after the first dose, but rapidly waned to 14.52, 13.13, and 12.78 at months 6, 12 and 24 respectively, and then increased to 13.21, 18.67 and 23.65 at months 30, 36 and 48 respectively. A similar trend was observed for anti-Inaba GMT across the same time points. Conclusion We found that Shanchol™ was immunogenic in our study population and that vibriocidal antibodies may not be a good marker for long-term immunity. The observed rise in titres after 36 months suggests natural exposure, and this may be a critical time window opening for natural transmission in an endemic areas. We recommend re-vaccination at this time point in high risk areas.
Collapse
Affiliation(s)
- Harriet Ng′ombe
- Center for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- * E-mail:
| | | | - John Mwaba
- Center for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | | - Peter Alabi
- Center for Infectious Disease Research in Zambia, Lusaka, Zambia
| | | | - Cynthia Mubanga
- Center for Infectious Disease Research in Zambia, Lusaka, Zambia
| | | | - Mutinta Muchimba
- Center for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Samuel Bosomprah
- Center for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Roma Chilengi
- Center for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | |
Collapse
|
8
|
Dassanayake MK, Khoo TJ, An J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Ann Clin Microbiol Antimicrob 2021; 20:79. [PMID: 34856999 PMCID: PMC8641154 DOI: 10.1186/s12941-021-00485-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Dad N, Buhmaid S, Mulik V. Vaccination in pregnancy - The when, what and how? Eur J Obstet Gynecol Reprod Biol 2021; 265:1-6. [PMID: 34403876 DOI: 10.1016/j.ejogrb.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023]
Abstract
Immunization is a fundamental component of preventive healthcare. This gain special significance in pregnancy. Maternal antigen-specific IgG, is actively transported across the placenta during pregnancy. This significantly, contributes to infant immunity in the first few months of life. Vaccination during pregnancy has the potential to indirectly protect the most vulnerable infants during the first few months of life, when vaccine responses are generally poor and it is difficult to achieve rapid protection through immunization. This is especially relevant when there is prior exposure to infection in woman or vaccine administration. A vaccine given during pregnancy in these women would result in a booster response and a relatively high level of IgG protecting their children in initial few months of life. Passive antibody transfer from mother to fetus can protect fetuses from infection until their own immunization schedule is initiated. Lack of administration of appropriate vaccination to women during pregnancy lead to an increase in maternal and fetal morbidity and mortality from preventable infections like influenza, pertussis. Various preventable infections can lead to intensive care unit admission for mothers, preterm birth, and low birth weight babies. Recent covid pandemic has brought issue of vaccine use in pregnancy at forefront of all expectant mothers. Immunization with inactivated virus, bacterial vaccine and toxoids showed no evidence of adverse fetal effects. As a rule, live attenuated vaccines are not recommended in pregnancy. This paper gives snapshot of all vaccines, which can be used in pregnancy along with brief details regards various bacterial and viral infections , their common clinical features and effects on pregnancy outcome as well as fetus. This is will provide a useful guide for healthcare providers.
Collapse
Affiliation(s)
- Nimra Dad
- Sidra Medicine, PO Box 26999, Education city, Doha, Qatar
| | - Sara Buhmaid
- Sidra Medicine, PO Box 26999, Education city, Doha, Qatar
| | - Varsha Mulik
- Sidra Medicine, PO Box 26999, Education city, Doha, Qatar.
