1
|
Gu X, Xu L, Yuan H, Li C, Zhao J, Li S, Yu D. Sophorolipid-toluidine blue conjugates for improved antibacterial photodynamic therapy through high accumulation. RSC Adv 2023; 13:11782-11793. [PMID: 37077994 PMCID: PMC10106977 DOI: 10.1039/d3ra01618h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
Anti-bacterial photodynamic therapy is the most promising treatment protocol for bacterial infection, but low accumulation of photosensitizers has seriously hindered their development in clinical application. Here, with inherent outstanding affinity to bacterial cell envelope, sophorolipid produced from Candida bombicola has been conjugated to toluidine blue (SL-TB) through amidation reaction. The structure of SL-TB conjugates was identified by 1H-NMR, FT-IR and ESI-HRMS. The interfacial assembly and photophysical properties of SL-TB conjugates have been disclosed through surface tension, micro-polarity, electronic and fluorescence spectra. After light irradiation, the log10 (reduced CFU) of free toluidine blue to P. aeruginosa and S. aureus were 4.5 and 7.9, respectively. In contrast, SL-TB conjugates showed a higher bactericidal activity, with a reduction of 6.3 and 9.7 log10 units of CFU against P. aeruginosa and S. aureus, respectively. The fluorescence quantitative results showed that SL-TB could accumulate 2850 nmol/1011 cells and 4360 nmol/1011 cells by P. aeruginosa and S. aureus, which was much higher than the accumulation of 462 nmol/1011 cells and 827 nmol/1011 cells of free toluidine blue. Through the cooperation of triple factors, including sophorose affinity to bacterial cells, hydrophobic association with plasma membrane, and electrostatic attraction, higher SL-TB accumulation was acquired, which has enhanced antibacterial photodynamic efficiencies.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Lixian Xu
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University No.121 Jiangjiayuan Road Nanjing 210000 P. R. China
| | - Haoyang Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Cailing Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Juan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Dinghua Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| |
Collapse
|
2
|
Nooman MU, Al-Kashef AS, Rashad MM, Khattab AENA, Ahmed KA, Abbas SS. Sophorolipids produced by Yarrowia lipolytica grown on Moringa oleifera oil cake protect against acetic acid-induced colitis in rats: impact on TLR-4/p-JNK/NFκB-p65 pathway. J Pharm Pharmacol 2023; 75:544-558. [PMID: 36680771 DOI: 10.1093/jpp/rgac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Toll-like receptor-4 (TLR-4) activation plays a major role in triggering oxidative stress (OS) and inflammation implicated in the pathogenesis of ulcerative colitis (UC). Due to sophorolipids (SLs) antioxidant and anti-inflammatory properties, they are interestingly becoming more valued for their potential effectiveness in treating a variety of diseases. This study was designed to explore the effect of SLs produced by microbial conversion of Moringa oleifera oil cake using isolated yeast Yarrowia lipolytica against UC induced by acetic acid (AA) in rats. METHODS The produced SLs were identified by FTIR, 1H NMR and LC-MS/MS spectra, and administered orally for 7 days (200 mg/kg/day) before AA (2 ml, 4% v/v) to induce UC intrarectally on day eight. Biochemically, the levels of TLR-4, c-Jun N-terminal kinase (JNK), nuclear factor kappa B-p65 (NFκB-p65), interleukin-1beta (IL-1β), malondialdehyd, glutathione, Bax/Bcl2 ratio and the immunohistochemical evaluation of inducible nitric oxide synthase and caspase-3 were assayed. KEY FINDINGS SLs significantly reduced OS, inflammatory and apoptotic markers in AA-treated rats, almost like the reference sulfasalazine. CONCLUSIONS This study provided a novel impact for SLs produced by microbial conversion of M. oleifera oil cake against AA-induced UC in rats through hampering the TLR-4/p-JNK/NFκB-p65 signalling pathway.
