1
|
Wang R, Huang H, Yu C, Li X, Wang Y, Xie L. Current status and future directions for the development of human papillomavirus vaccines. Front Immunol 2024; 15:1362770. [PMID: 38983849 PMCID: PMC11231394 DOI: 10.3389/fimmu.2024.1362770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
The development of human papillomavirus (HPV) vaccines has made substantive progress, as represented by the approval of five prophylactic vaccines since 2006. Generally, the deployment of prophylactic HPV vaccines is effective in preventing newly acquired infections and incidences of HPV-related malignancies. However, there is still a long way to go regarding the prevention of all HPV infections and the eradication of established HPV infections, as well as the subsequent progression to cancer. Optimizing prophylactic HPV vaccines by incorporating L1 proteins from more HPV subtypes, exploring adjuvants that reinforce cellular immune responses to eradicate HPV-infected cells, and developing therapeutic HPV vaccines used either alone or in combination with other cancer therapeutic modalities might bring about a new era getting closer to the vision to get rid of HPV infection and related diseases. Herein, we summarize strategies for the development of HPV vaccines, both prophylactic and therapeutic, with an emphasis on the selection of antigens and adjuvants, as well as implications for vaccine efficacy based on preclinical studies and clinical trials. Additionally, we outline current cutting-edge insights on formulation strategies, dosing schedules, and age expansion among HPV vaccine recipients, which might play important roles in addressing barriers to vaccine uptake, such as vaccine hesitancy and vaccine availability.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Hongpeng Huang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Xuefeng Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yang Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Wang S, Yan T, Zhang B, Chen Y, Li Z. Porphyromonas gingivalis Vaccine: Antigens and Mucosal Adjuvants. Vaccines (Basel) 2024; 12:619. [PMID: 38932348 PMCID: PMC11209493 DOI: 10.3390/vaccines12060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Porphyromonas gingivalis (Pg), a Gram-negative anaerobic bacterium found in dental plaque biofilm within periodontal pockets, is the primary pathogenic microorganism responsible for chronic periodontitis. Infection by Pg significantly impacts the development and progression of various diseases, underscoring the importance of eliminating this bacterium for effective clinical treatment. While antibiotics are commonly used to combat Pg, the rise of antibiotic resistance poses a challenge to complete eradication. Thus, the prevention of Pg infection is paramount. Research suggests that surface antigens of Pg, such as fimbriae, outer membrane proteins, and gingipains, can potentially be utilized as vaccine antigens to trigger protective immune responses. This article overviews these antigens, discusses advancements in mucosal adjuvants (including immunostimulant adjuvants and vaccine-delivery adjuvants), and their application in Pg vaccine development. Furthermore, the review examines the advantages and disadvantages of different immune pathways and common routes of Pg vaccine immunization. By summarizing the current landscape of Pg vaccines, addressing existing challenges, and highlighting the potential of mucosal vaccines, this review offers new insights for the advancement and clinical implementation of Pg vaccines.
Collapse
Affiliation(s)
- Shuo Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China; (S.W.); (T.Y.); (B.Z.); (Y.C.)
| | - Tong Yan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China; (S.W.); (T.Y.); (B.Z.); (Y.C.)
| | - Bingtao Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China; (S.W.); (T.Y.); (B.Z.); (Y.C.)
| | - Yixiang Chen
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China; (S.W.); (T.Y.); (B.Z.); (Y.C.)
- Henan Engineering Research Center for Key Immunological Biomaterials, Luoyang Polytechnic, Luoyang 471000, China
| | - Zhitao Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China; (S.W.); (T.Y.); (B.Z.); (Y.C.)
| |
Collapse
|
3
|
Zhang Y, Mariz FC, Sehr P, Spagnoli G, Koenig KM, Çelikyürekli S, Kreuziger T, Zhao X, Bolchi A, Ottonello S, Müller M. Inter-epitope spacer variation within polytopic L2-based human papillomavirus antigens affects immunogenicity. NPJ Vaccines 2024; 9:44. [PMID: 38402256 PMCID: PMC10894200 DOI: 10.1038/s41541-024-00832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
The human papillomavirus minor capsid protein L2 is being extensively explored in pre-clinical studies as an attractive vaccine antigen capable of inducing broad-spectrum prophylactic antibody responses. Recently, we have developed two HPV vaccine antigens - PANHPVAX and CUT-PANHPVAX- both based on heptameric nanoparticle antigens displaying polytopes of the L2 major cross-neutralizing epitopes of eight mucosal and twelve cutaneous HPV types, respectively. Prompted by the variable neutralizing antibody responses against some of the HPV types targeted by the antigens observed in previous studies, here we investigated the influence on immunogenicity of six distinct glycine-proline spacers inserted upstream to a specific L2 epitope. We show that spacer variants differentially influence antigen immunogenicity in a mouse model, with the antigen constructs M8merV6 and C12merV6 displaying a superior ability in the induction of neutralizing antibodies as determined by pseudovirus-based neutralization assays (PBNAs). L2-peptide enzyme-linked immunosorbent assay (ELISA) assessments determined the total anti-L2 antibody level for each antigen variant, showing for the majority of sera a correlation with their repective neutralizing antibody level. Surface Plasmon Resonance revealed that L2 epitope-specific, neutralizing monoclonal antibodies (mAbs) display distinct avidities to different antigen spacer variants. Furthermore, mAb affinity toward individual spacer variants was well correlated with their neutralizing antibody induction capacity, indicating that the mAb affinity assay predicts L2-based antigen immunogenicity. These observations provide insights on the development and optimization of L2-based HPV vaccines.
