1
|
Qiao X, Xue R, Li S, Li J, Ji C. Expression of LASS2 Can be Regulated by Dihydroartemisinin to Regulate Cisplatin Chemosensitivity in Bladder Cancer Cells. Curr Pharm Biotechnol 2025; 26:525-538. [PMID: 38757331 DOI: 10.2174/0113892010305651240514100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The aim of this study was to investigate the potential of dihydroartemisinin to augment the efficacy of cisplatin chemotherapy through the modulation of LASS2 expression. METHODS TCMSP, CTR-DB, TCGA-BLC, and other databases were used to analyze the possibility of LASS2 as the target gene of dihydroartemisinin. Cell experiments revealed the synergistic effect of DDP and DHA. Animal experiments showed that DHA inhibited the growth of DDP-treated mice. In addition, WB, real-time PCR, and immunohistochemical analysis showed that DHA enhanced LASS2 (CERS2) expression in bladder cancer cells and DDP-treated mice. RESULTS LASS2 is associated with cisplatin chemosensitivity.LASS2 expression levels are different between BLC tissues and normal tissues. COX analysis showed that patients with high LASS2 expression had a higher cumulative overall survival rate than those with low LASS2 expression. The Sankey plot showed that LASS2 expression is lower in BLC tissues with more advanced stage and distant metastasis. The docking score of DHA and LASS2 reached the maximum value of -5.5259, indicating that DHA had a strong binding affinity with LASS2 targets. CCK8 assay showed that the most effective concentration ratio of DHA to DDP was 2.5 μg/ml + 10μg/ml. In vivo experiments showed that DHA inhibited tumor growth in cisplatin-treated mice. In addition, WB, RT-qPCR, and immunohistochemical analysis showed that DHA was able to enhance LASS2 expression in BLC cells and DDP-treated mice. CONCLUSION The upregulation of LASS2 (CERS2) expression in bladder cancer cells by DHA has been found to enhance cisplatin chemosensitivity.
Collapse
Affiliation(s)
- Xuhua Qiao
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Rongbo Xue
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Shijie Li
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Jun Li
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Chundong Ji
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| |
Collapse
|
2
|
Zhang X, Bao M, Zhang J, Zhu L, Wang D, Liu X, Xu L, Luan L, Liu Y, Liu Y. Neuroprotective mechanism of ribisin A on H 2O 2-induced PC12 cell injury model. Tissue Cell 2024; 87:102322. [PMID: 38367324 DOI: 10.1016/j.tice.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Ribisin A has been shown to have neurotrophic activity. The aim of this study was to evaluate the neuroprotective effect of ribisin A on injured PC12 cells and elucidate its mechanism. In this project, PC12 cells were induced by H2O2 to establish an injury model. After treatment with ribisin A, the neuroprotective mechanism of ribisin A was investigated by methyl tetrazolium (MTT) assay, Enzyme-linked immunosorbent assay (ELISA), flow cytometric analysis, fluorescent probe analysis, and western blot. We found that ribisin A decreased the rate of lactate dehydrogenase (LDH) release, increased cellular superoxide dismutase (SOD) level, decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Ca2+ expression and reactive oxygen species (ROS). Moreover, ribisin A significantly increased mitochondrial membrane potential (MMP) and inhibited apoptosis of PC12 cells. Meanwhile, ribisin A activated the phosphorylation of ERK1/2 and its downstream molecule CREB by upregulating the expression of Trk A and Trk B, the upstream molecules of the ERK signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengyu Bao
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui 273200, China
| | - Di Wang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lijuan Luan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yuguo Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Li Y, Wu H, Liu M, Zhang Z, Ji Y, Xu L, Liu Y. Polysaccharide from Polygala tenuifolia alleviates cognitive decline in Alzheimer's disease mice by alleviating Aβ damage and targeting the ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117564. [PMID: 38081400 DOI: 10.1016/j.jep.2023.117564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia is used in a variety of Chinese medicine prescriptions for the classic dementia treatment, and polysaccharide is an important active component in the herb. AIM OF THE STUDY This study investigated the in vivo anti-Alzheimer's disease (AD) activity of the polysaccharide PTPS from Polygala tenuifolia using the senescence-accelerated mouse/prone8 (SAMP8) model and explored its molecular mechanism to lay the foundation for the development of polysaccharide-based