1
|
Talebpour Amiri F, Asghari M, Hosseinimehr SJ. Omeprazole attenuates irradiation-induced lung injury through the suppression of apoptosis and oxidative stress in mice. Med Oncol 2025; 42:172. [PMID: 40261553 DOI: 10.1007/s12032-025-02717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Radiation therapy is an effective treatment for patients with malignant thoracic tumors, but it can cause lung damage. Omeprazole (OM) is a proton pump inhibitor with anticancer, antioxidative, and anti-inflammatory activities. The aim of this study was to examine the effects of OM on oxidative stress and apoptosis through the use of ionizing radiation (IR) in lung tissue. Sixty-four mice were randomized into eight groups: the control, OM (10, 25, and 50 mg/kg/day/oral for 7 consecutive days), IR (single dose of 6 Gy), and IR + OM (10, 25, and 50 mg/kg) groups. The protective effect of OM was determined by histological and immunohistochemical evaluation and assessment of protein carbonyl levels. OM significantly decreased protein carbonyl levels in the lungs of irradiated mice compared with those in the lungs of IR-treated mice. Histological evaluation of the irradiated mice revealed destruction of the alveolar wall, thickening of the alveolar sac wall, enlarged red blood cells, infiltration of inflammatory cells, edema, and capillary, vascular and interstitial hyperemia. OM at all three doses significantly reduced lung injury. Immunohistochemical findings also revealed that OM could reduce the expression of caspase-3. OM at a low dose and short duration of administration had no side effects. OM is able to protect against lung damage caused by IR through reducing oxidative stress and decreasing the expression of caspase-3.
Collapse
Affiliation(s)
- Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Asghari
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Mishra J, Poonia N, Lather V, Nishad DK, Pandita D. Synthetic and Natural Radioprotective Agents: Recent Status and their Underlying Mechanism of Action. Curr Pharm Biotechnol 2025; 26:700-715. [PMID: 38818911 DOI: 10.2174/0113892010293722240522071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 06/01/2024]
Abstract
Various substances possessing radiation scavenging properties, known as radioprotectors, play a crucial role in shielding organisms from the harmful effects of ionizing radiation (IR) by preventing cellular damage caused by free radicals. Initially, synthetic radioprotectors were developed using thiol synthetic compounds. However, among these, only amifostine (WR-2721) underwent clinical testing as a radioprotector. Various composites with different chemical structures other than thiol compounds were also investigated. However, synthetic radioprotectors are known to be associated with severe side effects, which lead to an inclination towards natural substances. Plants and natural products have emerged as promising sources of radioprotectors, renowned for their non-toxic nature across a broad range of doses and their cost-effectiveness. Radioprotectors are employed in diverse pharmaceutical approaches to mitigate the toxicities induced by radiation. The present review encompasses a detailed account of various synthetic and naturally occurring compounds possessing radioprotective properties, and different investigations related to their radioprotective action, ranging from free radicals scavenging to gene therapy, have also been precisely covered. Numerous radioprotectors have different mechanisms of action, and have proven benefits of naturally occurring compounds over chemically synthesized ones.
Collapse
Affiliation(s)
- Juhi Mishra
- Institute of Nuclear Medicine & Allied Sciences, DRDO, New Delhi110054, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Dhruv Kumar Nishad
- Institute of Nuclear Medicine & Allied Sciences, DRDO, New Delhi110054, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India
| |
Collapse
|
3
|
Wesolowski R, Fish BL, Eibl M, Bähr S, Mehta SM, Czajkowski MT, Gasperetti T, Orschell CM, Asang C, Singh N, Himburg HA, Pleimes D. IEPA, a novel radiation countermeasure, alleviates acute radiation syndrome in rodents. Int J Radiat Biol 2024; 101:1-14. [PMID: 39531584 PMCID: PMC11698650 DOI: 10.1080/09553002.2024.2425312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Repurposing therapeutic agents with existing clinical data is a common strategy for developing radiation countermeasures. IEPA (imidazolyl ethanamide pentandioic acid) is an orally bioavailable small molecule pseudopeptide with myeloprotective properties, a good clinical safety profile, and stable chemical characteristics facilitating stockpiling. Here, we evaluated IEPA's radiomitigative efficacy in the hematopoietic subsyndrome of acute radiation syndrome (H-ARS) using total-body irradiation (TBI) models in C57BL/6J mice and WAG/RijCmcr rats, applying various posology schemes and introducing syringe feeding of the IEPA formulation in the pudding. Additionally, we assessed IEPA in the delayed effects of acute radiation exposure (DEARE) model after partial-body irradiation (PBI) in WAG/RijCmcr rats. Endpoints included survival, body weight, hematology, and pulmonary parameters, depending on the model. Results from mouse and rat TBI models demonstrated survival improvements with repeated IEPA dosing at 10 mg/kg, with the largest benefits observed in the bi-daily (BID) treatment over the 30-day ARS phase in female rats. Survival across PBI-DEARE subsyndromes was comparable between IEPA and vehicle groups, though IEPA improved pulmonary parameters in female rats during the lung-DEARE phase. Sex-related differences in response to irradiation and IEPA were noted, with females showing a survival advantage. IEPA treatment is compatible with Neulasta® (Pegfilgrastim; PEG-G-CSF); adequately powered studies are needed to confirm the trend toward improved survival over standard care alone. IEPA is a promising development candidate as a medical countermeasure against the effects of acute radiation syndrome. Further confirmatory studies in small and large animal models should validate the robustness and translatability of preliminary rodent data on IEPA's radiomitigative efficacy.
Collapse
Affiliation(s)
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Eibl
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| | - Stella Bähr
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| | | | | | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christie M. Orschell
- Department of Medicine/Division of Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Corinna Asang
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| | - Nikita Singh
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dirk Pleimes
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| |
Collapse
|
4
|
Mohamed DH, Said RS, Kassem DH, Gad AM, El-Demerdash E, Mantawy EM. Hesperidin attenuates radiation-induced ovarian failure in rats: Emphasis on TLR-4/NF-ĸB signaling pathway. Toxicol Appl Pharmacol 2024; 492:117111. [PMID: 39326792 DOI: 10.1016/j.taap.2024.117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Young women suffering from premature ovarian failure after radiotherapy carry a huge burden in the field of cancer therapy including reproductive loss, emotional stress, and physical troubles that reduce their long-term quality of life. Hesperidin (HSP) exhibited antioxidant, anti-inflammatory, and anti-apoptotic properties. HSP enhanced in vitro follicular maturation and preserved in vivo ovarian stockpile. In this research, the role of HSP in radiation-induced POF in rats was investigated besides ascertaining its underlying mechanisms. Female Sprague-Dawley rats were arbitrarily allocated into four groups: control-group, ϒ-irradiated-group (3.2 Gy once on the 7th day), HSP-group (100 mg/kg, orally for 10 days), and HSP/ϒ-irradiated-group (ϒ-radiation was applied one hour after HSP). At the end of experiment, the whole ovaries were collected for histological and biochemical analyses. Administration of HSP preserved the ovarian histoarchitecture and follicular stock, retained ovarian weight, and conserved serum estradiol and AMH levels following radiation exposure. HSP ameliorated the ovarian oxidative damage mediated by radiation through augmenting the activities of glutathione peroxidase, glutathione reductase, and catalase antioxidant enzymes. HSP exhibited remarkable anti-inflammatory activity by downregulating the expression of ovarian TLR-4, NF-ĸB, and TNF-α. Moreover, HSP suppressed the apoptotic machinery triggered by radiation by reducing p53 and Bax while increasing Bcl-2 mRNA expressions alongside diminishing caspase-3 expression. Additionally, HSP regulated estrous cycle disorder of irradiated rats and improved their reproductive capacity reflected by enhancing pregnancy outcomes. Therefore, HSP represents an appealing candidate as an adjunct remedy for female cancer patients during radiotherapy protocols owing to its antioxidant, anti-inflammatory, anti-apoptotic, and hormone-regulatory effects.