Collapse
Affiliation(s)
- Yueru Zhang
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Filipe Colaco Mariz
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Peter Sehr
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Karl Moritz Koenig
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Simay Çelikyürekli
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Tim Kreuziger
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Xueer Zhao
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Martin Müller
- German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Nagar N, Naidu G, Mishra A, Poluri KM. Protein-Based Nanocarriers and Nanotherapeutics for Infection and Inflammation. J Pharmacol Exp Ther 2024; 388:91-109. [PMID: 37699711 DOI: 10.1124/jpet.123.001673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Goutami Naidu
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Amit Mishra
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| |
Collapse
|
6
|
Makvandi M, Rashno M, Faghihloo E, Bagheri S, Hesam S, Mirzaei H, Ramezani A. Low presence of papillomavirus and its lack of correlation with clinicopathological factors in breast cancer: a case control study. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:585-593. [PMID: 38045712 PMCID: PMC10692969 DOI: 10.18502/ijm.v15i4.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives Breast cancer is currently the most commonly diagnosed neoplasm in women worldwide. There is evidence that human papillomavirus (HPV) infection may play a key role in breast cancer aggressiveness, but results are conflicting across studies. The aim of this study was to investigate the presence of the HPV viral genome in benign and malignant breast tissue samples and its clinicopathological characteristics of cancer. Materials and Methods In this case-control study, 100 formalin-fixed paraffin-embedded (FFPE) of breast cancer and 100 blocks of non-cancerous breast tissue were selected as a control group from the pathology department of Imam Khomeini Hospital in Ahvaz from 2020-2022. The presence of HPV was detected using nested PCR including MY09/11 primers and sequencing were performed for virus genotyping. Results The present study enrolled 100 subjects each in two cancer and control groups with a mean age of 52.81±13.23 and 35.77±11.65, respectively. The risk of cancer in HPV-infected patients is almost 5 times higher than in HPV-negative individuals, it is not statistically significant (OR =4.99, 95% CI 0.35 to 72.15, p=0.238). The prevalence of HPV in the cancer and control groups was 7% and 1%, respectively and HPVs detected in two groups were of the HPV 16 genotype. Although the chance of ER and PR expression, lymphvascular involvement, perineural invasion, and higher tumor grade was higher in HPV-positive subjects than in HPV-negative subjects, this was not statistically significant (OR>1, p>0.05). Conclusion Based on studies reporting the existence of sequences of different high-risk HPV types (oncogenes) in breast cancer tissues, this study confirmed the hypothesis of a possible infectious cause in the development of breast cancer. So far, however, the results have been controversial and inconclusive. Further studies with large sample sizes are needed to demonstrate the link between HPV and breast cancer.
Collapse
Affiliation(s)
- Manoochehr Makvandi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Bagheri
- Department of Pathology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Hesam
- Department of Biostatistics and Epidemiology, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habibollah Mirzaei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Ramezani
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Correa VA, Portilho AI, De Gaspari E. Vaccines, Adjuvants and Key Factors for Mucosal Immune Response. Immunology 2022; 167:124-138. [PMID: 35751397 DOI: 10.1111/imm.13526] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Victor Araujo Correa
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Amanda Izeli Portilho
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Goldfarb JA, Comber JD. Human papillomavirus (HPV) infection and vaccination: A cross-sectional study of college students' knowledge, awareness, and attitudes in Villanova, PA. Vaccine X 2022; 10:100141. [PMID: 35118369 PMCID: PMC8800100 DOI: 10.1016/j.jvacx.2022.100141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomaviruses are major causative agents of multiple cancers including cervical, vulvar, penile, anal, and oropharyngeal cancers. Almost all sexually active individuals are exposed to HPV in their lifetime and although not all HPV genotypes are capable of causing cancers, several high-risk subtypes widely circulate. Several HPV vaccines have been developed and successfully utilized to limit the spread of these viruses and reduce rates of associated cancers. Despite their success, HPV vaccination rates in the United States remain low. Studies estimate the highest prevalence of HPV in the United States is among college students. This makes college students an important target for interventions that promote HPV vaccination and prevention. To this end, we were interested in investigating the relationship between low HPV vaccine uptake and attitudes and awareness about HPV vaccination among college aged students. We designed a survey to assess knowledge and perception of HPV and HPV vaccination that could help identify correlations between this knowledge and vaccination status. Overall, the data suggest that factors beyond basic knowledge about HPV infections, such as vaccine safety and social acceptance of vaccination, may have important impacts on vaccination rates. More robust education in these areas, supplemented with education about the benefits of HPV vaccination could be utilized to improve vaccination rates.