anti-AD drugs. MATERIALS AND METHODS The Morris water maze test (MWM)was used to detect changes in the spatial cognitive ability of mice, and Nissl staining was applied to observe the state of neurons in the classic hippocampus. The levels of acetylcholine (ACh) and acetylcholinesterase (AChE) were measured by ELISA. Immunofluorescence was used to reflect β-amyloid (Aβ) levels in brain tissue. Apoptosis was evaluated by TdT-mediated dUTP Nick-End Labeling (TUNEL) method. The status of dendritic branches and spines was observed by Golgi staining. Meanwhile, the expression levels of recombinant human insulin-degrading enzyme (IDE), brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB), extracellular regulated protein kinases (ERK), and cAMP-response element binding protein (CREB) proteins were determined by Western blotting. RESULTS PTPS improves spatial cognitive deficits in AD mice, reduces cellular damage in the CA3 region of the hippocampus, maintains the balance of the cholinergic system, and exerts an anti-AD effect in vivo. The molecular mechanism of its action may be related to the reduction of Aβ deposition as well as the activation of ERK pathway-related proteins with enhanced synaptic plasticity. CONCLUSIONS PTPS is able to exert anti-AD activity in vivo by mitigating Aβ damage and targeting the ERK pathway.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Haoran Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Maoxuan Liu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Yuning Ji
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jina, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China.
| |
Collapse
|
4
|
Yaghmur A, Østergaard J, Mu H. Lipid nanoparticles for targeted delivery of anticancer therapeutics: Recent advances in development of siRNA and lipoprotein-mimicking nanocarriers. Adv Drug Deliv Rev 2023; 203:115136. [PMID: 37944644 DOI: 10.1016/j.addr.2023.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The limitations inherent in conventional cancer treatment methods have stimulated recent efforts towards the design of safe nanomedicines with high efficacy for combating cancer through various promising approaches. A plethora of nanoparticles has been introduced in the development of cancer nanomedicines. Among them, different lipid nanoparticles are attractive for use due to numerous advantages and unique opportunities, including biocompatibility and targeted drug delivery. However, a comprehensive understanding of nano-bio interactions is imperative to facilitate the translation of recent advancements in the development of cancer nanomedicines into clinical practice. In this contribution, we focus on lipoprotein-mimicking nanoparticles, which possess unique features and compositions facilitating drug transport through receptor binding mechanisms. Additionally, we describe potential applications of siRNA lipid nanoparticles in the future design of anticancer nanomedicines. Thus, this review highlights recent progress, challenges, and opportunities of lipid-based lipoprotein-mimicking nanoparticles and siRNA nanocarriers designed for the targeted delivery of anticancer therapeutic agents.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Hu BQ, Huang JF, Niu K, Zhou J, Wang NN, Liu Y, Chen LW. B7-H3 but not PD-L1 is involved in the antitumor effects of Dihydroartemisinin in non-small cell lung cancer. Eur J Pharmacol 2023; 950:175746. [PMID: 37105515 DOI: 10.1016/j.ejphar.2023.175746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Dihydroartemisinin (DHA), an active antimalaria metabolite derived from artemisinin, has received increasing attention for its anticancer activities. However, little is known about the anticancer mechanisms of DHA, although the existing data define its antimalaria effects by producing excessive reactive oxygen species (ROS). In this study, we showed that DHA effectively suppresses in vitro and in vivo tumor growth of non-small cell lung cancer (NSCLC) without perceptible toxicity on heart, liver, spleen, lung, and kidney tissues. Of note, DHA inhibited the expression of B7-H3 rather than PD-L1, whereas overexpression of B7-H3 completely rescued DHA's inhibition on cell proliferation and migration of NSCLC A549 and HCC827 cells. B7-H3 overexpression also largely inhibited DHA's induction on the apoptosis of the two cell lines. Furthermore, DHA treatment led to increased infiltration of CD8+ T Lymphocytes in the xenografts as compared with that of negative controls. Taken together, our results suggest that B7-H3 but not PD-L1 is involved in the antitumor effects of DHA in NSCLC, which may be indicative of an effective B7-H3 blockade and further combination with anti-PD-L1/PD-1 immunotherapy.