| |
Collapse
|
10
|
Luo Y, Wang H, Liang J, Qian H, Ye J, Chen L, Yang X, Chen Z, Wang F, Octavia S, Payne M, Song X, Jiang J, Jin D, Lan R. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China. MICROBIAL ECOLOGY 2021; 82:319-333. [PMID: 33410933 DOI: 10.1007/s00248-020-01645-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Henghui Wang
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Jie Liang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Huiqin Qian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Lixia Chen
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Xianqing Yang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Zhongwen Chen
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Fei Wang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
11
|
Alegun O, Pandeya A, Cui J, Ojo I, Wei Y. Donnan Potential across the Outer Membrane of Gram-Negative Bacteria and Its Effect on the Permeability of Antibiotics. Antibiotics (Basel) 2021; 10:701. [PMID: 34208097 PMCID: PMC8230823 DOI: 10.3390/antibiotics10060701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The cell envelope structure of Gram-negative bacteria is unique, composed of two lipid bilayer membranes and an aqueous periplasmic space sandwiched in between. The outer membrane constitutes an extra barrier to limit the exchange of molecules between the cells and the exterior environment. Donnan potential is a membrane potential across the outer membrane, resulted from the selective permeability of the membrane, which plays a pivotal role in the permeability of many antibiotics. In this review, we discussed factors that affect the intensity of the Donnan potential, including the osmotic strength and pH of the external media, the osmoregulated periplasmic glucans trapped in the periplasmic space, and the displacement of cell surface charges. The focus of our discussion is the impact of Donnan potential on the cellular permeability of selected antibiotics including fluoroquinolones, tetracyclines, β-lactams, and trimethoprim.
Collapse
Affiliation(s)
| | | | | | | | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (O.A.); (A.P.); (J.C.); (I.O.)
| |
Collapse
|
12
|
Soleimani F, Taherkhani R, Dobaradaran S, Spitz J, Saeedi R. Molecular detection of E. coli and Vibrio cholerae in ballast water of commercial ships: a primary study along the Persian Gulf. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:457-463. [PMID: 34150249 PMCID: PMC8172682 DOI: 10.1007/s40201-021-00618-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 05/15/2023]
Abstract
PURPOSE Ballast water is one of the most important ways for the transfer of aquatic organisms such as Escherichia coli (E. coli) and Vibrio cholerae. The aim of this study was to investigate Mdh gene of E. coli and the OmpW gene of Vibrio cholerae bacteria by PCR technique in the ballast water of commercial ships entering Bushehr port along the Persian Gulf. METHODS In this study, 34 samples of ballast water entered Bushehr port were studied by using culture and PCR methods to determine Mdh gene of E. coli and OmpW gene of Vibrio cholerae. Genomic DNA of bacterial strains was extracted and PCR was performed by using specific primers of E. coli and Vibrio cholerae. RESULTS The specific Mdh gene of E. coli was detected in 4 ballast water samples and the positive samples were analyzed by antisera methods for E. coli O157:H7. Results of antisera showed that there were 3 positive samples of O157:H7 serotype. The results of the PCR technique showed that the OmpW gene of Vibrio cholerae was negative for all positive culture samples. CONCLUSIONS Further studies are highly recommended to monitor other aquatic organisms in ballast water to protect the marine environment.
Collapse
Affiliation(s)
- Farshid Soleimani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Jörg Spitz
- Akademie für menschliche Medizin GmbH, Krauskopfallee 27, 65388 Schlangenbad, Germany
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Souza LKM, Nogueira KM, Araújo TSL, Sousa NA, Sousa FBM, Oliveira AP, Sales T, Silva K, Rocha TM, Leal LKAM, Magalhães PJC, Souza MHLP, Medeiros JVR. Anti-diarrheal therapeutic potential of diminazene aceturate stimulation of the ACE II/Ang-(1-7)/Mas receptor axis in mice: A trial study. Biochem Pharmacol 2021; 186:114500. [PMID: 33684388 DOI: 10.1016/j.bcp.2021.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
The angiotensin (Ang) II converting enzyme (ACE II) pathway has recently been shown to be associated with several beneficial effects on the body, especially on the cardiac system and gastrointestinal tract. ACE II is responsible for converting Ang II into the active peptide Ang-(1-7), which in turn binds to a metabotropic receptor, the Mas receptor (MasR). Recent studies have demonstrated that Diminazene Aceturate (DIZE), a trypanosomicide used in animals, activates the ACE II pathway. In this study, we aimed to evaluate the antidiarrheal effects promoted by the administration of DIZE to activate the ACE II/Ang-(1-7)/MasR axis in induced diarrhea mice models. The results show that activation of the ACE II pathway exerts antidiarrheal effects that reduce total diarrheal stools and enteropooling. In addition, it increases Na+/K+-ATPase activity and reduces gastrointestinal transit and thus inhibits contractions of intestinal smooth muscle; decreases transepithelial electrical resistance, epithelial permeability, PGE2-induced diarrhea, and proinflammatory cytokines; and increases anti-inflammatory cytokines. Enzyme-linked immunosorbent assay (ELISA) demonstrated that DIZE, when activating the ACE II/Ang-(1-7)/MasR axis, can still interact with GM1 receptors, which reduces cholera toxin-induced diarrhea. Therefore, activation of the ACE II/Ang-(1-7)/MasR axis can be an important pharmacological target for the treatment of diarrheal diseases.