Collapse
Affiliation(s)
- Doaa H Mohamed
- Central Administration of Drug Control, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Dina H Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Chang S, Lv J, Wang X, Su J, Bian C, Zheng Z, Yu H, Bao J, Xin Y, Jiang X. Pathogenic mechanisms and latest therapeutic approaches for radiation-induced lung injury: A narrative review. Crit Rev Oncol Hematol 2024; 202:104461. [PMID: 39103129 DOI: 10.1016/j.critrevonc.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
The treatment of thoracic tumors with ionizing radiation can cause radiation-induced lung injury (RILI), which includes radiation pneumonitis and radiation-induced pulmonary fibrosis. Preventing RILI is crucial for controlling tumor growth and improving quality of life. However, the serious adverse effects of traditional RILI treatment methods remain a major obstacle, necessitating the development of novel treatment options that are both safe and effective. This review summarizes the molecular mechanisms of RILI and explores novel treatment options, including natural compounds, gene therapy, nanomaterials, and mesenchymal stem cells. These recent experimental approaches show potential as effective prevention and treatment options for RILI in clinical practice.
Collapse
Affiliation(s)
- Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Kayalı A, Arda DB, Bora ES, Uyanikgil Y, Atasoy Ö, Erbaş O. Oxytocin: A Shield against Radiation-Induced Lung Injury in Rats. Tomography 2024; 10:1342-1353. [PMID: 39330747 PMCID: PMC11436056 DOI: 10.3390/tomography10090101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI), a serious side effect of thoracic radiotherapy, can lead to acute radiation pneumonitis (RP) and chronic pulmonary fibrosis (PF). Despite various interventions, no effective protocol exists to prevent pneumonitis. Oxytocin (OT), known for its anti-inflammatory, antiapoptotic, and antioxidant properties, has not been explored for its potential in mitigating RILI. MATERIALS AND METHODS This study involved 24 female Wistar albino rats, divided into three groups: control group, radiation (RAD) + saline, and RAD + OT. The RAD groups received 18 Gy of whole-thorax irradiation. The RAD + OT group was treated with OT (0.1 mg/kg/day) intraperitoneally for 16 weeks. Computerizing tomography (CT) imaging and histopathological, biochemical, and blood gas analyses were performed to assess lung tissue damage and inflammation. RESULTS Histopathological examination showed significant reduction in alveolar wall thickening, inflammation, and vascular changes in the RAD + OT group compared to the RAD + saline group. Biochemical analysis revealed decreased levels of TGF-beta, VEGF, and PDGF, and increased BMP-7 and prostacyclin in the RAD + oxytocin group (p < 0.05). Morphometric analysis indicated significant reductions in fibrosis, edema, and immune cell infiltration. CT imaging demonstrated near-normal lung parenchyma density in the RAD + oxytocin group (p < 0.001). CONCLUSION Oxytocin administration significantly mitigates radiation-induced pneumonitis in rats, implying that is has potential as a therapeutic agent for preventing and treating RILI.
Collapse
Affiliation(s)
- Ahmet Kayalı
- Department of Emergency Medicine, Faculty of Medicine, Izmir Katip Çelebi University, 35620 Izmir, Türkiye;
| | - Duygu Burcu Arda
- Department of Pediatrics, Istanbul Taksim Research and Training Hospital, 34433 Istanbul, Türkiye;
| | - Ejder Saylav Bora
- Department of Emergency Medicine, Faculty of Medicine, Izmir Katip Çelebi University, 35620 Izmir, Türkiye;
| | - Yiğit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35030 Izmir, Türkiye;
| | - Özüm Atasoy
- Department of Radiation Oncology, Giresun Training and Research Hospital, 28100 Giresun, Türkiye;
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, 34394 Istanbul, Türkiye;
| |
Collapse
|
7
|
Stasiłowicz-Krzemień A, Gościniak A, Formanowicz D, Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int J Mol Sci 2024; 25:6937. [PMID: 39000045 PMCID: PMC11241526 DOI: 10.3390/ijms25136937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| |
Collapse
|
8
|
Day BJ. Oxidative Stress: An Intersection Between Radiation and Sulfur Mustard Lung Injury. Disaster Med Public Health Prep 2024; 18:e86. [PMID: 38706344 PMCID: PMC11218645 DOI: 10.1017/dmp.2023.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Nuclear and chemical weapons of mass destruction share both a tragic and beneficial legacy in mankind's history and health. The horrific health effects of ionizing radiation and mustard gas exposures unleashed during disasters, wars, and conflicts have been harnessed to treat human health maladies. Both agents of destruction have been transformed into therapies to treat a wide range of cancers. The discovery of therapeutic uses of radiation and sulfur mustard was largely due to observations by clinicians treating victims of radiation and sulfur mustard gas exposures. Clinicians identified vulnerability of leukocytes to these agents and repurposed their use in the treatment of leukemias and lymphomas. Given the overlap in therapeutic modalities, it goes to reason that there may be common mechanisms to target as protective strategies against their damaging effects. This commentary will highlight oxidative stress as a common mechanism shared by both radiation and sulfur mustard gas exposures and discuss potential therapies targeting oxidative stress as medical countermeasures against the devastating lung diseases wrought by these agents.
Collapse
Affiliation(s)
- Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
9
|
Chen YY, Wang M, Zuo CY, Mao MX, Peng XC, Cai J. Nrf-2 as a novel target in radiation induced lung injury. Heliyon 2024; 10:e29492. [PMID: 38665580 PMCID: PMC11043957 DOI: 10.1016/j.heliyon.2024.e29492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Radiation-induced lung injury (RILI) is a common and fatal complication of chest radiotherapy. The underlying mechanisms include radiation-induced oxidative stress caused by damage to the deoxyribonucleic acid (DNA) and production of reactive oxygen species (ROS), resulting in apoptosis of lung and endothelial cells and recruitment of inflammatory cells and myofibroblasts expressing NADPH oxidase to the site of injury, which in turn contribute to oxidative stress and cytokine production. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a vital transcription factor that regulates oxidative stress and inhibits inflammation. Studies have shown that Nrf-2 protects against radiation-induced lung inflammation and fibrosis. This review discusses the protective role of Nrf-2 in RILI and its possible mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Chen-Yang Zuo
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, PR China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| |
Collapse
|
10
|
Ahmed SF, El-Maghraby EMF, Rashad MM, Bashir DW. Iron overload induced submandibular glands toxicity in gamma irradiated rats with possible mitigation by hesperidin and rutin. BMC Pharmacol Toxicol 2024; 25:22. [PMID: 38414079 PMCID: PMC10900593 DOI: 10.1186/s40360-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Radiation triggers salivary gland damage and excess iron accumulates in tissues induces cell injury. Flavonoids are found in some fruits and are utilized as potent antioxidants and radioprotective agents. This study aimed to evaluate the antioxidant and anti-inflammatory effects of hesperidin and rutin on gamma radiation and iron overload induced submandibular gland (SMG) damage and to evaluate their possible impact on mitigating the alteration in mTOR signaling pathway and angiogenesis. METHODS Forty-eight adult male Wistar albino rats were randomly assigned to six groups: group C received a standard diet and distilled water; group H received hesperidin at a dose of 100 mg/kg; four times a week for four weeks; group U received rutin at a dose of 50 mg/kg; three times a week for three weeks; group RF received a single dose (5 Gy) of gamma radiation followed by iron at a dose of 100 mg/kg; five times a week for four weeks; group RFH received radiation and iron as group RF and hesperidin as group H; group RFU received radiation and iron as group RF and rutin as group U. SMG specimens from all groups were removed at the end of the experiment; and some were used for biochemical analysis, while others were fixed for histological and immunohistochemical examination. RESULTS In the RF group, several genes related to antioxidants (Nrf-2 and SOD) and DNA damage (BRCA1) were significantly downregulated, while several genes related to inflammation and angiogenesis (TNFα, IL-1β and VEGF) and the mTOR signaling pathway (PIK3ca, AKT and mTOR) were significantly upregulated. Acinar cytoplasmic vacuolation, nuclear pyknosis, and interacinar hemorrhage with distinct interacinar spaces were observed as histopathological changes in SMGs. The duct system suffered significant damage, eventually degenerating entirely as the cells were shed into the lumina. VEGF and NF-κB were also significantly overexpressed. Hesperidin and rutin cotreatment generated partial recovery as indicated by significant upregulation of Nrf-2, SOD and BRCA1 and considerable downregulation of TNF-α, IL-1β, VEGF, PIK3ca, AKT, and mTOR. Although some acini and ducts continued to deteriorate, most of them had a normal appearance. There was a notable decrease in the expression of VEGF and NF-κB. CONCLUSIONS In γ-irradiated rats with iron overload, the administration of hesperidin and rutin may mitigate salivary gland damage.