Collapse
Affiliation(s)
- Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Mona M Rashad
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Abd El-Nasser A Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
3
|
Sophorolipids—Bio-Based Antimicrobial Formulating Agents for Applications in Food and Health. Molecules 2022; 27:molecules27175556. [PMID: 36080322 PMCID: PMC9457973 DOI: 10.3390/molecules27175556] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Sophorolipids are well-known glycolipid biosurfactants, produced mainly by non-pathogenic yeast species such as Candida bombicola with high yield. Its unique environmental compatibility and high biodegradable properties have made them a focus in the present review for their promising applications in diverse areas. This study aims to examine current research trends of sophorolipids and evaluate their applications in food and health. A literature search was conducted using different research databases including PubMed, ScienceDirect, EBSCOhost, and Wiley Online Library to identify studies on the fundamental mechanisms of sophorolipids and their applications in food and health. Studies have shown that various structural forms of sophorolipids exhibit different biological and physicochemical properties. Sophorolipids represent one of the most attractive biosurfactants in the industry due to their antimicrobial action against both Gram-positive and Gram-negative microorganisms for applications in food and health sectors. In this review, we have provided an overview on the fundamental properties of sophorolipids and detailed analysis of their applications in diverse areas such as food, agriculture, pharmaceutical, cosmetic, anticancer, and antimicrobial activities.
Collapse
|
4
|
Voulgaridou GP, Mantso T, Anestopoulos I, Klavaris A, Katzastra C, Kiousi DE, Mantela M, Galanis A, Gardikis K, Banat IM, Gutierrez T, Sałek K, Euston S, Panayiotidis MI, Pappa A. Toxicity Profiling of Biosurfactants Produced by Novel Marine Bacterial Strains. Int J Mol Sci 2021; 22:2383. [PMID: 33673549 PMCID: PMC7956851 DOI: 10.3390/ijms22052383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
Surface active agents (SAAs), currently used in modern industry, are synthetic chemicals produced from non-renewable sources, with potential toxic impacts on humans and the environment. Thus, there is an increased interest for the identification and utilization of natural derived SAAs. As such, the marine environment is considered a promising source of biosurfactants with low toxicity, environmental compatibility, and biodegradation compared to their synthetic counterparts. MARISURF is a Horizon 2020 EU-funded project aiming to identify and functionally characterize SAAs, derived from a unique marine bacterial collection, towards commercial exploitation. Specifically, rhamnolipids produced by Marinobacter MCTG107b and Pseudomonas MCTG214(3b1) strains were previously identified and characterized while currently their toxicity profile was assessed by utilizing well-established methodologies. Our results showed a lack of cytotoxicity in in vitro models of human skin and liver as indicated by alamar blue and propidium iodide assays. Additionally, the use of the single gel electrophoresis assay, under oxidative stress conditions, revealed absence of any significant mutagenic/anti-mutagenic potential. Finally, both 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) cell-free assays, revealed no significant anti-oxidant capacity for neither of the tested compounds. Consequently, the absence of significant cytotoxicity and/or mutagenicity justifies their commercial exploitation and potential development into industrial end-user applications as natural and environmentally friendly biosurfactants.
Collapse
Affiliation(s)
- Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-P.V.); (I.A.); (A.K.); (C.K.); (D.-E.K.); (M.M.); (A.G.)
| | - Theodora Mantso
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
| | - Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-P.V.); (I.A.); (A.K.); (C.K.); (D.-E.K.); (M.M.); (A.G.)
| | - Ariel Klavaris
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-P.V.); (I.A.); (A.K.); (C.K.); (D.-E.K.); (M.M.); (A.G.)
| | - Christina Katzastra
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-P.V.); (I.A.); (A.K.); (C.K.); (D.-E.K.); (M.M.); (A.G.)
| | - Despoina-Eugenia Kiousi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-P.V.); (I.A.); (A.K.); (C.K.); (D.-E.K.); (M.M.); (A.G.)
| | - Marini Mantela
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-P.V.); (I.A.); (A.K.); (C.K.); (D.-E.K.); (M.M.); (A.G.)
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-P.V.); (I.A.); (A.K.); (C.K.); (D.-E.K.); (M.M.); (A.G.)
| | - Konstantinos Gardikis
- Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece;
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK;
| | - Tony Gutierrez
- Institute of Mechanical, Process & Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Karina Sałek
- Institute of Biological Chemistry, Biophysics & Bioengineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.E.)
| | - Stephen Euston
- Institute of Biological Chemistry, Biophysics & Bioengineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.E.)