Collapse
Affiliation(s)
- Luan K M Souza
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil.
| | - Kerolayne M Nogueira
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Thiago S L Araújo
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil
| | - Nayara A Sousa
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil
| | - Francisca B M Sousa
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil
| | - Ana P Oliveira
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil
| | - Thiago Sales
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Karine Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Talita M Rocha
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Luzia K A M Leal
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Pedro J C Magalhães
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Marcellus H L P Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Jand V R Medeiros
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI 64049-550, Brazil; Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Parnaíba Delta (UFDPar), Av. São Sebastião, n° 2819, CEP 64202-02 Parnaíba, PI, Brazil; Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Parnaíba Delta, Parnaíba, PI 64202-020, Brazil
| |
Collapse
|
14
|
Wallace MJ, Fishbein SRS, Dantas G. Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes 2020; 12:1799654. [PMID: 32772817 PMCID: PMC7524338 DOI: 10.1080/19490976.2020.1799654] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance is one of the largest threats to global health and imposes substantial burdens in terms of morbidity, mortality, and economic costs. The gut is a key conduit for the genesis and spread of antimicrobial resistance in enteric bacterial pathogens. Distinct bacterial species that cause enteric disease can exist as invasive enteropathogens that immediately evoke gastrointestinal distress, or pathobionts that can arise from established bacterial commensals to inflict dysbiosis and disease. Furthermore, various environmental reservoirs and stressors facilitate the evolution and transmission of resistance. In this review, we present a comprehensive discussion on circulating resistance profiles and gene mobilization strategies of the most problematic species of enteric bacterial pathogens. Importantly, we present emerging approaches toward surveillance of pathogens and their resistance elements as well as promising treatment strategies that can circumvent common resistance mechanisms.
Collapse
Affiliation(s)
- M. J. Wallace
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - S. R. S. Fishbein
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G. Dantas
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Monje F, Ario AR, Musewa A, Bainomugisha K, Mirembe BB, Aliddeki DM, Eurien D, Nsereko G, Nanziri C, Kisaakye E, Ntono V, Kwesiga B, Kadobera D, Bulage L, Bwire G, Tusiime P, Harris J, Zhu BP. A prolonged cholera outbreak caused by drinking contaminated stream water, Kyangwali refugee settlement, Hoima District, Western Uganda: 2018. Infect Dis Poverty 2020; 9:154. [PMID: 33148338 PMCID: PMC7640409 DOI: 10.1186/s40249-020-00761-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background On 23 February 2018, the Uganda Ministry of Health (MOH) declared a cholera outbreak affecting more than 60 persons in Kyangwali Refugee Settlement, Hoima District, bordering the Democratic Republic of Congo (DRC). We investigated to determine the outbreak scope and risk factors for transmission, and recommend evidence-based control measures. Methods We defined a suspected case as sudden onset of watery diarrhoea in any person aged ≥ 2 years in Hoima District, 1 February–9 May 2018. A confirmed case was a suspected case with Vibrio cholerae cultured from a stool sample. We found cases by active community search and record reviews at Cholera Treatment Centres. We calculated case-fatality rates (CFR) and attack rates (AR) by sub-county and nationality. In a case-control study, we compared exposure factors among case- and control-households. We estimated the association between the exposures and outcome using Mantel-Haenszel method. We conducted an environmental assessment in the refugee settlement, including testing samples of stream water, tank water, and spring water for presence of fecal coliforms. We tested suspected cholera cases using cholera rapid diagnostic test (RDT) kits followed by culture for confirmation. Results We identified 2122 case-patients and 44 deaths (CFR = 2.1%). Case-patients originating from Demographic Republic of Congo were the most affected (AR = 15/1000). The overall attack rate in Hoima District was 3.2/1000, with Kyangwali sub-county being the most affected (AR = 13/1000). The outbreak lasted 4 months, which was a multiple point-source. Environmental assessment showed that a stream separating two villages in Kyangwali Refugee Settlement was a site of open defecation for refugees. Among three water sources tested, only stream water was feacally-contaminated, yielding > 100 CFU/100 ml. Of 130 stool samples tested, 124 (95%) yielded V. cholerae by culture. Stream water was most strongly associated with illness (odds ratio [OR] = 14.2, 95% CI: 1.5–133), although tank water also appeared to be independently associated with illness (OR = 11.6, 95% CI: 1.4–94). Persons who drank tank and stream water had a 17-fold higher odds of illness compared with persons who drank from other sources (OR = 17.3, 95% CI: 2.2–137). Conclusions Our investigation demonstrated that this was a prolonged cholera outbreak that affected four sub-counties and two divisions in Hoima District, and was associated with drinking of contaminated stream water. In addition, tank water also appears to be unsafe. We recommended boiling drinking water, increasing latrine coverage, and provision of safe water by the District and entire High Commission for refugees.