Collapse
Affiliation(s)
- Salwa Farid Ahmed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Eman M F El-Maghraby
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Maha M Rashad
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Hegazy W, Sakr HI, Abdul Hamid M, Abdelaziz MA, Salah M, Abdel Rehiem ES, Abdel Moneim A. Hesperidin Attenuates Hypothyroidism-Induced Lung Damage in Adult Albino Rats by Modulating Oxidative Stress, Nuclear Factor Kappa-B Pathway, Proliferating Cell Nuclear Antigen and Inflammatory Cytokines. Biomedicines 2023; 11:1570. [PMID: 37371665 DOI: 10.3390/biomedicines11061570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The occurrence of worsening pulmonary function has been connected to hypothyroidism (HPO). Hesperidin (HES) was suggested to have antioxidant, anti-proliferative, and anti-inflammatory potential. Our study's objective was to determine whether HES could reduce carbimazole (CBZ)-induced lung injury more effectively than Eltroxin (ELT) in adult male albino rats or not. At random, 32 rats were distributed into four groups: Group I: normal control, to induce HPO, the remaining three groups were given CBZ (20 mg/kg/day) dissolved in distilled water for 1 week. They were then split up into three groups. Group II: orally administered CBZ (20 mg/kg b.w in water/day), Group III: HES (200 mg/kg/day) dissolved in 1% carboxymethyl-cellulose + CBZ treated, and Group IV: ELT (0.045 mg/kg/day) dissolved in distilled water + CBZ treated. All treatments were delivered for 12 weeks. Blood was collected to assess thyroid-stimulating hormone (TSH) and thyroid hormones (THs). Lung injury was evaluated based on the pulmonary content of interleukin (IL)-35, IL-6, and tumor necrosis factor-alpha (TNF-α), along with the estimation of lipid peroxidation, catalase, glutathione levels, superoxide dismutase, heme oxygenase-1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). The histological, ultrastructural, and immunohistochemical study of nuclear factor Kappa-B (NF-κB) and inducible nitric oxide synthase (iNOS), together with estimating the proliferation of cells using Antigen Ki-67 in lung tissue were performed. HES and ELT primarily suppressed variable lung damage mechanisms by suppressing TSH, the NF-κB/TNF-α pathway, iNOS, lipid peroxidation, Ki-67, and inflammatory mediators. On the other hand, they improved THs, antioxidant parameters, and the Nrf2/HO-1 pathway. HES and ELT exhibited an ameliorative effect that was reflected in the histopathological, immunohistochemical, and ultrastructural results. These results indicate that HES is a pneumoprotective agent that could be a promising treatment for oxidative stress, inflammation, and proliferation.
Collapse
Affiliation(s)
- Walaa Hegazy
- Histology Division, Basic Science Department, Faculty of Physical Therapy, Nahda University, Beni-Suef 62511, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Manal Abdul Hamid
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St., Beni-Suef 62511, Egypt
| | - Mohamed A Abdelaziz
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa Salah
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St., Beni-Suef 62511, Egypt
| | - Eman S Abdel Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St., Beni-Suef 62511, Egypt
| | - Adel Abdel Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St., Beni-Suef 62511, Egypt
| |
Collapse
|
12
|
Hosawi S. Current Update on Role of Hesperidin in Inflammatory Lung Diseases: Chemistry, Pharmacology, and Drug Delivery Approaches. Life (Basel) 2023; 13:life13040937. [PMID: 37109466 PMCID: PMC10145343 DOI: 10.3390/life13040937] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Inflammation is a common feature of many respiratory diseases, such as pneumonia, asthma, pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), lung cancer, acute lung injury, and COVID-19. Flavonoids have demonstrated their anti-inflammatory and antioxidant effects by influencing inflammation at different stages and majorly impacting several respiratory diseases’ onset and development. According to current studies, hesperidin, one of the most abundant polyphenols, can inhibit transcription factors or regulatory enzymes essential for controlling inflammation-linked mediators, including nuclear factor-kappa B (NF-κB), Inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). It also improved cellular antioxidant defences by activating the ERK/Nrf2 signalling pathway. Therefore, this review provides the latest studies on the effect of hesperidin in different respiratory diseases, its pharmacokinetic profile, and innovative drug delivery methods.
Collapse
Affiliation(s)
- Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Han D, Gong H, Wei Y, Xu Y, Zhou X, Wang Z, Feng F. Hesperidin inhibits lung fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154680. [PMID: 36736168 DOI: 10.1016/j.phymed.2023.154680] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/19/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal lung disease with obscure pathogenesis. Increasing evidence suggests that cellular senescence is an important mechanism underlying in IPF. Clinical treatment with drugs, such as pirfenidone and nintedanib, reduces the risk of acute exacerbation and delays the decline of pulmonary function in patients with mild to moderate pulmonary fibrosis, and with adverse reactions. Hesperidin was previously shown to alleviate pulmonary fibrosis in rats by attenuating the inflammation response. Our previous research indicated that the Citrus alkaline extracts, hesperidin as the main active ingredient, could exert anti-pulmonary fibrosis effects by inhibiting the senescence of lung fibroblasts. However, whether hesperidin could ameliorate pulmonary fibrosis by inhibiting fibroblast senescence needed further study. PURPOSE This work aimed to investigate whether and how hesperidin can inhibit lung fibroblast senescence and thereby alleviate pulmonary fibrosis METHODS: Bleomycin was used to establish a mouse model of pulmonary fibrosis and doxorubicin was used to establish a model of cellular senescence in MRC-5 cells in vitro. The therapeutic effects of hesperidin on pulmonary fibrosis using haematoxylin-eosin staining, Masson staining, enzyme-linked immunosorbent assay, immunohistochemistry, western blotting and quantitative Real-Time PCR. The anti-senescent effect of hesperidin in vivo and in vitro was assessed by western blotting, quantitative Real-Time PCR and senescence-associated β-galactosidase RESULTS: We demonstrated that hesperidin could alleviate bleomycin-induced pulmonary fibrosis in mice. The expression level of senescence marker proteins p53, p21, and p16 was were downregulated, along with the myofibroblast marker α-SMA. The number of senescence-associated β-galactosidase-positive cells was significantly reduced by hesperidin intervention in vivo and in vitro. In addition, hesperidin could inhibit the IL6/STAT3 signaling pathway. Furthermore, suppression of the IL-6/STAT3 signaling pathway by pretreatment with the IL-6 inhibitor LMT-28 attenuating effect of hesperidin on fibroblast senescence in vitro. CONCLUSIONS These data illustrated that hesperidin may be potentially used in the treatment of IPF based on its ability to inhibit lung fibroblast senescence.