Collapse
|
9
|
Dorosti H, Eskandari S, Zarei M, Nezafat N, Ghasemi Y. Design of a multi-epitope protein vaccine against herpes simplex virus, human papillomavirus and Chlamydia trachomatis as the main causes of sexually transmitted diseases. INFECTION GENETICS AND EVOLUTION 2021; 96:105136. [PMID: 34775078 DOI: 10.1016/j.meegid.2021.105136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 01/22/2023]
Abstract
Sexually transmitted diseases (STDs) have a profound effect on reproductivity and sexual health worldwide. According to world health organization (WHO) 375 million new case of STD, including chlamydia trachomatis (chlamydia), Neisseria gonorrhoeae, HSV, HPV has been reported in 2016. More than 30 diverse pathogenesis have identified to be transmitted through sexual intercourse. Of these, viral infections (hepatitis B, herpes simplex virus (HSV or herpes), HIV, and human papillomavirus (HPV) are incurable. However, symptoms caused by the incurable viral infections can be alleviated through treatment. Antimicrobial resistance (AMR) of sexually transmitted infections (STIs) to antibiotics has increased recent years, in this regard, vaccination is proposed as an important strategy for prevention or treatment of STDs. Vaccine against HPV 16 and 18 suggests a new approach for controlling STDs but until now, there is no prophylactic or therapeutic vaccine have been approved for HSV-2 and Chlamydia trachomatis (CT); in this reason, developing an efficient vaccine is inevitable. Recently, different combinatorial forms of subunit vaccines against two or three type of bacteria have been designed. In this study, to design a combinatorial vaccine against HSV, CT, and HPV, the E7 and L2 from HPV, glycoprotein D from HSV-2 and ompA from CT were selected as final antigens. Afterward, the immunodominant helper T lymphocytes (HTLs) and cytolytic T lymphocytes (CTLs) epitopes were chosen from aforesaid antigens. P30 (tetanus toxoid epitope) as universal T-helper were also added to the vaccine. Moreover, flagellin D1/D0 as TLR5 agonist and the RS09 as a TLR4 ligand were incorporated to N and C-terminals of peptide vaccine, respectively. Finally, all selected parts were fused together by appropriate linkers to enhance vaccine efficiency. The physicochemical, structural, and immunological properties of the designed vaccine protein were assessed. To achieve the best 3D model of the protein vaccine, modeling, refinement, and validation of modeled structures were also done. Docking evaluation demonstrated suitable interaction between the vaccine and TLR5. Moreover, molecular dynamics (MD) studies showed an appropriate and stable structure of protein and TLR5. Based on immunoinformatic analysis, our vaccine candidate could potentially incite humoral and cellular immunities, which are critical for protection against HPV, HSV-2, and chlamydia trachomatis. It should be noted that, experimental studies are needed to confirm the efficacy of the designed vaccine.
Collapse
Affiliation(s)
- Hesam Dorosti
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Mixed Bacteriophage MS2-L2 VLPs Elicit Long-Lasting Protective Antibodies against HPV Pseudovirus 51. Viruses 2021; 13:v13061113. [PMID: 34200586 PMCID: PMC8227171 DOI: 10.3390/v13061113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Three prophylactic vaccines are approved to protect against HPV infections. These vaccines are highly immunogenic. The most recent HPV vaccine, Gardasil-9, protects against HPV types associated with ~90% of cervical cancer (worldwide). Thus, ~10% of HPV-associated cancers are not protected by Gardasil-9. Although this is not a large percentage overall, the HPV types associated with 10% of cervical cancer not protected by the current vaccine are significantly important, especially in HIV/AIDS patients who are infected with multiple HPV types. To broaden the spectrum of protection against HPV infections, we developed mixed MS2-L2 VLPs (MS2-31L2/16L2 VLPs and MS2-consL2 (69-86) VLPs) in a previous study. Immunization with the VLPs neutralized/protected mice against infection with eleven high-risk HPV types associated with ~95% of cervical cancer and against one low-risk HPV type associated with ~36% of genital warts & up to 32% of recurrent respiratory papillomatosis. Here, we report that the mixed MS2-L2 VLPs can protect mice from three additional HPV types: HPV51, which is associated with ~0.8% of cervical cancer; HPV6, which is associated with up to 60% of genital warts; HPV5, which is associated with skin cancers in patients with epidermodysplasia verruciformis (EV). Overall, mixed MS2-L2 VLPs can protect against twelve HPV types associated with ~95.8% of cervical cancers and against two HPV types associated with ~90% of genital warts and >90% recurrent respiratory papillomatosis. Additionally, the VLPs protect against one of two HPV types associated with ~90% of HPV-associated skin cancers in patients with EV. More importantly, we observed that mixed MS2-L2 VLPs elicit protective antibodies that last over 9 months. Furthermore, a spray-freeze-dried formulation of the VLPs is stable, immunogenic, and protective at room temperature and 37 °C.