Collapse
Affiliation(s)
- Fred Monje
- Uganda Public Health Fellowship Program, Kampala, Uganda.
| | - Alex Riolexus Ario
- Uganda Public Health Fellowship Program, Kampala, Uganda.,Ministry of Health, Kampala, Uganda
| | - Angella Musewa
- Uganda Public Health Fellowship Program, Kampala, Uganda
| | | | | | | | - Daniel Eurien
- Uganda Public Health Fellowship Program, Kampala, Uganda
| | | | - Carol Nanziri
- Uganda Public Health Fellowship Program, Kampala, Uganda
| | | | - Vivian Ntono
- Uganda Public Health Fellowship Program, Kampala, Uganda
| | - Benon Kwesiga
- Uganda Public Health Fellowship Program, Kampala, Uganda
| | | | - Lilian Bulage
- Uganda Public Health Fellowship Program, Kampala, Uganda
| | | | | | - Julie Harris
- Division of Global Health Protection, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, USA
| | - Bao-Ping Zhu
- Uganda Public Health Fellowship Program, Kampala, Uganda.,US Centers for Disease Control and Prevention, Kampala, Uganda
| |
Collapse
|
16
|
Cano A, Ettcheto M, Espina M, López-Machado A, Cajal Y, Rabanal F, Sánchez-López E, Camins A, García ML, Souto EB. State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections. J Nanobiotechnology 2020; 18:156. [PMID: 33129333 PMCID: PMC7603693 DOI: 10.1186/s12951-020-00714-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases kill over 17 million people a year, among which bacterial infections stand out. From all the bacterial infections, tuberculosis, diarrhoea, meningitis, pneumonia, sexual transmission diseases and nosocomial infections are the most severe bacterial infections, which affect millions of people worldwide. Moreover, the indiscriminate use of antibiotic drugs in the last decades has triggered an increasing multiple resistance towards these drugs, which represent a serious global socioeconomic and public health risk. It is estimated that 33,000 and 35,000 people die yearly in Europe and the United States, respectively, as a direct result of antimicrobial resistance. For all these reasons, there is an emerging need to find novel alternatives to overcome these issues and reduced the morbidity and mortality associated to bacterial infectious diseases. In that sense, nanotechnological approaches, especially smart polymeric nanoparticles, has wrought a revolution in this field, providing an innovative therapeutic alternative able to improve the limitations encountered in available treatments and capable to be effective by theirselves. In this review, we examine the current status of most dangerous human infections, together with an in-depth discussion of the role of nanomedicine to overcome the current disadvantages, and specifically the most recent and innovative studies involving polymeric nanoparticles against most common bacterial infections of the human body.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira I Virgili, Reus (Tarragona), Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Yolanda Cajal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Francesc Rabanal
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII, 27-31, 08017, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
17
|
Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2020; 109:548-571. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
The present review (containing 242 references) illustrates the importance and application of optical and electrochemical methods as well as their performance improvement using various methods for the detection of pathogenic bacteria. The application of advanced nanomaterials including hyper branched nanopolymers, carbon-based materials and silver, gold and so on. nanoparticles for biosensing of pathogenic bacteria was also investigated. In addition, a summary of the applications of nanoparticle-based electrochemical biosensors for the identification of pathogenic bacteria has been provided and their advantages, detriments and future development capabilities was argued. Therefore, the main focus in the present review is to investigate the role of nanomaterials in the development of biosensors for the detection of pathogenic bacteria. In addition, type of nanoparticles, analytes, methods of detection and injection, sensitivity, matrix and method of tagging are also argued in detail. As a result, we have collected electrochemical and optical biosensors designed to detect pathogenic bacteria, and argued outstanding features, research opportunities, potential and prospects for their development, according to recently published research articles.
