1
|
Cordido Useche AI, Rivero Griman PR, Rojas Rocillo MA. [Revascularization in immature permanent tooth with apical periodontitis using Neoputty MTA. Case report]. REVISTA CIENTÍFICA ODONTOLÓGICA 2025; 13:e235. [PMID: 40231110 PMCID: PMC11994100 DOI: 10.21142/2523-2754-1301-2025-235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/21/2024] [Indexed: 04/16/2025] Open
Abstract
The treatment of young necrotic permanent teeth with open apices represents a challenge for endodontists. Revascularization has emerged as a biologically based treatment alternative that allows the continued development of immature teeth. This procedure requires a hermetic coronal seal with a biocompatible cement. The objective of this work is to present a case of revascularization of an immature tooth with open apices in a 7-year-old patient, in Cvek stage III, with the diagnosis of previously initiated therapy and asymptomatic apical periodontitis, using NeoPUTTY MTA as a cervical barrier. After informed consent, the protocol proposed by Wei was followed in 2 appointments; using calcium hydroxide as intracanal medication in the first appointment, and performing the apical puncture in the second appointment, after an irrigation protocol with passive ultrasonic activation. The cervical barrier was created by compacting NeoPUTTY MTA and covered with TheraCal LC plus glass ionomer and composite resin. The patient was evaluated in 4 post-treatment consultations, at 3 weeks, 6 weeks, 6 months and 1 year; he remained asymptomatic throughout the process and presented progressive radiographic improvement until resolution of the apical lesion, increased thickness of the root walls, decreased apical diameter of the mesial root to approximately 0.5 mm and of the distal root to approximately 1 mm and the formation of a new periodontal ligament space.
Collapse
Affiliation(s)
- Aleska Irin Cordido Useche
- Universidad de Carabobo. Valencia, Venezuela. Universidad de Carabobo Universidad de Carabobo Valencia Venezuela
| | - Pedro Rafael Rivero Griman
- Departamento de Estomatoquirurgica, Facultad de Odontologia, Universidad de Carabobo. Valencia, Venezuela. Universidad de Carabobo Departamento de Estomatoquirurgica Facultad de Odontologia Universidad de Carabobo Valencia Venezuela
| | - Mireya Anais Rojas Rocillo
- Universidad de Carabobo. Valencia, Venezuela. Universidad de Carabobo Universidad de Carabobo Valencia Venezuela
| |
Collapse
|
2
|
Alothman FA, Hakami LS, Alnasser A, AlGhamdi FM, Alamri AA, Almutairii BM. Recent Advances in Regenerative Endodontics: A Review of Current Techniques and Future Directions. Cureus 2024; 16:e74121. [PMID: 39712709 PMCID: PMC11662148 DOI: 10.7759/cureus.74121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Regenerative endodontics is a rapidly evolving discipline focused on biologically restoring the pulp-dentin complex to revive vitality in non-vital teeth. Unlike traditional endodontic therapies that rely on inert materials to preserve structure, regenerative techniques aim to re-establish natural structure and function by harnessing advancements in tissue engineering. This narrative review examines recent progress in stem cell applications, scaffold development, signaling molecules, and clinical protocols that contribute to successful regenerative outcomes. Advances in stem cell sources, biomimetic scaffolds, and growth factor delivery systems have shown promising results, though challenges such as variability in outcomes and the need for standardized clinical protocols remain. This review also highlights future directions, including gene therapy and three-dimensional bioprinting, which hold the potential to overcome current limitations and pave the way for effective and reliable biologically restorative dental treatments.