Collapse
|
11
|
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020; 11:1100. [PMID: 32582186 PMCID: PMC7297083 DOI: 10.3389/fimmu.2020.01100] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) have been shown to be strong activators of dendritic cells (DCs). DCs are the most potent antigen presenting cells (APCs) and their activation prompts the priming of immunity mediators based on B and T cells. The first step for the activation of DCs is the binding of VLPs to pattern recognition receptors (PRRs) on the surface of DCs, followed by VLP internalization. Like wild-type viruses, VLPs use specific PRRs from the DC; however, these recognition interactions between VLPs and PRRs from DCs have not been thoroughly reviewed. In this review, we focused on the interaction between proteins that form VLPs and PRRs from DCs. Several proteins that form VLP contain glycosylations that allow the direct interaction with PRRs sensing carbohydrates, prompting DC maturation and leading to the development of strong adaptive immune responses. We also discussed how the knowledge of the molecular interaction between VLPs and PRRs from DCs can lead to the smart design of VLPs, whether based on the fusion of foreign epitopes or their chemical conjugation, as well as other modifications that have been shown to induce a stronger adaptive immune response and protection against infectious pathogens of importance in human and veterinary medicine. Finally, we address the use of VLPs as tools against cancer and allergic diseases.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
12
|
Yadav R, Zhai L, Tumban E. Virus-like Particle-Based L2 Vaccines against HPVs: Where Are We Today? Viruses 2019; 12:v12010018. [PMID: 31877975 PMCID: PMC7019592 DOI: 10.3390/v12010018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infections worldwide. Ninety percent of infected individuals clear the infection within two years; however, in the remaining 10% of infected individuals, the infection(s) persists and ultimately leads to cancers (anogenital cancers and head and neck cancers) and genital warts. Fortunately, three prophylactic vaccines have been approved to protect against HPV infections. The most recent HPV vaccine, Gardasil-9 (a nonavalent vaccine), protects against seven HPV types associated with ~90% of cervical cancer and against two HPV types associated with ~90% genital warts with little cross-protection against non-vaccine HPV types. The current vaccines are based on virus-like particles (VLPs) derived from the major capsid protein, L1. The L1 protein is not conserved among HPV types. The minor capsid protein, L2, on the other hand, is highly conserved among HPV types and has been an alternative target antigen, for over two decades, to develop a broadly protective HPV vaccine. The L2 protein, unlike the L1, cannot form VLPs and as such, it is less immunogenic. This review summarizes current studies aimed at developing HPV L2 vaccines by multivalently displaying L2 peptides on VLPs derived from bacteriophages and eukaryotic viruses. Recent data show that a monovalent HPV L1 VLP as well as bivalent MS2 VLPs displaying HPV L2 peptides (representing amino acids 17–36 and/or consensus amino acids 69–86) elicit robust broadly protective antibodies against diverse HPV types (6/11/16/18/26/31/33/34/35/39/43/44/45/51/52/53/56/58/59/66/68/73) associated with cancers and genital warts. Thus, VLP-based L2 vaccines look promising and may be favorable, in the near future, over current L1-based HPV vaccines and should be explored further.