Collapse
Affiliation(s)
- Parinaz Babaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Connor BA, Dawood R, Riddle MS, Hamer DH. Cholera in travellers: a systematic review. J Travel Med 2019; 26:5651069. [PMID: 31804684 PMCID: PMC6927393 DOI: 10.1093/jtm/taz085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
Exposure to cholera is a risk for individuals and groups travelling to endemic areas, and the bacteria can be imported to cholera-free countries by returning travellers. This systematic review of the literature describes the circumstances in which cholera infection can occur in travellers and considers the possible value of the cholera vaccine for prevention in travellers. PubMed and EMBASE were searched for case reports of cholera or diarrhoea among travellers, with date limits of 1 January 1990-30 April 2018. Search results were screened to exclude the following articles: diarrhoea not caused by cholera, cholera in animals, intentional cholera infection in humans, non-English articles and publications on epidemics that did not report clinical details of individual cases and publications of cases pre-dating 1990. Articles were reviewed through descriptive analytic methods and information summarized. We identified 156 cases of cholera imported as a consequence of travel, and these were reviewed for type of traveller, source country, serogroup of cholera, treatment and outcomes. The case reports retrieved in the search did not report consistent levels of detail, making it difficult to synthesize data across reports and draw firm conclusions from the data. This clinical review sheds light on the paucity of actionable published data regarding the risk of cholera in travellers and identifies a number of gaps that should drive additional effort. Further information is needed to better inform evidence-based disease prevention strategies, including vaccination for travellers visiting areas of cholera risk. Modifications to current vaccination recommendations to include or exclude current or additional traveller populations may be considered as additional risk data become available. The protocol for this systematic review is registered with PROSPERO (registration number: 122797).
Collapse
Affiliation(s)
- Bradley A Connor
- Weill Cornell Medical College and the New York Center for Travel and Tropical Medicine, New York, NY, USA
| | | | - Mark S Riddle
- University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA.,Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
19
|
Sarkar A, Morita D, Ghosh A, Chowdhury G, Mukhopadhyay AK, Okamoto K, Ramamurthy T. Altered Integrative and Conjugative Elements (ICEs) in Recent Vibrio cholerae O1 Isolated From Cholera Cases, Kolkata, India. Front Microbiol 2019; 10:2072. [PMID: 31555253 PMCID: PMC6743048 DOI: 10.3389/fmicb.2019.02072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
The self-transferring integrative and conjugative elements (ICEs) are large genomic segments carrying several bacterial adaptive functions including antimicrobial resistance (AMR). SXT/R391 family is one of the ICEs extensively studied in cholera-causing pathogen Vibrio cholerae. The genetic characteristics of ICE-SXT/R391 in V. cholerae are dynamic and region-specific. These ICEs in V. cholerae are strongly correlated with resistance to several antibiotics such as tetracycline, streptomycin and trimethoprim-sulfamethoxazole. We screened V. cholerae O1 strains isolated from cholera patients in Kolkata, India from 2008 to 2015 for antibiotic susceptibility and the presence of ICEs, and subsequently sequenced their conserved genes. Resistance to tetracycline, streptomycin and trimethoprim-sulfamethoxazole was detected in strains isolated during 2008-2010 