Collapse
Affiliation(s)
- Bing-Qi Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jun-Feng Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ke Niu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Nan-Nan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yu Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Li-Wen Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
6
|
Shi S, Luo H, Ji Y, Ouyang H, Wang Z, Wang X, Hu R, Wang L, Wang Y, Xia J, Cheng B, Bao B, Li X, Liao G, Xu B. Repurposing Dihydroartemisinin to Combat Oral Squamous Cell Carcinoma, Associated with Mitochondrial Dysfunction and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9595201. [PMID: 37273554 PMCID: PMC10239307 DOI: 10.1155/2023/9595201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC), with aggressive locoregional invasion, has a high rate of early recurrences and poor prognosis. Dihydroartemisinin (DHA), as a derivative of artemisinin, has been found to exert potent antitumor activity. Recent studies reported that DHA suppresses OSCC cell growth and viability through the regulation of reactive oxygen species (ROS) production and mitochondrial calcium uniporter. However, the mechanism underlying the action of DHA on OSCCs remains elusive. In the study, we observed that 159 genes were remarkably misregulated in primary OSCC tumors associated with DHA-inhibited pathways, supporting that OSCCs are susceptible to DHA treatment. Herein, our study showed that DHA exhibited promising effects to suppress OSCC cell growth and survival, and single-cell colony formation. Interestingly, the combination of DHA and cisplatin (CDDP) significantly reduced the toxicity of CDDP treatment alone on human normal oral cells (NOK). Moreover, DHA remarkably impaired mitochondrial structure and function, and triggered DNA damage and ROS generation, and activation of mitophagy. In addition, DHA induced leakage of cytochrome C and apoptosis-inducing factor (AIF) from mitochondria, elevated Bax/cleaved-caspase 3 expression levels and compromised Bcl2 protein expression. In the OSCC tumor-xenograft mice model, DHA remarkably suppressed tumor growth and induced apoptosis of OSCCs in vivo. Intriguingly, a selective mitophagy inhibitor Mdivi-1 could significantly reinforce the anticancer activity of DHA treatment. DHA and Mdivi-1 can synergistically suppress OSCC cell proliferation and survival. These data uncover a previously unappreciated contribution of the mitochondria-associated pathway to the antitumor activity of DHA on OSCCs. Our study shed light on a new aspect of a DHA-based therapeutic strategy to combat OSCC tumors.
Collapse
Affiliation(s)
- Shanwei Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huigen Luo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuna Ji
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zheng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xinchen Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Renjie Hu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lihong Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baicheng Bao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xin Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guiqing Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Önder GÖ, Sezer G, Özdamar S, Yay A. Melatonin has an inhibitory effect on MCF‐7 and MDA‐MB‐231 human breast cancer cell lines by inducing autophagy and apoptosis. Fundam Clin Pharmacol 2022; 36:1038-1056. [DOI: 10.1111/fcp.12813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Gözde Özge Önder
- Faculty of Medicine, Department of Histology and Embryology Erciyes University Kayseri Turkey
- Genome and Stem Cell Center Erciyes University Kayseri Turkey
| | - Gülay Sezer
- Genome and Stem Cell Center Erciyes University Kayseri Turkey
- Faculty of Medicine, Department of Pharmacology Erciyes University Kayseri Turkey
| | - Saim Özdamar
- Faculty of Medicine, Department of Histology and Embryology Pamukkale University Denizli Turkey
| | - Arzu Yay
- Faculty of Medicine, Department of Histology and Embryology Erciyes University Kayseri Turkey
- Genome and Stem Cell Center Erciyes University Kayseri Turkey
| |
Collapse
|
8
|