Collapse
Affiliation(s)
| | - Lamia S Hakami
- Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | | | | | | | | |
Collapse
|
3
|
Abdelgawad RM, Damé-Teixeira N, Gurzawska-Comis K, Alghamdi A, Mahran AH, Elbackly R, Do T, El-Gendy R. Pectin as a Biomaterial in Regenerative Endodontics-Assessing Biocompatibility and Antibacterial Efficacy against Common Endodontic Pathogens: An In Vitro Study. Bioengineering (Basel) 2024; 11:653. [PMID: 39061735 PMCID: PMC11274256 DOI: 10.3390/bioengineering11070653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Regenerative endodontics (REP) is a new clinical modality aiming to regenerate damaged soft and hard dental tissues, allowing for root completion in young adults' teeth. Effective disinfection is crucial for REP success, but commonly used antimicrobials often harm the niche dental pulp stem cells (DPSCs). To our knowledge, this is the first study to explore the biocompatibility and antimicrobial potential of pectin as a potential natural intracanal medicament for REPs. Low methoxyl commercial citrus pectin (LM) (pectin CU701, Herbstreith&Fox.de) was used in all experiments. The pectin's antibacterial activity against single species biofilms (E. faecalis and F. nucleatum) was assessed using growth curves. The pectin's antimicrobial effect against mature dual-species biofilm was also evaluated using confocal laser scanning microscopy (CLSM) after 30 min and 7 days of treatment. The DPSC biocompatibility with 2% and 4% w/v of the pectin coatings was evaluated using live/dead staining, LDH, and WST-1 assays. Pectin showed a concentration-dependent inhibitory effect against single-species biofilms (E. faecalis and F. nucleatum) but failed to disrupt dual-species biofilm. Pectin at 2% w/v concentration proved to be biocompatible with the HDPSCs. However, 4% w/v pectin reduced both the viability and proliferation of the DPSCs. Low concentration (2% w/v) pectin was biocompatible with the DPSCs and showed an antimicrobial effect against single-species biofilms. This suggests the potential for using pectin as an injectable hydrogel for clinical applications in regenerative endodontics.
Collapse
Affiliation(s)
- Raghda Magdy Abdelgawad
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of Leeds, Leeds LS9 7TF, UK; (R.M.A.); (N.D.-T.); (A.A.); (T.D.)
- Department of Endodontics, Faculty of Dentistry, Assiut University, Assiut 83523, Egypt
| | - Nailê Damé-Teixeira
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of Leeds, Leeds LS9 7TF, UK; (R.M.A.); (N.D.-T.); (A.A.); (T.D.)
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Arwa Alghamdi
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of Leeds, Leeds LS9 7TF, UK; (R.M.A.); (N.D.-T.); (A.A.); (T.D.)
- Oral Biology Department, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abeer H. Mahran
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo 11566, Egypt;
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department and Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria 21527, Egypt;
| | - Thuy Do
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of Leeds, Leeds LS9 7TF, UK; (R.M.A.); (N.D.-T.); (A.A.); (T.D.)
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of Leeds, Leeds LS9 7TF, UK; (R.M.A.); (N.D.-T.); (A.A.); (T.D.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 8366004, Egypt
| |
Collapse
|
4
|
Kiaipour Z, Shafiee M, Ansari G. Role of Platelet Concentrates in Dental-Pulp Regeneration: A Systematic Review of Randomized Clinical Trials. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2024; 25:97-107. [PMID: 38962085 PMCID: PMC11217062 DOI: 10.30476/dentjods.2023.96000.1912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 01/13/2023] [Indexed: 07/05/2024]
Abstract
Statement of the Problem Treatment of immature necrotic teeth is a problematic situation. Conventional root canal therapy is challenging and leaves a weak, fragile, and undeveloped tooth for lifetime. Purpose This review was aimed to assess the outcome of available randomized clinical trials (RCTs) on the efficacy of platelet concentrates (PC) in dentine-pulp complex regeneration. Materials and Method In this systematic review, an electronic search was conducted on MEDLINE, EMBASE, Cochrane, and Google scholar databases. A further manual search was performed on the list of related articles in order to ensure inclusion of potentially missed articles in earlier electronic search. Those proved RCTs matched with the standard criteria were included following an initial assessment of abstracts and the text independently by the reviewers. Results From the total 602 harvested articles, only 13 met the criteria and were evaluated with 11 having parallel design and 2 split mouth. Only one study featured low risk of bias, while three had moderate risk and the rest were at high risk of bias. Six studies had used platelet rich plasma (PRP), 4 employed platelet rich fibrin (PRF), one utilized injectable platelet rich fibrin (I-PRF), and three used both PRF and PRP for their experimental groups while blood clot (BC) was used as the control group for all. The success rate was reported at 87.3% judged by the absence of pathologic signs and symptoms. Conclusion Dentin wall thickening, root lengthening and apex closure were higher in PC groups, however, these differences were not statistically significant in reported studies. It can be concluded that PCs promote the pulp tissue revitalization and continuation of root development. However, a consensus on its potency for true pulp regeneration is yet to be reached.