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
- The Cyprus Institute of Neurology and Genetics, Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, Nicosia 2371, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, PO Box 23462, Nicosia 1683, Cyprus
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.-P.V.); (I.A.); (A.K.); (C.K.); (D.-E.K.); (M.M.); (A.G.)
| |
Collapse
|
5
|
Singh PK, Bohr SSR, Hatzakis NS. Direct Observation of Sophorolipid Micelle Docking in Model Membranes and Cells by Single Particle Studies Reveals Optimal Fusion Conditions. Biomolecules 2020; 10:E1291. [PMID: 32906821 PMCID: PMC7564020 DOI: 10.3390/biom10091291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022] Open
Abstract
Sophorolipids (SLs) are naturally produced glycolipids that acts as drug delivery for a spectrum of biomedical applications, including as an antibacterial antifungal and anticancer agent, where they induce apoptosis selectively in cancerous cells. Despite their utility, the mechanisms underlying their membrane interactions, and consequently cell entry, remains unknown. Here, we combined a single liposome assay to observe directly and quantify the kinetics of interaction of SL micelles with model membrane systems, and single particle studies on live cells to record their interaction with cell membranes and their cytotoxicity. Our single particle readouts revealed several repetitive docking events on individual liposomes and quantified how pH and membrane charges, which are known to vary in cancer cells, affect the docking of SL micelles on model membranes. Docking of sophorolipids micelles was found to be optimal at pH 6.5 and for membranes with -5% negatively charge lipids. Single particle studies on mammalian cells reveled a two-fold increased interaction on Hela cells as compared to HEK-293 cells. This is in line with our cell viability readouts recording an approximate two-fold increased cytotoxicity by SLs interactions for Hela cells as compared to HEK-293 cells. The combined in vitro and cell assays thus support the increased cytotoxicity of SLs on cancer cells to originate from optimal charge and pH interactions between membranes and SL assemblies. We anticipate studies combining quantitative single particle studies on model membranes and live cell may reveal hitherto unknown molecular insights on the interactions of sophorolipid and additional nanocarriers mechanism.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Anestopoulos I, Kiousi DE, Klavaris A, Galanis A, Salek K, Euston SR, Pappa A, Panayiotidis MI. Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance. Pharmaceutics 2020; 12:E688. [PMID: 32708243 PMCID: PMC7407150 DOI: 10.3390/pharmaceutics12070688] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Surface active agents (SAAs) are molecules with the capacity to adsorb to solid surfaces and/or fluid interfaces, a property that allows them to act as multifunctional ingredients (e.g., wetting and dispersion agents, emulsifiers, foaming and anti-foaming agents, lubricants, etc.) in a widerange of the consumer products of various industrial sectors (e.g., pharmaceuticals, cosmetics, personal care, detergents, food, etc.). Given their widespread utilization, there is a continuously growing interest to explore their role in consumer products (relevant to promoting human health) and how such information can be utilized in order to synthesize better chemical derivatives. In this review article, weaimed to provide updated information on synthetic and biological (biosurfactants) SAAs and their health-promoting properties (e.g., anti-microbial, anti-oxidant, anti-viral, anti-inflammatory, anti-cancer and anti-aging) in an attempt to better define some of the underlying mechanism(s) by which they exert such properties.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Ariel Klavaris
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus;
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Karina Salek
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Stephen R. Euston
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
7
|
Chen J, Liu X, Fu S, An Z, Feng Y, Wang R, Ji P. Effects of sophorolipids on fungal and oomycete pathogens in relation to pH solubility. J Appl Microbiol 2020; 128:1754-1763. [PMID: 31995843 DOI: 10.1111/jam.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was to determine the effects of sophorolipids on several fungal and oomycete plant pathogens and the relationship between sophorolipids at different pH and antimicrobial activities. METHODS AND RESULTS Sophorolipids had different solubility at different pH with a dramatic increase in solubility when pH was 6 or higher. Inhibition of mycelial growth of Phytophthora infestans by sophorolipids was affected by pH values, showing that when the pH value was higher, the inhibition rate was lower. Sophorolipids inhibited spore germination and mycelial growth of several fungal and oomycete pathogens in vitro including Fusarium sp., F. oxysporum, F. concentricum, Pythium ultimum, Pyricularia oryzae, Rhizoctorzia solani, Alternaria kikuchiana, Gaeumannomyces graminis var. tritici and P. infestans and caused morphological changes in hyphae by microscope observation. Sophorolipids reduced β-1,3-glucanase activity in mycelia of P. infestans. In greenhouse studies, foliar application of sophorolipids at 3 mg ml-1 reduced severity of late blight of potato caused by P. infestans significantly. CONCLUSION Sophorolipids influenced spore germination and hyphal tip growth of several plant pathogens and pH solubility of sophorolipids had an effect on their efficacy. Application of sophorolipids reduced late blight disease on potato under greenhouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The findings indicated that sophorolipids have the potential to be developed as a convenient and easy-to-use formulation for managing plant diseases.
Collapse
Affiliation(s)
- J Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - X Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - S Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Z An
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Y Feng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - R Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - P Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| |
Collapse
|