Yu Y, Chen D, Wu T, Lin H, Ni L, Sui H, Xiao S, Wang C, Jiang S, Pan H, Li S, Jin X, Xie C, Cui R. Dihydroartemisinin enhances the anti-tumor activity of oxaliplatin in colorectal cancer cells by altering PRDX2-reactive oxygen species-mediated multiple signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153932. [PMID: 35104762 DOI: 10.1016/j.phymed.2022.153932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Oxaliplatin based treatments are frequently used as chemotherapeutic methods for CRC, however, associated side effects and drug resistance often limit their clinical application. Dihydroartemisinin (DHA) induces apoptosis in various cancer cells by increasing reactive oxygen species (ROS) production. However, the direct target of DHA and underlying molecular mechanisms in oxaliplatin-mediated anti-tumor activities against CRC are unclear. METHODS We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), flow cytometry, and colony formation assays to investigate cell phenotype alterations and ROS generation. We also used quantitative Real-Time PCR (qRT-PCR) and western blotting to measure relative gene and protein expression. Finally, an in vivo mouse xenograft model was used to assess the anti-tumor activity of oxaliplatin and DHA alone, and combinations. RESULTS DHA synergistically enhanced the anti-tumor activity of oxaliplatin in colon cancer cells by regulating ROS-mediated ER stress, signal transducer and activator of transcription 3 (STAT3), C-Jun-amino-terminal kinase (JNK), and p38 signaling pathways. Mechanistically, DHA increased ROS levels by inhibiting peroxiredoxin 2 (PRDX2) expression, and PRDX2 knockdown sensitized DHA-mediated cell growth inhibition and ROS production in CRC cells. A mouse xenograft model showed strong anti-tumor effects from combination treatments when compared with single agents. CONCLUSIONS We demonstrated an improved therapeutic strategy for CRC patients by combining DHA and oxaliplatin treatments.
Collapse
Affiliation(s)
- Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Didi Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Tao Wu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Haizhen Lin
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Lianli Ni
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Hehuan Sui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Sisi Xiao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canwei Wang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Suping Jiang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China
| | - Huanle Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Shaotang Li
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiance Jin
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China
| | - Congying Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou, Zhejiang 325000, China.
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou 325035, China.
| |
Collapse
|
9
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
10
|
Xiao L, Xu C, Lin P, Mu L, Yang X. Novel dihydroartemisinin derivative Mito-DHA5 induces apoptosis associated with mitochondrial pathway in bladder cancer cells. BMC Pharmacol Toxicol 2022; 23:10. [PMID: 35057867 PMCID: PMC8780396 DOI: 10.1186/s40360-021-00542-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Background Bladder cancer is the second most common genitourinary malignancy and the eleventh most common cancer worldwide. Dihydroartemisinin (DHA), a first-line antimalarial drug, has been found to have potent antitumor activity. In our previous study, a novel dihydroartemisinin derivative Mito-DHA5 synthesized in our laboratory has a stronger anti-tumor activity than DHA. In this study, we investigated the apoptotic effect of Mito-DHA5 on bladder cancer T24 cells and molecular mechanisms underlying. Methods Antitumor activity in vitro was evaluated by MTT, wound healing and cloning formation assays. Mitochondrial membrane potential (MMP) was detected by JC-1 probe and ROS levels were measured by specific kit. The expression of caspase-3, cleaved-caspase3, mitochondrial Cyt-C, Bcl-2, Bax and PARP in T24 cells was evaluated by Western blotting. Results The results showed that Mito-DHA5 reduced cell viability with an IC50 value of 3.2 µM and induced T24 cell apoptosis in a dose-dependent manner, increased the production of ROS and decreased MMP. Mito-DHA5 could down-regulate the expression of Bcl-2, mitochondrial Cyt-C, Caspase-3, PARP and up-regulate the expression of Bax and cleaved Caspase-3. Conclusions These data suggested that Mito-DHA5 had a potent inhibitory effect on T24 bladder cancer cell growth and induced these cells apoptosis associated with mitochondrial pathway.