Collapse
Affiliation(s)
- Rashi Yadav
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
| | - Lukai Zhai
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Current address: Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Tumban
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Correspondence: ; Tel.: +1-906-487-2256; Fax: +1-906-487-3167
| |
Collapse
|
13
|
Meyer BK, Kendall MAF, Williams DM, Bett AJ, Dubey S, Gentzel RC, Casimiro D, Forster A, Corbett H, Crichton M, Baker SB, Evans RK, Bhambhani A. Immune response and reactogenicity of an unadjuvanted intradermally delivered human papillomavirus vaccine using a first generation Nanopatch™ in rhesus macaques: An exploratory, pre-clinical feasibility assessment. Vaccine X 2019; 2:100030. [PMID: 31384745 PMCID: PMC6668242 DOI: 10.1016/j.jvacx.2019.100030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/21/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
The human papillomavirus (HPV) 9-valent, recombinant vaccine (Gardasil™9) helps protect young adults (males and females) against anogenital cancers and genital warts caused by certain HPV genotypes (ref. Gardasil™9 insert). This vaccine is administered intramuscularly (IM). The aim of this study was to determine preclinically whether intradermal (ID) vaccination with an unadjuvanted 9-valent recombinant HPV vaccine using a first-generation ID delivery device, the Nanopatch™, could enhance vaccine immunogenicity compared with the traditional ID route (Mantoux technique). IM injection of HPV VLPs formulated with Merck & Co., Inc., Kenilworth, NJ, USA Alum Adjuvant (MAA) were included in the rhesus study for comparison. The Nanopatch™ prototype contains a high-density array comprised of 10,000 microprojections/cm2, each 250 µm long. It was hypothesized the higher density array with shallower ID delivery may be superior to the Mantoux technique. To test this hypothesis, HPV VLPs without adjuvant were coated on the Nanopatch™, stability of the Nanopatch™ with unadjuvanted HPV VLPs were evaluated under accelerated conditions, skin delivery was verified using radiolabelled VLPs or FluoSpheres®, and the immune response and skin site reaction with the Nanopatch™ was evaluated in rhesus macaques. The immune response induced by Nanopatch™ administration, measured as HPV-specific binding antibodies, was similar to that induced using the Mantoux technique. It was also observed that a lower dose of unadjuvanted HPV VLPs delivered with the first-generation Nanopatch™ and applicator or Mantoux technique resulted in an immune response that was significantly lower compared to a higher-dose of alum adjuvanted HPV VLPs delivered IM in rhesus macaques. The study also indicated unadjuvanted HPV VLPs could be delivered with the first-generation Nanopatch™ and applicator to the skin in 15 s with a transfer efficiency of approximately 20%. This study is the first demonstration of patch administration in non-human primates with a vaccine composed of HPV VLPs.
Collapse
Affiliation(s)
- Brian K Meyer
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Mark A F Kendall
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Donna M Williams
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Andrew J Bett
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sheri Dubey
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Renee C Gentzel
- Movement Disorders and Translation, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Danilo Casimiro
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Holly Corbett
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Michael Crichton
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - S Ben Baker
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Robert K Evans
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Akhilesh Bhambhani
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| |
Collapse
|
14
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev Vaccines 2019; 18:505-521. [PMID: 31009255 PMCID: PMC7103699 DOI: 10.1080/14760584.2019.1604231] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adjuvants form an integral component in most of the inactivated and subunit vaccine formulations. Careful and proper selection of adjuvants helps in promoting appropriate immune responses against target pathogens at both innate and adaptive levels such that protective immunity can be elicited. Areas covered: Herein, we describe the recent progress in our understanding of the mode of action of adjuvants that are licensed for use in human vaccines or in clinical or pre-clinical stages at both innate and adaptive levels. Different pathogens have distinct characteristics, which require the host to mount an appropriate immune response against them. Adjuvants can be selected to elicit a tailor-made immune response to specific pathogens based on their unique properties. Identification of biomarkers of adjuvanticity for several candidate vaccines using omics-based technologies can unravel the mechanism of action of modern and experimental adjuvants. Expert opinion: Adjuvant technology has been revolutionized over the last two decades. In-depth understanding of the role of adjuvants in activating the innate immune system, combined with systems vaccinology approaches, have led to the development of next-generation, novel adjuvants that can be used in vaccines against challenging pathogens and in specific target populations.
Collapse
Affiliation(s)
- Indranil Sarkar
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada.,b Microbiology and Immunology , University of Saskatchewan , Saskatoon , Canada
| | - Ravendra Garg
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada
| | | |
Collapse
|
15
|
de Oliveira CM, Fregnani JHTG, Villa LL. HPV Vaccine: Updates and Highlights. Acta Cytol 2019; 63:159-168. [PMID: 30870844 DOI: 10.1159/000497617] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/08/2023]
Abstract
HPV is the most common sexually transmitted biological agent and is the cause of many conditions in men and women, including precancer lesions and cancer. Three prophylactic HPV vaccines targeting high-risk HPV types are available in many countries worldwide: 2-, 4- and 9-valent vaccines. All the 3 vaccines use recombinant DNA technology and are prepared from the purified L1 protein that self-assembles to form HPV type-specific empty shells. This non-systematic review aims to summarize the HPV epidemiology and the vaccine development to review the landmark trials of HPV vaccine, to present to most remarkable results from clinical trials and the real world, and to stress the challenges and the barriers for HPV vaccine implementation.