Collapse
Affiliation(s)
- Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Haiying Gong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China
| | - Yun Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Zhichao Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Fanchao Feng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| |
Collapse
|
14
|
Sakat MS, Kılıç K, Sahin A, Kiziltunc Ozmen H, Yıldırım S, Egilmez E. The Protective Efficacy of Hesperidin and Thymol on Radiation-Induced Submandibular Gland Damage. Laryngoscope 2022. [PMID: 36149936 DOI: 10.1002/lary.30405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The purpose of this study was to employ biochemical, histopathological, and immunohistochemical methods to reveal the effectiveness of hesperidin and thymol in preventing radiotherapy-associated submandibular gland injury. METHODS A total of 48 female Sprague Dawley rats were randomly assigned into six groups of eight animals each. Group 1 represented the control group. Group 2 was regarded as hesperidin Group, and the rats received only hesperidin. Group 3 was regarded as thymol Group, and the rats received only thymol. Group 4 was regarded as a Radiotherapy Group, and the rats were exposed to radiotherapy at a dose of 15 Gy. Group 5 was regarded as hesperidin + Radiotherapy Group, and rats received hesperidin at a dose of 100 mg/kg daily for 1 week prior to radiotherapy exposition. Group 6 was regarded as thymol + Radiotherapy Group, and rats received thymol at a dose of 100 mg/kg daily for 1 week prior to radiotherapy exposition. Rats were sacrificed after radiotherapy and submandibular glands were dissected for biochemical and immunohistochemical evaluations. RESULTS We have shown that, thanks to their strong antioxidant and anti-inflammatory properties, hesperidin and thymol minimize the damage caused by radiation toxicity by decreasing oxidant levels and increasing antioxidant enzyme levels in the submandibular gland. We found that thymol showed more protective activity than hesperidin in terms of effectiveness on radiation toxicity. CONCLUSION Hesperidin and thymol exhibit histopathological, immunochemical, and biochemical protection against radiation-related submandibular gland injury. To our knowledge, this is the first study in the literature in this field. LEVEL OF EVIDENCE NA Laryngoscope, 2022.
Collapse
Affiliation(s)
- Muhammed Sedat Sakat
- Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Korhan Kılıç
- Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulkadir Sahin
- Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Hilal Kiziltunc Ozmen
- Department of Radiation Oncology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Esra Egilmez
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
15
|
Fu X, Li M, Tang C, Huang Z, Najafi M. Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis 2021; 26:561-573. [PMID: 34561763 DOI: 10.1007/s10495-021-01689-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
Cancer cell death is the utmost aim in cancer therapy. Anti-cancer agents can induce apoptosis, mitotic catastrophe, senescence, or autophagy through the production of free radicals and induction of DNA damage. However, cancer cells can acquire some new properties to adapt to anti-cancer agents. An increase in the incidence of apoptosis, mitotic catastrophe, senescence, and necrosis is in favor of overcoming tumor resistance to therapy. Although an increase in the autophagy process may help the survival of cancer cells, some studies indicated that stimulation of autophagy cell death may be useful for cancer therapy. Using some low toxic agents to amplify cancer cell death is interesting for the eradication of clonogenic cancer cells. Resveratrol (a polyphenol agent) may affect various signaling pathways related to cell death. It can induce death signals and also downregulate the expression of anti-apoptotic genes. Resveratrol has also been shown to modulate autophagy and induce mitotic catastrophe and senescence in some cancer cells. This review focuses on the important targets and mechanisms for the modulation of cancer cell death by resveratrol.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Mu Li
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Cuilian Tang
- Department of Obstetrics and Gynecology of the Second Affiliated Hospital, Shaoyang University, Shaoyang, 422000, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, 422000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
16
|
Mungunsukh O, George J, McCart EA, Snow AL, Mattapallil JJ, Mog SR, Panganiban RAM, Bolduc DL, Rittase WB, Bouten RM, Day RM. Captopril reduces lung inflammation and accelerated senescence in response to thoracic radiation in mice. JOURNAL OF RADIATION RESEARCH 2021; 62:236-248. [PMID: 33616187 PMCID: PMC7948861 DOI: 10.1093/jrr/rraa142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/31/2020] [Indexed: 05/10/2023]
Abstract
The lung is sensitive to radiation and exhibits several phases of injury, with an initial phase of radiation-induced pneumonitis followed by delayed and irreversible fibrosis. The angiotensin-converting enzyme inhibitor captopril has been demonstrated to mitigate radiation lung injury and to improve survival in animal models of thoracic irradiation, but the mechanism remains poorly understood. Here we investigated the effect of captopril on early inflammatory events in the lung in female CBA/J mice exposed to thoracic X-ray irradiation of 17-17.9 Gy (0.5-0.745 Gy min-1). For whole-body + thoracic irradiation, mice were exposed to 7.5 Gy (0.6 Gy min-1) total-body 60Co irradiation and 9.5 Gy thoracic irradiation. Captopril was administered orally (110 mg kg-1 day-1) in the drinking water, initiated 4 h through to150 days post-irradiation. Captopril treatment increased survival from thoracic irradiation to 75% at 150 days compared with 0% survival in vehicle-treated animals. Survival was characterized by a significant decrease in radiation-induced pneumonitis and fibrosis. Investigation of early inflammatory events showed that captopril significantly attenuated macrophage accumulation and decreased the synthesis of radiation-induced interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) pro-inflammatory cytokines in the lungs of irradiated mice. Suppression of IL-1β and TNF-α correlated with an increase of the anti-inflammatory cytokine IL-10 in the spleen with captopril treatment. We also found that captopril decreased markers for radiation-induced accelerated senescence in the lung tissue. Our data suggest that suppression of inflammation and senescence markers, combined with an increase of anti-inflammatory factors, are a part of the mechanism for captopril-induced survival in thoracic irradiated mice.