Collapse
|
11
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
12
|
Meng Y, Ma N, Lyu H, Wong YK, Zhang X, Zhu Y, Gao P, Sun P, Song Y, Lin L, Wang J. Recent pharmacological advances in the repurposing of artemisinin drugs. Med Res Rev 2021; 41:3156-3181. [PMID: 34148245 DOI: 10.1002/med.21837] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Artemisinins are a family of sesquiterpene lactones originally derived from the sweet wormwood (Artemisia annua). Beyond their well-characterized role as frontline antimalarial drugs, artemisinins have also received increased attention for other potential pharmaceutical effects, which include antiviral, antiparsitic, antifungal, anti-inflammatory, and anticancer activities. With concerted efforts in further preclinical and clinical studies, artemisinin-based drugs have the potential to be viable treatments for a great variety of human diseases. Here, we provide a comprehensive update on recent reports of pharmacological actions and applications of artemisinins outside of their better-known antimalarial role and highlight their potential therapeutic viability for various diseases.
Collapse
Affiliation(s)
- Yuqing Meng
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Ma
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haining Lyu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Zhang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongping Zhu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Gao
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Sun
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal And Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
13
|
Innao V, Rizzo V, Allegra AG, Musolino C, Allegra A. Promising Anti-Mitochondrial Agents for Overcoming Acquired Drug Resistance in Multiple Myeloma. Cells 2021; 10:439. [PMID: 33669515 PMCID: PMC7922387 DOI: 10.3390/cells10020439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable tumor due to the high rate of relapse that still occurs. Acquired drug resistance represents the most challenging obstacle to the extension of survival and several studies have been conducted to understand the mechanisms of this phenomenon. Mitochondrial pathways have been extensively investigated, demonstrating that cancer cells become resistant to drugs by reprogramming their metabolic assessment. MM cells acquire resistance to proteasome inhibitors (PIs), activating protection programs, such as a reduction in oxidative stress, down-regulating pro-apoptotic, and up-regulating anti-apoptotic signals. Knowledge of the mechanisms through which tumor cells escape control of the immune system and acquire resistance to drugs has led to the creation of new compounds that can restore the response by leading to cell death. In this scenario, based on all literature data available, our review represents the first collection of anti-mitochondrial compounds able to overcome drug resistance in MM. Caspase-independent mechanisms, mainly based on increased oxidative stress, result from 2-methoxyestradiol, Artesunate, ascorbic acid, Dihydroartemisinin, Evodiamine, b-AP15, VLX1570, Erw-ASNase, and TAK-242. Other agents restore PIs' efficacy through caspase-dependent tools, such as CDDO-Im, NOXA-inhibitors, FTY720, GCS-100, LBH589, a derivative of ellipticine, AT-101, KD5170, SMAC-mimetics, glutaminase-1 (GLS1)-inhibitors, and thenoyltrifluoroacetone. Each of these substances improved the efficacy rates when employed in combination with the most frequently used antimyeloma drugs.
Collapse
Affiliation(s)
- Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| |
Collapse
|
14
|
Lotfaliani M, Ghanadian M, Ayatollahi SA, Aghaei M, Kobarfard F. Anticancer Activity of Delphinium semibarbatum Alkaloid Fractions against LNCaP, and DU 145 Human Prostate Cancer Cells through the Intrinsic Apoptotic Pathway. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:107-116. [PMID: 35194432 PMCID: PMC8842624 DOI: 10.22037/ijpr.2021.115462.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate cancer is one of the common cancers with a high mortality rate in men. Therefore, there is always a necessity to discover new medications for treatment or alleviating its symptoms. In recent years, anticancer properties of a number of delphinium species were reported, but there is no study on the anticancer effects of Delphinium semibarbatum (D. semibarbatum) alkaloid contents. Therefore, this survey aimed to check the cytotoxicity and apoptotic properties of D. semibarbatum alkaloid fractions (DSAFs) against prostate cancer cells. Cytotoxicity was measured by MTT assay. We examined the apoptosis by detecting annexin V-FITC/PI staining, the mitochondrial membrane potential (ΔΨm) disruption, reactive oxygen species (ROS) generation, the activity of caspase-3, and expression of the Bax and Bcl-2 in cancer cells. DSAFs treatment inhibited the growth of LNCaP and DU-145 cells by the increase of apoptotic (Q2+Q3) cells detected by annexin V/PI assay. We found over-generation of intracellular ROS and ΔΨm loss in mitochondrial membrane potential treated cell lines. Attenuation of anti-apoptotic Bcl-2 followed by the increase in pro-apoptotic Bax bands, as well as activation of the caspase-3 enzyme was shown in Western blot analysis. Phytochemical analysis suggested that hetisine type diterpene alkaloids were probably responsible for apoptotic activities. Conclusively, the present study demonstrated that D. semibarbatum alkaloid content exerted antiproliferative effects against prostate cancer cells by inducing the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Mohammadreza Lotfaliani
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shaheed Sadoughi University of Medical Science and Health Service, Yazd, Iran.