Collapse
Affiliation(s)
| | - José Humberto T G Fregnani
- HPV Research Group, Barretos Cancer Hospital, Barretos (SP), Brazil
- A.C.Camargo Cancer Center, São Paulo (SP), Brazil
| | - Luisa Lina Villa
- Faculdade de Medicina, Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo (SP), Brazil
| |
Collapse
|
16
|
Cervical Cancer and Its Precursors: A Preventative Approach to Screening, Diagnosis, and Management. Prim Care 2018; 46:117-134. [PMID: 30704652 DOI: 10.1016/j.pop.2018.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cervical cancer affects the cells lining the cervix, most commonly occurring in the cells of the transformation zone. Screening for cervical cancer looks to detect preinvasive disease, allowing for intervention before invasive disease develops. an assessment of individual risk factors, Selection of screening method depends on patient age, her screening history and results, and resources available. Screening has resulted in well-documented declines in cervical cancer incidence and mortality in the United States. Guidelines continue to evolve as new data emerge. Although cervical cancer prevention strategies include interventions directed toward limiting number of sexual partners, condom use, and reduction in cigarette smoking, vaccination represents the most direct targeted strategy.
Collapse
|
17
|
Gilca V, Sauvageau C, Panicker G, De Serres G, Ouakki M, Unger ER. Immunogenicity and safety of a mixed vaccination schedule with one dose of nonavalent and one dose of bivalent HPV vaccine versus two doses of nonavalent vaccine - A randomized clinical trial. Vaccine 2018; 36:7017-7024. [PMID: 30314913 PMCID: PMC6497054 DOI: 10.1016/j.vaccine.2018.09.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Limited data is available on the use of different HPV vaccines in the same subjects. We evaluated the immunogenicity and safety of a mixed vaccination schedule with one dose of nonavalent (9vHPV) and one dose of bivalent vaccine (2vHPV) administered in different order versus two doses of 9vHPV vaccine. METHODS 371 girls and boys aged 9-10 years were randomized (1:1) to receive (I) two doses of 9vHPV or (II) a mixed schedule of 2vHPV + 9vHPV or 9vHPV + 2vHPV with a 6 month interval. Antibodies to HPV were tested by ELISA in blood samples collected one or six months post-first dose and one month post-second dose. RESULTS Post-first dose of 9vHPV 99.4-100% of subjects were seropositive to 9 HPV types included in the vaccine. GMTs varied from 5.0 to 73.6 IU(AU)/ml depending on HPV type. Post-first dose of 2vHPV all subjects were seropositive to HPV16 and 18 (GMTs 16.7 and 11.7 IU/ml, respectively) and 50.0-76.7% were seropositive to 7 types not included in 2vHPV (GMTs varied from 0.3 to 17.5 AU/ml depending on type). Post-second dose all subjects, regardless of the study group, were seropositive to 9 HPV types included in 9vHPV. Anti-HPV16 and 18 GMTs were higher in subjects with the mixed schedule and for the other 7 HPV types higher in subjects who received two doses of 9vHPV vaccine. A higher proportion of subjects who received 2vHPV reported local or systemic adverse events than those who received 9vHPV as the first dose. Post-second dose there were no differences in reported adverse events between the two vaccines. CONCLUSIONS The results show the mixed HPV vaccination schedules used in this study are immunogenic and have an acceptable safety profile. Although the seroprotective threshold of antibodies remains unknown the 100% seropositivity to all 9 HPV types included in 9vHPV and the increase of GMTs observed in all study groups post-second dose administration are reassuring and suggest protection might be achieved regardless of the schedule used. CLINICAL TRIALS REGISTRATION Clinicaltrials.gov NCT02567955.
Collapse
Affiliation(s)
- Vladimir Gilca
- Quebec Public Health Institute, Quebec, Canada; Laval University Research Hospital Center, Quebec, Canada.