Collapse
Affiliation(s)
- Ognoon Mungunsukh
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jeffy George
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth A McCart
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Andrew L Snow
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Joseph J Mattapallil
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Steven R Mog
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Ronald Allan M Panganiban
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - David L Bolduc
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - W Bradley Rittase
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Roxane M Bouten
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M Day
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
17
|
Lierova A, Kasparova J, Pejchal J, Kubelkova K, Jelicova M, Palarcik J, Korecka L, Bilkova Z, Sinkorova Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front Pharmacol 2020; 11:1199. [PMID: 32903478 PMCID: PMC7435052 DOI: 10.3389/fphar.2020.01199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI). Materials and Methods Biocompatible HANPs were first used for viability assay conducted on the J774.2 cell line. For in vivo experiments, HANPs were administered intratracheally to C57Bl/6 mice 30 min before thoracic irradiation by 17 Gy. Molecular, cellular, and histopathological parameters were measured in lung and peripheral blood at days 113, 155, and 190, corresponding to periods of significant morphological and/or biochemical alterations of RIPI. Results Modification of linear hyaluronic acid molecule into nanoparticles structure significantly affected the physiological properties and caused long-term stability against ionizing radiation. The HANPs treatments had significant effects on the expression of the cytokines and particularly on the pro-fibrotic signaling pathway in the lung tissue. The radiation fibrosis phase was altered significantly in comparison with a solely irradiated group. Conclusions The present study provides evidence that application of HANPs caused significant changes in molecular and cellular patterns associated with RIPI. These findings suggest that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Marcela Jelicova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jiri Palarcik
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
18
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
19
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
20
|
Kadivar F, Haddadi G, Mosleh-Shirazi MA, Khajeh F, Tavasoli A. Protection effect of cerium oxide nanoparticles against radiation-induced acute lung injuries in rats. Rep Pract Oncol Radiother 2020; 25:206-211. [PMID: 32194345 PMCID: PMC7078538 DOI: 10.1016/j.rpor.2019.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/22/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Radiation therapy is one of the most common tools for treating cancer. The aim is to deliver adequate doses of radiation to kill cancer cells and the most challenging part during this procedure is to protect normal cells from radiation. One strategy is to use a radioprotector to spare normal tissues from ionizing radiation effects. Researchers have pursued cerium oxide nanoparticles as a therapeutic agent, due to its diverse characteristics, which include antioxidant properties, making it a potential radioprotector. MATERIALS AND METHODS One hundred rats were divided into five groups of A) control group, intraperitoneal (IP) saline injection was done twice a week; B) bi-weekly IP injection of 14.5 nM (0.00001 mg/kg) CNP for two weeks; C) a single whole thorax radiation dose of 18 Gy; D) a single whole thorax radiation dose of 18 Gy + bi-weekly injection of 14.5 nM CNP for two weeks after radiation; E) bi-weekly IP injection of 14.5 nM CNP for two weeks prior to radiation + a single whole thorax radiation dose of 18 Gy. Thirty days after irradiation, 7 rats from each group were anesthetized and their lungs extracted for histopathological examination. RESULTS Statistical analyses revealed that CNP significantly decreased the incidence of tissue collapse and neutrophile aggregation in rats receiving CNP before radiation in comparison with the radiation group. CONCLUSION The results suggested the possibility of using CNP as a future radioprotector due to its ability to protect normal cells against radiation-induced damage.
Collapse
Affiliation(s)
- Fatemeh Kadivar
- Department of Radiology and Radiobiology, Faculty of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non Ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhassan Haddadi
- Department of Radiology and Radiobiology, Faculty of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non Ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Department of Radiology and Radiobiology, Faculty of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non Ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Khajeh
- Dept. of Pathology, Fasa University of Medical Sciences, Fasa, Fars, Iran
| | - Alireza Tavasoli
- Dept. of Pathology, Fasa University of Medical Sciences, Fasa, Fars, Iran
| |
Collapse
|
21
|
Metformin Protects the Rat Small Intestine Against Radiation Enteritis. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.67352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Liu B, Lü W, Ge H, Tang H, Li R, Zhang C. Protective Effect of the Traditional Chinese Patent Medicine Qing-Xuan Granule against Bleomycin-Induced Pulmonary Fibrosis in Mice. Chem Biodivers 2019; 16:e1900467. [PMID: 31556199 DOI: 10.1002/cbdv.201900467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic obstructive pulmonary disease without effective clinical drug treatment. Qing-Xuan Granule (QX) as a traditional Chinese patent medicine is clinically used to cure children's cough. This study was designed to investigate the effects of QX and possible molecular mechanisms for bleomycin-induced PF. The work used Western blotting and Q-PCR to explore the vitro and vivo mechanisms of QX treatment, while using HPLC-TOF/MS to explore the composition of QX. QX was given daily orally for two weeks after bleomycin intratracheal instillation. The protective effects of QX on lung function, inflammation, growth factors, hydroxyproline content and deposition of extracellular matrix were investigated. QX decreased expression of Col I and α-SMA in lung tissues by down-regulating TGF-β1-Smad2/3 signaling and suppressed epithelial-mesenchymal transition and effectively reversed abnormal mRNA levels of MMP-1and TIMP-1 as well as LOXL-2 in lung tissues. HPLC-TOF/MS indicate that six substances could be the main active components, which were reported to protect against experimental lung disease.
Collapse
Affiliation(s)
- Bei Liu
- School of Chinese Materia Medical, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weichao Lü
- School of Chinese Materia Medical, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Haitao Ge
- Suzhong Pharmaceutical Group Co., Ltd., 1 Suzhong Road, Taizhou, 225500, P. R. China
| | - Haitao Tang
- Suzhong Pharmaceutical Group Co., Ltd., 1 Suzhong Road, Taizhou, 225500, P. R. China
| | - Renshi Li
- School of Chinese Materia Medical, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Chaofeng Zhang
- School of Chinese Materia Medical, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
23
|
李 营, 宋 启, 姚 颐, 董 熠, 高 彦, 吴 彬. [Progression of Anti-oxygen Therapy in Radiation-Induced Lung Injury]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:579-582. [PMID: 31526462 PMCID: PMC6754577 DOI: 10.3779/j.issn.1009-3419.2019.09.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
Abstract
Radiation induced lung injury (RILI) is a serious complication in patients received thoracic radiotherapy. The main clinical symptom of RILI includes short of breath, low fever and cough, seriously affect the survival of patients. How to better prevent and treat RILI is an urgent problem. Target theory, cytokine theory, free radical theory, and vascular endothelial cell damage theory are the main mechanisms of RILI. Among them, reactive oxygen species (ROS) produced during radiotherapy can induce tissue damage throughout the course of RILI, and have a direct effect on both radiation pneumonitis and radiation-induced lung fibrosis. Anti-oxygen therapy including thiol compounds, antioxidant enzymes, and plant antioxidants have been applied in the prevention and treatment of RILI. This article reviews the research and application of antioxidant therapy in RILI.
.