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyed Abdulmajid Ayatollahi
- Department of Pharmacognosy, School of Pharmacy, Shaheed Sadoughi University of Medical Science and Health Service, Yazd, Iran.
- Phytochemistry Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzad Kobarfard
- Department of Medical Chemistry, Phytochemistry Research Center, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
15
|
Wu X, Jiang L, Zhang Z, He Y, Teng Y, Li J, Yuan S, Pan Y, Liang H, Yang H, Zhou P. Pancreatic cancer cell apoptosis is induced by a proteoglycan extracted from Ganoderma lucidum. Oncol Lett 2020; 21:34. [PMID: 33262826 PMCID: PMC7693130 DOI: 10.3892/ol.2020.12295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
The Traditional Chinese Medicine, Ganoderma lucidum, has been widely used for its immunity-related and anti-cancer effects. Fudan-Yueyang-Ganoderma lucidum (FYGL) is a proteoglycan, extracted from Ganoderma lucidum, that has shown safe anti-diabetic activity in vivo. The present study demonstrated that FYGL could selectively inhibit the viability of PANC-1 and BxPC-3 pancreatic cancer cells in a dose dependent manner, but not in Mia PaCa-2 pancreatic cancer cells and HepG2 liver cancer cells. In addition, FYGL could inhibit migration and colony formation, and promote apoptosis in PANC-1 cells, but not in Mia PaCa-2 cells. Further investigation into the underlying mechanism revealed that FYGL could inhibit the expression level of the Bcl-2 protein in PANC-1 cells, but not in Mia PaCa-2 cells, leading to an increase in reactive oxygen species (ROS) and a reduction in the mitochondrial membrane potential and cell apoptosis. The increased ROS also promoted the formation of autophagosomes, along with an increase in the microtubule-associated protein light chain 3 II/I ratio. However, FYGL halted autophagy by preventing the autophagosomes from entering the lysosomes. The inhibition of autophagy increased the accumulation of defective mitochondria, as well as the production of ROS. Taken together, the processes of ROS regulation and autophagy inhibition promoted apoptosis of PANC-1 cells through the caspase-3/cleaved caspase-3 cascade. These results indicated that FYGL could be potentially used as an anti-cancer agent in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Liping Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Yilong Teng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Shilin Yuan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Yanna Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Haohui Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Hongjie Yang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
16
|
Liang Y, Kong D, Zhang Y, Li S, Li Y, Ramamoorthy A, Ma J. Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0326-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Keyvanloo Shahrestanaki M, Bagheri M, Ghanadian M, Aghaei M, Jafari SM. Centaurea cyanus
extracted 13‐O‐acetylsolstitialin A decrease Bax/Bcl‐2 ratio and expression of cyclin D1/Cdk‐4 to induce apoptosis and cell cycle arrest in MCF‐7 and MDA‐MB‐231 breast cancer cell lines. J Cell Biochem 2019; 120:18309-18319. [DOI: 10.1002/jcb.29141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Mohammad Keyvanloo Shahrestanaki
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan I.R. Iran
| | - Mahboobeh Bagheri
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan I.R. Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy Isfahan University of Medical Sciences Isfahan I.R. Iran
- National Center for Natural Products Research, School of Pharmacy Mississippi University Oxford Mississippi
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan I.R. Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center Golestan University of Medical Sciences Gorgan I.R. Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine Golestan University of Medical Sciences Gorgan I.R. Iran
| |
Collapse
|
18
|