| | - Chantal Sauvageau
- Quebec Public Health Institute, Quebec, Canada; Laval University Research Hospital Center, Quebec, Canada
| | | | - Gaston De Serres
- Quebec Public Health Institute, Quebec, Canada; Laval University Research Hospital Center, Quebec, Canada
| | | | | |
Collapse
|
18
|
Nunes RAL, Morale MG, Silva GÁF, Villa LL, Termini L. Innate immunity and HPV: friends or foes. Clinics (Sao Paulo) 2018; 73:e549s. [PMID: 30328949 PMCID: PMC6157093 DOI: 10.6061/clinics/2018/e549s] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Most human papillomavirus infections are readily cleared by the host immune response. However, in some individuals, human papillomavirus can establish a persistent infection. The persistence of high-risk human papillomavirus infection is the major risk factor for cervical cancer development. These viruses have developed mechanisms to evade the host immune system, which is an important step in persistence and, ultimately, in tumor development. Several cell types, receptors, transcription factors and inflammatory mediators involved in the antiviral immune response are viral targets and contribute to tumorigenesis. These targets include antigen-presenting cells, macrophages, natural killer cells, Toll-like receptors, nuclear factor kappa B and several cytokines and chemokines, such as interleukins, interferon and tumor necrosis factor. In the present review, we address both the main innate immune response mechanisms involved in HPV infection clearance and the viral strategies that promote viral persistence and may contribute to cancer development. Finally, we discuss the possibility of exploiting this knowledge to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Rafaella Almeida Lima Nunes
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Mirian Galliote Morale
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Gabriela Ávila Fernandes Silva
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Luisa Lina Villa
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Lara Termini
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- *Corresponding author. E-mail:
| |
Collapse
|
19
|
Gilca V, Sauvageau C, Panicker G, De Serres G, Ouakki M, Unger ER. Antibody persistence after a single dose of quadrivalent HPV vaccine and the effect of a dose of nonavalent vaccine given 3-8 years later - an exploratory study. Hum Vaccin Immunother 2018; 15:503-507. [PMID: 30252583 PMCID: PMC6422519 DOI: 10.1080/21645515.2018.1522469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to assess the persistence of antibodies after a single dose of quadrivalent HPV vaccine (4vHPV) and the effect of a dose of nonavalent HPV vaccine (9vHPV) given 3-8 years later. Such data might be of interest in the decision-making process regarding the 2-dose course completion in non-compliant vaccinees in jurisdictions which switched from 4vHPV to 9vHPV. Girls who previously received a single dose of 4vHPV were eligible to participate. Blood specimens were collected just before and one month post-9vHPV administration. The specimens were tested by ELISA for the presence of antibodies to 9 HPV types included in the 9vHPV. Thirty-one girls aged 13-18 years (mean 15.5 years) participated in the study. Pre-9vHPV administration, all participants were seropositive to 4 HPV types included in 4vHPV and 58%-87% were seropositive to the five other HPV types included in the 9vHPV. GMTs were 6.1 AU/ml, 7.7 AU/ml, 20.1 IU/ml and 6.3 IU/ml to HPV6, HPV11, HPV16 and HPV18, respectively. The GMTs for the other five HPV types varied from 1.0 to 2.9 AU/ml. One month post-9vHPV administration all 31 participants were seropositive to all 9 HPV types with a 36.1 to 89.1-fold increase of GMTs. High seropositivity rates observed several years after a single dose of 4vHPV and 100% seropositivity after a dose of 9vHPV suggest that this schedule might be used in non-compliant vaccinees or when switching immunization programs from 4vHPV to 9vHPV.
Collapse
Affiliation(s)
- Vladimir Gilca
- Direction des risques biologiques et de la santé au travail, Quebec Public Health Institute, Quebec, Canada
- Laval University Research Hospital Center, Quebec, Canada
| | - Chantal Sauvageau
- Direction des risques biologiques et de la santé au travail, Quebec Public Health Institute, Quebec, Canada
- Laval University Research Hospital Center, Quebec, Canada
| | - Gitika Panicker
- Division of High-Consequence Pathogens and pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gaston De Serres
- Direction des risques biologiques et de la santé au travail, Quebec Public Health Institute, Quebec, Canada
- Laval University Research Hospital Center, Quebec, Canada
| | - Manale Ouakki
- Direction des risques biologiques et de la santé au travail, Quebec Public Health Institute, Quebec, Canada
| | - Elizabeth R. Unger
- Division of High-Consequence Pathogens and pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
20
|
Gilca V, Salmerón-Castro J, Sauvageau C, Ogilvie G, Landry M, Naus M, Lazcano-Ponce E. Early use of the HPV 2-dose vaccination schedule: Leveraging evidence to support policy for accelerated impact. Vaccine 2018; 36:4800-4805. [PMID: 29887322 PMCID: PMC6078939 DOI: 10.1016/j.vaccine.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/16/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
Although human papillomavirus (HPV) vaccines were initially licensed based on efficacy after three-dose regimens in women aged 15-26 years, it was recognized early in clinical development that comparable immunogenicity could be obtained after just two doses when administered to younger girls. In both Canada and Mexico, public health authorities made the decision to administer two doses 6 months apart with a planned additional dose at 60 months, while simultaneously doing further study to determine if the third dose would confer meaningful additional benefit. This delayed third dose approach permitted a more cost-effective program with opportunities for improved compliance while minimizing injections and leaving open the opportunity to provide a full three-dose vaccination series. It required close cooperation across many governmental and civil society leadership bodies and real-time access to emerging data on HPV vaccine effectiveness. Although still limited, there is increasing evidence that even one-dose vaccination is sufficient to provide prolonged protection against HPV infection and associated diseases. Ongoing clinical trials and ecological studies are expected to consolidate existing data regarding one dose schedule use. However, to accelerate the preventive effect of HPV vaccination some jurisdictions, in particular those with limited resources may already consider the initiation of a one dose vaccination with the possibility of giving the second dose later in life if judged necessary. Such an approach would facilitate vaccination implementation and might permit larger catch-up vaccination programs in older girls (or as appropriate, girls and boys), thereby accelerating the impact on cervical cancer and other HPV-associated diseases.