Collapse
Affiliation(s)
- 营歌 李
- />430060 武汉,武汉大学人民医院肿瘤中心Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - 启斌 宋
- />430060 武汉,武汉大学人民医院肿瘤中心Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - 颐 姚
- />430060 武汉,武汉大学人民医院肿瘤中心Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - 熠 董
- />430060 武汉,武汉大学人民医院肿瘤中心Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - 彦君 高
- />430060 武汉,武汉大学人民医院肿瘤中心Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - 彬 吴
- />430060 武汉,武汉大学人民医院肿瘤中心Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
24
|
Najafi M, Shirazi A, Motevaseli E, Geraily G, Amini P, Shabeeb D, Eleojo Musa A. Evaluating the Expression of NOX2 and NOX4 Signaling Pathways in Rats' Lung Tissues Following Local Chest Irradiation; Modulatory Effect of Melatonin. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 7:220-225. [PMID: 31516881 PMCID: PMC6709931 DOI: 10.22088/ijmcm.bums.7.4.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023]
Abstract
Lung injury is one of the major concerns for chest cancer patients that undergo radiotherapy as well as persons exposed to an accidental radiological event. Reduction/oxidation (redox) system plays a key role in lung injury via chronic upregulation of pro-oxidant enzymes. NOX2 and NOX4 are two important reactive oxygen species generating enzymes that are involved in radiation toxicity in some organs such as the bone marrow. In this study, we aimed to evaluate the expression of NOX2 and NOX4 signaling in rat's lung tissues. Upregulation of these genes may be involved in radiation-induced lung injury. Moreover, we evaluated the role of pre-treatment with melatonin on the expression of these genes. Twenty male rats were divided into 4 groups as control; melatonin treated; irradiation; and irradiation with melatonin pre-treatment. Rats were exposed to 15 Gy 60Co gamma rays and sacrificed after 10 weeks for evaluation of NF-κB, TGFβR1, SMAD2, NOX2, and NOX4 gene expression by real-time PCR. Results showed the upregulation of all five genes. The expression of NOX2 was more obvious compared to other genes. Administration of melatonin before irradiation could attenuate the expression of all mentioned genes. Results indicate that upregulation of NADPH oxidase genes such as NOX2 and NOX4 may be involved in the late effects of lung exposure to ionizing radiation. Melatonin via downregulation of these pro-oxidant genes is able to attenuate radiation toxicity in the lung.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
25
|
Zhou Z, Kandhare AD, Kandhare AA, Bodhankar SL. Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways. EXCLI JOURNAL 2019; 18:723-745. [PMID: 31611754 PMCID: PMC6785776 DOI: 10.17179/excli2019-1094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Bleomycin (BLM) is a chemotherapeutic agent which is associated with Idiopathic pulmonary fibrosis (IPF) due to its chronic administration. Hesperidin, a bioflavonoid has been reported to possess antioxidant, anti-inflammatory, wound healing, and antiapoptotic potential. To evaluate the therapeutic potential of hesperidin against BLM-induced pulmonary fibrosis and decipher its possible mechanism of action. Intraperitoneal administration of BLM (6 IU/kg) caused induction of IPF in Sprague-Dawley rats. Rats were treated with hesperidin (25, 50, and 100 mg/kg, p.o.) for 28 days, followed by estimation of various parameters in bronchoalveolar lavage fluid (BALF) and lung. Hesperidin (50 and 100 mg/kg) administration significantly ameliorated (p < 0.05) alterations induced by BLM in lung index, percent oxygen saturation, serum ALP and LDH levels, BALF differential cell count, and lung function test. Elevated levels of oxido-nitrosative stress, hydroxyproline, and myeloperoxidase levels in BALF and lung were significantly decreased by hesperidin on day 14. Hesperidin significantly inhibited BLM-induced down-regulated lung Nrf2 and HO-1 as well as up-regulated TNF-α, IL-1β, IL-6, collagen-1, TGF-β, and Smad-3 mRNA expressions. Western blot analysis showed that alteration in lung NF-κB, IκBα, AMPK, and PP2C-α protein expressions were ameliorated by hesperidin on day 28. Furthermore, BLM induced histological and ultrastructural aberrations in the lung which were attenuated by hesperidin treatment. Hesperidin alleviates BLM-induced IPF via inhibition of TGF-β1/Smad3/AMPK and IκBα/NF-κB pathways which in turn ameliorate the modulation of oxido-inflammatory markers (Nrf2 and HO-1) and pro-inflammatory markers (TNF-α, IL-1β, and IL-6) to reduce collagen deposition during pulmonary fibrosis. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Respiratory Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450014, China
| | - Amit D Kandhare
- Department of Pharmacology, Center for Advanced Research in Pharmaceutical Sciences, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Pune-411 038, India
| | - Anwesha A Kandhare
- Department of Pharmacology, Center for Advanced Research in Pharmaceutical Sciences, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Pune-411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Center for Advanced Research in Pharmaceutical Sciences, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Pune-411 038, India
| |
Collapse
|
26
|
Lu L, Sun C, Su Q, Wang Y, Li J, Guo Z, Chen L, Zhang H. Radiation-induced lung injury: latest molecular developments, therapeutic approaches, and clinical guidance. Clin Exp Med 2019; 19:417-426. [PMID: 31313081 DOI: 10.1007/s10238-019-00571-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
Cancer research has advanced throughout the years with respect to the personalization of the treatments and to targeting cancer-related molecular signatures on different organs. Still, the adverse events of the treatments such as radiotherapy are of high concern as they may increase the mortality rate due to their severity. With the improved efficiency of cancer treatments, patient survival has been increasing. Consequently, the number of patients with adverse effects from radiotherapy is also expected to increase in the forthcoming years. Therefore, approaches for personalized treatments include the elimination of adverse events and decreasing the toxicity in healthy tissues while increasing the efficiency of cancer cytotoxicity. In this context, this paper aims to discuss the recent advances in the field of thorax irradiation therapy and its related toxicities leading to radiation pneumonitis in cancer patients. Molecular mechanisms involved in the radiation-induced lung injury and approaches used to overcome this lung injury are discussed. The discourse covers approaches such as therapeutic administration of natural products, current and prospective radioprotective drugs, and applications of mesenchymal stem cells for radiation-induced lung injury.
Collapse
Affiliation(s)
- Lina Lu
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Qiong Su
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China
| | - Yanbin Wang
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China
| | - Jia Li
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China
| | - Zhong Guo
- Medical College of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Lihua Chen
- Chemical Engineering Institute of Northwest Minzu University, Lanzhou, 730000, Gansu, People's Republic of China. .,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou, 730124, People's Republic of China.
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
27
|
Musa AE, Omyan G, Esmaely F, Shabeeb D. Radioprotective Effect of Hesperidin: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E370. [PMID: 31336963 PMCID: PMC6681345 DOI: 10.3390/medicina55070370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/23/2023]
Abstract
Background and objectives: Ionizing radiation (IR) has been of immense benefit to man, especially for medical purposes (diagnostic imaging and radiotherapy). However, the risks of toxicity in healthy normal cells, leading to cellular damage as well as early and late side effects, have been major drawbacks. The aim of this study was to evaluate the radioprotective effect of hesperidin against IR-induced damage. Materials and Methods: The preferred reporting items for systematic reviews and meta-analyses (PRISMA) were applied in reporting this study. A search was conducted using the electronic databases PubMed, Scopus, Embase, Google Scholar, and www.ClinicalTrials.gov for information about completed or ongoing clinical trials. Results: From our search results, 24 studies involving rats, mice, and cultured human and animal cells were included. An experimental case-control design was used in all studies. The studies showed that the administration of hesperidin reduced oxidative stress and inflammation in all investigated tissues. Furthermore, it increased 30-day and 60-day survival rates and protected against DNA damage. The best radioprotection was obtained when hesperidin was administered before irradiation. Conclusions: The results of the included studies support the antioxidant, anti-inflammatory, and antiapoptotic abilities of hesperidin as a potential radioprotective agent against IR-induced damage. We recommend future clinical trials for more insights.
Collapse
Affiliation(s)
- Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (TUMS), Tehran 1416753955, Iran.
| | - Gilnaz Omyan
- Department of Physics, University of Guilan, Guilan 43714, Iran
- Radiotherapy and Oncology Research Center, Cancer Institute, TUMS, Tehran 1416753955, Iran
| | - Farid Esmaely
- Department of Medical Physics, Tehran University of Medical Sciences (TUMS), Tehran 1416753955, Iran
| | - Dheyauldeen Shabeeb
- Misan Radiotherapy Center, Misan Health Directorate, Ministry of Health/Environment, Misan 62010, Iraq
- Department of Physiology, College of Medicine, University of Misan, Misan 62010, Iraq
| |
Collapse
|
28
|
Rakici SY, Tumkaya L, Edirvanli OC, Yazici U, Dursun E, Arpa M, Mercantepe T. Radioprotective effect of endogenous melatonin secretion associated with the circadian rhythm in irradiated rats. Int J Radiat Biol 2019; 95:1236-1241. [PMID: 31287351 DOI: 10.1080/09553002.2019.1642532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: We investigated the radioprotective effect of endogenous melatonin release at different times associated with the circadian rhythm on head and neck radiotherapy. Materials and methods: Two groups of animals were subjected daily to 8 Gy single fraction radiotherapy in the head and neck region from 5:00 to 6:00 (the morning group) or from 19:00 to 20:00 (the evening group). Corresponding untreated groups served as controls. Submandibular glands from rats sacrificed on the seventh day after irradiation were assessed biochemically and histopathologically. Melatonin, malondialdehyde and superoxide dismutase levels in blood collected immediately prior to irradiation were measured with rat-specific ELISA kits. Results: In irradiated rats, melatonin, malondialdehyde and superoxide dismutase levels were significantly higher in the evening group than in the morning group. In nonirradiated rats, melatonin and superoxide dismutase levels were significantly higher in the evening group than in the morning group. The areas of seromucous acinar cells were similar between the irradiated and nonirradiated evening groups, but the area was higher in the evening irradiated group than in the morning irradiated group. Conclusion: Consideration of endogenous melatonin secretion associated with the circadian rhythm may offer new therapeutic solutions for the complications of head and neck radiotherapy.