and 2014-2015. The genes encoding resistance to tetracycline (tetA), trimethoprim-sulfamethoxazole (dfrA1 and sul2), streptomycin (strAB), and chloramphenicol (floR) were detected in the ICEs of these strains. There was a decrease in overall drug resistance in V. cholerae associated with the ICEs in 2011. DNA sequence analysis also showed that AMR in these strains was conferred mainly by two types of ICEs, i.e., ICETET (comprising tetA, strAB, sul2, and dfrA1) and ICEGEN (floR, strAB, sul2, and dfrA1). Based on the genetic structure, Kolkata strains of V. cholerae O1 had distinct genetic traits different from the ICEs reported in other cholera endemic regions. Transfer of AMR was confirmed by conjugation with sodium azide resistant Escherichia coli J53. In addition to the acquired resistance to streptomycin and trimethoprim-sulfamethoxazole, the conjugally transferred (CT) E. coli J53 with ICE showed higher resistance to chloramphenicol and tetracycline than the donor V. cholerae. Pulsed-field gel electrophoresis (PFGE) based clonal analysis revealed that the V. cholerae strains could be grouped based on their ICEs and AMR patterns. Our findings demonstrate the epidemiological importance of ICEs and their role in the emergence of multidrug resistance (MDR) in El Tor vibrios.
Collapse
Affiliation(s)
- Anirban Sarkar
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Daichi Morita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Amit Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
20
|
Muñoz M, Restrepo-Montoya D, Kumar N, Iraola G, Camargo M, Díaz-Arévalo D, Roa-Molina NS, Tellez MA, Herrera G, Ríos-Chaparro DI, Birchenall C, Pinilla D, Pardo-Oviedo JM, Rodríguez-Leguizamón G, Josa DF, Lawley TD, Patarroyo MA, Ramírez JD. Integrated genomic epidemiology and phenotypic profiling of Clostridium difficile across intra-hospital and community populations in Colombia. Sci Rep 2019; 9:11293. [PMID: 31383872 PMCID: PMC6683185 DOI: 10.1038/s41598-019-47688-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile, the causal agent of antibiotic-associated diarrhea, has a complex epidemiology poorly studied in Latin America. We performed a robust genomic and phenotypic profiling of 53 C. difficile clinical isolates established from diarrheal samples from either intrahospital (IH) or community (CO) populations in central Colombia. In vitro tests were conducted to evaluate the cytopathic effect, the minimum inhibitory concentration of ten antimicrobial agents, the sporulation efficiency and the colony forming ability. Eleven different sequence types (STs) were found, the majority present individually in each sample, however in three samples two different STs were isolated. Interestingly, CO patients were infected with STs associated with hypervirulent strains (ST-1 in Clade-2). Three coexistence events (two STs simultaneously detected in the same sample) were observed always involving ST-8 from Clade-1. A total of 2,502 genes were present in 99% of the isolates with 95% of identity or more, it represents a core genome of 28.6% of the 8,735 total genes identified in the set of genomes. A high cytopathic effect was observed for the isolates positive for the two main toxins but negative for binary toxin (TcdA+/TcdB+/CDT- toxin production type), found only in Clade-1. Molecular markers conferring resistance to fluoroquinolones (cdeA and gyrA) and to sulfonamides (folP) were the most frequent in the analyzed genomes. In addition, 15 other markers were found mostly in Clade-2 isolates. These results highlight the regional differences that C. difficile isolates display, being in this case the CO isolates the ones having a greater number of accessory genes and virulence-associated factors.