Collapse
Affiliation(s)
- Vladimir Gilca
- Quebec Public Health Institute, Quebec, Canada; Laval University Research Hospital Center, Quebec, Canada.
| | - Jorge Salmerón-Castro
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico; Unidad Académica en Investigación Epidemiológica, Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Chantal Sauvageau
- Quebec Public Health Institute, Quebec, Canada; Laval University Research Hospital Center, Quebec, Canada
| | - Gina Ogilvie
- University of British Columbia, Vancouver, Canada; BC Women's Hospital and Health Centre, Vancouver, Canada
| | - Monique Landry
- Quebec Ministry of Health and Social Services, Montreal, Canada
| | - Monica Naus
- University of British Columbia, Vancouver, Canada; British Columbia Centre for Disease Control, Vancouver, Canada
| | - Eduardo Lazcano-Ponce
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| |
Collapse
|
21
|
The prevalence and genotyping of human papillomavirus in patients with oral tumors in health centers and clinics of Mazandaran in Iran. Virusdisease 2018; 29:297-302. [PMID: 30159363 DOI: 10.1007/s13337-018-0472-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023] Open
Abstract
Oral cancer is one of the most prevalent cancers in the world which contains many kinds of malignant neoplasms in the oral cavity. Due to the carcinogenicity of human papillomavirus (HPV) and its prevalence in cancer, including the oral cancer, this study was aimed at investigate the prevalence of HPV and its genotypes in patients suffering from oral tumors using PCR method. In this study, 83 samples of oral lesions were collected in the form of paraffin-embedded tissue. After extracting the DNA using DNA extraction kits, high-risk HPV positive samples were examined using special kits for genotyping, and low-risk types were sequenced after nested PCR. The results showed that 13.2% of samples was HPV positive. The result of PCR using genotyping kit indicated that high-risk types of 18, 31, 16, and 33 appeared in samples with prevalence rate of 27.2, 18.1, 9.09 and 9.09%, respectively. In this manner, the result of sequence indicated that the prevalence of HPV-6 genotype was 36.3% in the samples. The results of this study indicated that both low-risk and high-risk types of HPV are associated with the risk of oral tumors, so that Types 6 and 18 were reported as the most prevalent types in the samples.
Collapse
|
22
|
Motavalli Khiavi F, Arashkia A, Golkar M, Nasimi M, Roohvand F, Azadmanesh K. A Dual-Type L2 11-88 Peptide from HPV Types 16/18 Formulated in Montanide ISA 720 Induced Strong and Balanced Th1/Th2 Immune Responses, Associated with High Titers of Broad Spectrum Cross-Reactive Antibodies in Vaccinated Mice. J Immunol Res 2018; 2018:9464186. [PMID: 29854852 PMCID: PMC5960516 DOI: 10.1155/2018/9464186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
E. coli-derived concatenated, multitype L2-conserved epitopes of human papillomavirus (HPV) L2 protein might represent a less expensive and pan-type vaccine alternative (compared to type-specific HPV L1 virus-like particles), if stable protein expression and strong immunogenicity features could be met. Herein, three dual-type- (DT-) HPV L2 fusion peptides comprising the three head-to-tail tandem repeats (multimers) of either HPV 16 epitope "17-36" or "69-81" or one copy (monomer) of 11-88 fused to the same residues of HPV 18 were constructed and expressed in E. coli. SDS-PAGE and Western blot analyses indicated the proper expression and stability of the E. coli-derived DT peptides. Mice immunized by formulation of the purified DT peptides and Freund's adjuvant (CFA/IFA) raised neutralizing antibodies (NAbs; the highest for DT: 11-88 peptide) which showed proper cross-reactivity to HPV types: 18, 16, 31, and 45 and efficiently neutralized HPV 18/16 pseudoviruses in vitro. Immunization studies in mice by formulation of the DT: 11-88 × 1 peptide with various adjuvants (alum, MF59, and Montanides ISA 720 and 50) indicated that Montanide adjuvants elicited the highest cross-reactive titers of NAbs and similar levels of IgG1 and IgG2a (switching towards balanced Th1/Th2 responses). The results implied development of low-cost E. coli-derived DT: 11-88 peptide formulated in human compatible ISA 720 adjuvant as a HPV vaccine.
Collapse
Affiliation(s)
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Nasimi
- Department of Dermatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|