Collapse
Affiliation(s)
- Sema Yilmaz Rakici
- Department of Radiation Oncology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan University , Rize , Turkey
| | | | - Ufuk Yazici
- Department of Radiation Oncology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Engin Dursun
- Department of Otorhinolaryngology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Medeni Arpa
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University , Rize , Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Recep Tayyip Erdogan University , Rize , Turkey
| |
Collapse
|
29
|
Aliasgharzadeh A, Farhood B, Amini P, Saffar H, Motevaseli E, Rezapoor S, Nouruzi F, Shabeeb DH, Eleojo Musa A, Mohseni M, Moradi H, Najafi M. Melatonin Attenuates Upregulation of Duox1 and Duox2 and Protects against Lung Injury following Chest Irradiation in Rats. CELL JOURNAL 2019; 21:236-242. [PMID: 31210428 PMCID: PMC6582421 DOI: 10.22074/cellj.2019.6207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Objective The Lung is one of the most radiosensitive organs of the body. The infiltration of macrophages and lymphocytes
into the lung is mediated via the stimulation of T-helper 2 cytokines such as IL-4 and IL-13, which play a key role in the
development of fibrosis. It is likely that these cytokines induce chronic oxidative damage and inflammation through the
upregulation of Duox1, and Duox2, which can increase the risk of late effects of ionizing radiation (IR) such as fibrosis and
carcinogenesis. In the present study, we aimed to evaluate the possible increase of IL-4 and IL-13 levels, as well as their
downstream genes such as IL4ra1, IL13ra2, Duox1, and Duox2.
Materials and Methods In this experimental animal study, male rats were divided into 4 groups: i. Control, ii. Melatonin-
treated, iii. Radiation, and iv. Melatonin (100 mg/kg) plus radiation. Rats were irradiated with 15 Gy 60Co gamma rays and
then sacrificed after 67 days. The expressions of IL4ra1, IL13ra2, Duox1, and Duox2, as well as the levels of IL-4 and IL-13,
were evaluated. The histopathological changes such as the infiltration of inflammatory cells, edema, and fibrosis were also
examined. Moreover, the protective effect of melatonin on these parameters was also determined.
Results Results showed a 1.5-fold increase in the level of IL-4, a 5-fold increase in the expression of IL4ra1, and
a 3-fold increase in the expressions of Duox1, and Duox2. However, results showed no change for IL-13 and no
detectable expression of IL13ra2. This was associated with increased infiltration of macrophages, lymphocytes, and
mast cells. Melatonin treatment before irradiation completely reversed these changes.
Conclusion This study has shown the upregulation of IL-4-IL4ra1-Duox2 signaling pathway following lung irradiation. It
is possible that melatonin protects against IR-induced lung injury via the downregulation of this pathway and attenuation of
inflammatory cells infiltration.
Collapse
Affiliation(s)
- Akbar Aliasgharzadeh
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Clinical and Anatomical Pathologist at Tehran University of Medical Science, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Nouruzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - D Heyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Mehran Mohseni
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Habiballah Moradi
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran. Electronic Address:
| |
Collapse
|
30
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
31
|
Azmoonfar R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Yahyapour R, Farhood B, Nouruzi F, Khodamoradi E, Shabeeb D, Eleojo Musa A, Najafi M. Metformin Protects Against Radiation-Induced Pneumonitis and Fibrosis and Attenuates Upregulation of Dual Oxidase Genes Expression. Adv Pharm Bull 2018; 8:697-704. [PMID: 30607342 PMCID: PMC6311649 DOI: 10.15171/apb.2018.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Accepted: 09/29/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose: Lung tissue is one of the most sensitive organs to ionizing radiation (IR). Early and late side effects of exposure to IR can limit the radiation doses delivered to tumors that are within or adjacent to this organ. Pneumonitis and fibrosis are the main side effects of radiotherapy for this organ. IL-4 and IL-13 have a key role in the development of pneumonitis and fibrosis. Metformin is a potent anti-fibrosis and redox modulatory agent that has shown radioprotective effects. In this study, we aimed to evaluate possible upregulation of these cytokines and subsequent cascades such as IL4-R1, IL-13R1, Dual oxidase 1 (DUOX1) and DUOX2. In addition, we examined the potential protective effect of metformin in these cytokines and genes, as well as histopathological changes in rat’s lung tissues. Methods: 20 rats were divided into 4 groups: control; metformin treated; radiation + metformin; and radiation. Irradiation was performed with a 60Co source delivering 15 Gray (Gy) to the chest area. After 10 weeks, rats were sacrificed and their lung tissues were removed for histopathological, real-time PCR and ELISA assays. Results: Irradiation of lung was associated with an increase in IL-4 cytokine level, as well as the expression of IL-4 receptor-a1 (IL4ra1) and DUOX2 genes. However, there was no change in the level of IL-13 and its downstream gene including IL-13 receptor-a2 (IL13ra2). Moreover, histopathological evaluations showed significant infiltration of lymphocytes and macrophages, fibrosis, as well as vascular and alveolar damages. Treatment with metformin caused suppression of upregulated genes and IL-4 cytokine level, associated with amelioration of pathological changes. Conclusion: Results of this study showed remarkable pathological damages, an increase in the levels of IL-4, IL4Ra1 and Duox2, while that of IL-13 decreased. Treatment with metformin showed ability to attenuate upregulation of IL-4–DUOX2 pathway and other pathological damages to the lung after exposure to a high dose of IR.
Collapse
Affiliation(s)
- Rasoul Azmoonfar
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hana Saffar
- Clinical and Anatomical Pathologist at Tehran University of Medical Science, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzad Nouruzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
32
|
Bagheri H, Rezapour S, Najafi M, Motevaseli E, Shekarchi B, Cheki M, Mozdarani H. Protection Against Radiation-Induced Micronuclei in Rat Bone Marrow Erythrocytes by Curcumin and Selenium L-Methionine. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:645-652. [PMID: 30510341 PMCID: PMC6230935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The search for potent radioprotective agents for the amelioration of radiation side effect is an important aim in radiobiology. The present study aimed to evaluate the effects of curcumin and seleno-L-methionine against radiation-induced micronucleus formation in rat bone marrow. METHODS In total, 40 male rats were divided into 8 groups (n=5 each), including control, curcumin or seleno-L-methionine treated alone or in combination, 2 Gy irradiation, irradiation of treated groups with curcumin or seleno-L-methionine or their combination. Curcumin was administrated orally and seleno-L-methionine was injected intraperitoneally 24 hours before irradiation. The frequency of micronucleated normochromatic erythrocytes (MnNCEs) and micronucleated polychromatic erythrocytes (MnPCEs) was scored in 5,000 polychromatic erythrocytes (PCEs) and the cell proliferation ratio [(PCE/(PCE+NCE); NCE=normochromatic erythrocytes] was calculated for each treatment group. Data were analyzed by the SPSS software version 16.0 and P<0.05 was considered as statistically significant differences. RESULTS Pretreatment with curcumin and seleno-L-methionine before irradiation reduced the frequency of MnPCEs and MnNCEs (P=0.01) and increased the cell proliferation ratio. Moreover, the results showed that this pretreatment reduced the frequency of MnPCEs with a protection factor (PF) of 1.2 and 1.6, respectively. The combination of curcumin and seleno-L-methionine in reducing MnPCEs and MnNCEs was not more effective than each agent alone, while improved cell proliferation ratio. CONCLUSION Both curcumin and seleno-L-methionine showed potent protection against radiation induced MN in bone marrow cells. The combination of the two agents further ameliorates this activity, thus leading to improve bone marrow protection.