Collapse
Affiliation(s)
- Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Posgrado Interfacultades Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniel Restrepo-Montoya
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Genomics and Bioinformatics Department, North Dakota State University, Fargo, North Dakota, USA
| | - Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
| | - Milena Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Faculty of Animal Sciences, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
- Hygea group, Faculty of Health Sciences, Universidad de Boyacá, Tunja, Colombia
| | - Nelly S Roa-Molina
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mayra A Tellez
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- PhD Programme in Biomedical and Biological Sciences, Faculty of Natural Sciences and Mathematics/School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Dora I Ríos-Chaparro
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Birchenall
- Hospital Universitario Mayor - Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Darío Pinilla
- Hospital Universitario Mayor - Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Juan M Pardo-Oviedo
- Hospital Universitario Mayor - Méderi, Universidad del Rosario, Bogotá, Colombia
| | | | | | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
21
|
Kaushik M, Kumar S, Kapoor RK, Gulati P. Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. J Med Microbiol 2019; 68:679-692. [DOI: 10.1099/jmm.0.000972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Megha Kaushik
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rajeev Kr. Kapoor
- Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
22
|
Abstract
Cholera infections caused by the gamma-proteobacterium Vibrio cholerae have ravaged human populations for centuries, and cholera pandemics have afflicted every corner of the globe. Fortunately, interventions such as oral rehydration therapy, antibiotics/antimicrobials, and vaccines have saved countless people afflicted with cholera, and new interventions such as probiotics and phage therapy are being developed as promising approaches to treat even more cholera infections. Although current therapies are mostly effective and can reduce disease transmission, cholera outbreaks remain deadly, as was seen during recent outbreaks in Haiti, Ethiopia, and Yemen. This is due to significant underlying political and socioeconomic complications, including shortages of vaccines and clean food and water and a lack of health surveillance. In this review, we highlight the strengths and weaknesses of current cholera therapies, discuss emerging technologies, and argue that a multi-pronged, flexible approach is needed to continue to reduce the worldwide burden of cholera.
Collapse
Affiliation(s)
- Brian Y Hsueh
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Waters
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
23
|
Malaiyan J, Balakrishnan A, Nasimuddin S, Mohan K, Meenakshi-Sundaram P, Mamandur-Devarajan S, Gnanadesikan S, Kandasamy M, Jayakumar N, Elumalai D, Ra GG. Novel gas producing Vibrio cholerae: a case report of gastroenteritis with acute kidney injury. Access Microbiol 2019; 1:e000005. [PMID: 32974506 PMCID: PMC7470351 DOI: 10.1099/acmi.0.000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 11/21/2022] Open
Abstract
Background Bacterial characterization is important in clinical and epidemiological studies. We herein report the first case of gas-producing Vibrio cholera gastroenteritis with acute kidney injury. Case presentation A 30-year-old female presented to the emergency department with complaints of about ten episodes of watery diarrhea, four episodes of vomiting and elevated serum urea/creatinine levels. Although the bacteria were first misidentified as Vibrio furnissii by gas production on carbohydrate fermentation and triple sugar iron agar, it was later confirmed as Vibrio cholerae by 16 S rRNA gene sequencing and specific PCR. The treatment regimen was followed as for Vibrio species with intravenous fluids, ciprofloxacin and doxycycline. The patient recovered without relapse. Conclusions Literature survey from the PubMed database shows no gas-producing Vibrio cholerae isolate being reported in the world. Further, genotype studies are warranted to look into the gas production of Vibrio cholerae.
Collapse
Affiliation(s)
- Jeevan Malaiyan
- Department of Microbiology, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - Anandan Balakrishnan
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai 600113, India
| | - Sowmya Nasimuddin
- Department of Microbiology, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - Kamalraj Mohan
- Department of Microbiology, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - PradeepRaj Meenakshi-Sundaram
- Department of General Medicine, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - Selvam Mamandur-Devarajan
- Department of General Medicine, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - Sumathi Gnanadesikan
- Department of Microbiology, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - Mohanakrishnan Kandasamy
- Department of Microbiology, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - Nithyalakshmi Jayakumar
- Department of Microbiology, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - Dhevahi Elumalai
- Department of Microbiology, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| | - Gokul G Ra
- Department of General Medicine, Sri Muthukumaran Medical College Hospital and Research Institute, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chikkarayapuram, Chennai 600 069, India
| |
Collapse
|