Jafari SM, Nazri A, Shabani M, Balajam NZ, Aghaei M. Galectin-9 induces apoptosis in OVCAR-3 ovarian cancer cell through mitochondrial pathway. Res Pharm Sci 2018; 13:557-565. [PMID: 30607153 PMCID: PMC6288986 DOI: 10.4103/1735-5362.245967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Galectin-9 (Gal-9), a member of animal lectins' family, is implicated in the induction of apoptosis in various cancer cells. Here, we evaluated the anti-tumor effect of Gal-9 in OVCAR-3 ovarian cancer cells. The effect of the Gal-9 on cell viability was evaluated using MTT assays. Apoptosis was assessed using Annexin-V staining. The assessment of mitochondrial membrane potential (ΔΨm) was performed using a JC-1 probe. The activity of caspase-3 and caspase-6 were evaluated with colorimetric assay. The production of reactive oxygen species (ROS) was applied by fluorescent probe. The expression levels of Bax and Bcl-2 were assessed using western blotting. The result showed that Gal-9 inhibits cell viability. Flow cytometry analysis showed that Gal-9 induces apoptosis in ovarian cancer cells. Moreover, Gal-9 decreased ΔΨm and increased the generation of ROS and caspase-3 and caspase-6 activities in ovarian cancer cells. Moreover, Gal-9 induced expression of Bax as well as inhibited expression of Bcl-2. In conclusion, our results indicated that Gal-9 induced apoptosis in ovarian cancer cells through mitochondrial pathway.
Collapse
Affiliation(s)
- Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, I.R. Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, I.R. Iran
| | - Ali Nazri
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Narges Zargar Balajam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
19
|
Jiang W, Wang R, Liu D, Zuo M, Zhao C, Zhang T, Li W. Protective Effects of Kaempferitrin on Advanced Glycation End Products Induce Mesangial Cell Apoptosis and Oxidative Stress. Int J Mol Sci 2018; 19:E3334. [PMID: 30373106 PMCID: PMC6274833 DOI: 10.3390/ijms19113334] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Advanced glycation end products (AGEs) and the receptor for AGEs (RAGE) both play important roles in diabetic nephropathy (DN). Previous studies have identified glomerular mesangial cells (GMCs) injury as a key early risk factor in the development of DN. Kaempferitrin (KM) is a potent antioxidant with hypoglycemic action. Although KM is known to protect against AGE-induced damage in GMCs, the effects and the mechanisms by which they occur are poorly understood. In this study, cultured rat GMCs were exposed to AGE-induced oxidative stress (OS) to model DN in vitro. Reactive oxygen species (ROS) was analyzed by 2',7'-dichlorofluorescin diacetate (DCFH-DA). Superoxide dismutase (SOD) and malondialdehyde (MDA) were studied using commercial kits. Mitochondrial membrane potential (Δψm) was measured by rhodamine 123. Hoechst 33258 and annexin V and propidium iodide (PI) double staining were performed to observe the apoptosis states in GMCs, whereas apoptosis and protective mechanism in AGE-induced GMCs were investigated by Western blot. The data revealed that KM effectively increased SOD activity, decreased MDA levels, suppressed ROS generation, and protected against OS in AGE-induced GMCs. Treatment with KM also inhibited the expression of collagen IV and transforming growth factor-β1 (TGF-β1), improved mitochondrial membrane potential recovery, and suppressed the mitochondrial/cytochrome c-mediated apoptosis pathway through the expression of anti-apoptotic factors in GMCs in vitro. These findings suggest that KM may be a new potential agent in the treatment of DN in future.
Collapse
Affiliation(s)
- Wenxian Jiang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Rongshen Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Di Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Min Zuo
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Chunzhen Zhao
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang 261053, China.
| | - Wanzhong Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
20
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|