Collapse
Affiliation(s)
- Hamed Bagheri
- Radiation and Wave Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Saeed Rezapour
- Department of Radiology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Shekarchi
- Radiation and Wave Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiology, Faculty of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The aim of this article is to examine significant advances in our understanding of the late respiratory effects of cancer treatment, including surgery, radiotherapy, chemotherapy, biological therapies and haematopoietic stem cell transplant, and to provide a framework for assessing such patients. RECENT FINDINGS Oncology therapies have advanced considerably over recent years but pulmonary toxicity remains a concern. Advances have been made in our understanding of the risk factors, including genetic ones that lead to toxicity from radiotherapy and chemotherapy and risk stratification models are being developed to aid treatment planning. Targeted biological treatments are continuously being developed and consequently the Pneumotox database of pulmonary toxicity continues to be an essential resource. Early detection of bronchiolitis obliterans in haematopoietic stem cell transplant patients has been found to be critical, with some positive results from intervention trials. SUMMARY Pulmonary toxicity is a common unwanted consequence of life enhancing or saving cancer treatments which remain difficult to treat. Developments in these fields are mainly in the areas of prevention, early detection and monitoring of unwanted side effects. We discuss some of these developments within this review.
Collapse
|
34
|
Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F, Rezapoor S, Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 2018; 94:335-356. [PMID: 29504497 DOI: 10.1080/09553002.2018.1440092] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Cancer treatment is one of the most challenging diseases in the present era. Among a few modalities for cancer therapy, radiotherapy plays a pivotal role in more than half of all treatments alone or combined with other cancer treatment modalities. Management of normal tissue toxicity induced by radiation is one of the most important limiting factors for an appropriate radiation treatment course. The evaluation of mechanisms of normal tissue toxicity has shown that immune responses especially inflammatory responses play a key role in both early and late side effects of exposure to ionizing radiation (IR). DNA damage and cell death, as well as damage to some organelles such as mitochondria initiate several signaling pathways that result in the response of immune cells. Massive cell damage which is a common phenomenon following exposure to a high dose of IR cause secretion of a lot of inflammatory mediators including cytokines and chemokines. These mediators initiate different changes in normal tissues that may continue for a long time after irradiation. In this study, we reviewed the mechanisms of inflammatory responses to IR that are involved in normal tissue toxicity and considered as the most important limiting factors in radiotherapy. Also, we introduced some agents that have been proposed for management of these responses. CONCLUSIONS The early inflammation during the radiation treatment is often a limiting factor in radiotherapy. In addition to the limiting factors, chronic inflammatory responses may increase the risk of second primary cancers through continuous free radical production, attenuation of tumor suppressor genes, and activation of oncogenes. Moreover, these effects may influence non-irradiated tissues through a mechanism named bystander effect.
Collapse
Affiliation(s)
- Masoud Najafi
- a Radiology and Nuclear Medicine Department, School of Paramedical Sciences , Kermanshah University of Medical Science , Kermanshah , Iran
| | - Elahe Motevaseli
- b Department of Molecular Medicine, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Shirazi
- c Department of Medical Physics and Biomedical Engineering, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Ghazale Geraily
- c Department of Medical Physics and Biomedical Engineering, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Abolhasan Rezaeyan
- d Department of Medical Physics, School of Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Farzad Norouzi
- e Science and Research Branch , Azad University , Tehran , Iran
| | - Saeed Rezapoor
- f Department of Radiology, Faculty of Paramedical Sciences , Tehran University of Medical Sciences , Tehran , Iran
| | - Hamid Abdollahi
- d Department of Medical Physics, School of Medicine , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
35
|
Yahyapour R, Amini P, Rezapour S, Cheki M, Rezaeyan A, Farhood B, Shabeeb D, Musa AE, Fallah H, Najafi M. Radiation-induced inflammation and autoimmune diseases. Mil Med Res 2018; 5:9. [PMID: 29554942 PMCID: PMC5859747 DOI: 10.1186/s40779-018-0156-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Currently, ionizing radiation (IR) plays a key role in the agricultural and medical industry, while accidental exposure resulting from leakage of radioactive sources or radiological terrorism is a serious concern. Exposure to IR has various detrimental effects on normal tissues. Although an increased risk of carcinogenesis is the best-known long-term consequence of IR, evidence has shown that other diseases, particularly diseases related to inflammation, are common disorders among irradiated people. Autoimmune disorders are among the various types of immune diseases that have been investigated among exposed people. Thyroid diseases and diabetes are two autoimmune diseases potentially induced by IR. However, the precise mechanisms of IR-induced thyroid diseases and diabetes remain to be elucidated, and several studies have shown that chronic increased levels of inflammatory cytokines after exposure play a pivotal role. Thus, cytokines, including interleukin-1(IL-1), tumor necrosis factor (TNF-α) and interferon gamma (IFN-γ), play a key role in chronic oxidative damage following exposure to IR. Additionally, these cytokines change the secretion of insulin and thyroid-stimulating hormone(TSH). It is likely that the management of inflammation and oxidative damage is one of the best strategies for the amelioration of these diseases after a radiological or nuclear disaster. In the present study, we reviewed the evidence of radiation-induced diabetes and thyroid diseases, as well as the potential roles of inflammatory responses. In addition, we proposed that the mitigation of inflammatory and oxidative damage markers after exposure to IR may reduce the incidence of these diseases among individuals exposed to radiation.
Collapse
Affiliation(s)
- Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Zip code: 8813833435, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Saeed Rezapour
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Zip code: 6135715794, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Zip code: 1449614535, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Zip code: 3715835155, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Zip code: 1417613151, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research center for molecular and cellular imaging, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Zip code: 3836119131, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Zip code: 6714869914, Iran.
| |
Collapse
|
36
|
Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, Rezapoor S. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 2017; 9:139-148. [PMID: 28510090 PMCID: PMC5425818 DOI: 10.1007/s12551-017-0256-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy has a key role in cancer treatment in more than half of patients with cancer. The management of severe side effects of this treatment modality is a limiting factor to appropriate treatment. Immune system responses play a pivotal role in many of the early and late side effects of radiation. Moreover, immune cells have a significant role in tumor response to radiotherapy, such as angiogenesis and tumor growth. Melatonin as a potent antioxidant has shown appropriate immune regulatory properties that may ameliorate toxicity induced by radiation in various organs. These effects are mediated through various modulatory effects of melatonin in different levels of tissue reaction to ionizing radiation. The effects on the DNA repair system, antioxidant enzymes, immune cells, cytokines secretion, transcription factors, and protein kinases are most important. Moreover, anti-cancer properties of melatonin may increase the therapeutic ratio of radiotherapy. Clinical applications of this agent for the management of malignancies such as breast cancer have shown promising results. It seems anti-proliferative, anti-angiogenesis, and stimulation or suppression of some immune cell responses are the main anti-tumor effects of melatonin that may help to improve response of the tumor to radiotherapy. In this review, the effects of melatonin on the modulation of immune responses in both normal and tumor tissues will be discussed.
Collapse
Affiliation(s)
- M Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gh Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - F Norouzi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M Heidari
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - S Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|