Collapse
Affiliation(s)
- Zahra Kiaipour
- Postgraduate Student, Dept. of Pediatric Dentistry, Dental School of Shahid Beheshti University of Medical Sciences, Tehran Iran
| | - Mahdieh Shafiee
- Stem Cell Research Canter, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Ghassem Ansari
- Head of the Hospital Dentistry and Sedation Unit, Dept. of Pediatric Dentistry, Past-President of IADR-Iranian Division, Dental School Shahid Beheshti Medical University, Tehran, Iran
| |
Collapse
|
5
|
Chaves ET, Morel LL, Pappen FG, Demarco FF, Santos LGP. Can a dentin bonding agent prevent color change in regenerative endodontic procedures? An in vitro evaluation. Braz Dent J 2024; 35:e245550. [PMID: 38775591 PMCID: PMC11086612 DOI: 10.1590/0103-6440202405550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/08/2024] [Indexed: 05/25/2024] Open
Abstract
This in vitro study aimed to determine the efficacy of dentin bonding agents in preventing color changes following Regenerative Endodontic Procedures. One hundred twenty bovine incisors were endodontically prepared and randomly assigned to a two main factors design: application of a dentin bonding agent (Scotchbond Adper, 3M ESPE, St Paul, MN, USA) in the pulp chamber (Group 1, n=60) versus no bonding intervention (Group 2, n=60), and five levels of intracanal medication (n=12/subgroup): Triple antibiotic paste (TAP), double antibiotic paste (DAB), calcium hydroxide (CH), modified triple antibiotic paste (TAPM), and Control (CTL). Color changes were measured over 28 days at multiple time points (1, 3, 7, 14, 21, and 28 days) using the CIEDE2000 formula to calculate the color difference (ΔE00) from baseline (T0). The ΔE00 quantifies the perceptible color difference between the initial and final tooth color, with lower values indicating less discoloration. The results were analyzed using repeated measures ANOVA-2 and post-hoc Holm-Sidak tests. The TAP subgroups, both with and without the bonding agent, exhibited the highest color variation. However, a pulp chamber seal with a bonding agent showed a protective effect against discoloration compared to no seal, even though complete prevention was not achieved. All groups demonstrated ΔE00 values beyond acceptable interpretation thresholds for clinical application, primarily driven by a reduction in lightness (L*) and a decrease in redness (a* value, shifting towards green). In conclusion, while the pulp chamber seal with a bonding agent mitigated TAP-induced discoloration, it did not eliminate it.
Collapse
Affiliation(s)
- Eduardo Trota Chaves
- Programa de Pós-Graduação em Odontologia, Universidade Federal de Pelotas (UFPel), Pelotas- RS- Brasil
| | - Laura Lourenço Morel
- Programa de Pós-graduação em Odontologia, Universidade Estadual de Campinas (UNICAMP), Campinas- SP- Brasil
| | - Fernanda Geraldo Pappen
- Programa de Pós-Graduação em Odontologia, Universidade Federal de Pelotas (UFPel), Pelotas- RS- Brasil
| | - Flávio Fernando Demarco
- Programa de Pós-Graduação em Odontologia, Universidade Federal de Pelotas (UFPel), Pelotas- RS- Brasil
| | | |
Collapse
|
6
|
Abdellatif D, Iandolo A, De Benedetto G, Giordano F, Mancino D, Euvrard E, Pisano M. Pulp regeneration treatment using different bioactive materials in permanent teeth of pediatric subjects. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:458-484. [PMID: 38939542 PMCID: PMC11205167 DOI: 10.4103/jcde.jcde_140_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024]
Abstract
Background and Objectives The present systematic review aims to assess the success rate of the pulp regeneration treatment, according to the American Association of Endodontists (AAE) criteria, using different bioactive materials in permanent teeth of pediatric subjects (6-17 years of age). Materials and Methods The study protocol was registered on PROSPERO and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. The question formulation was accomplished using the PICO model, and an electronic search was carried out on Scopus, MEDLINE/PubMed, Web of Science, and Cochrane databases till April 1, 2023. A total of 30 studies were established to fulfill the inclusion criteria of this systematic review. Results A total of 273 teeth have been treated with pulp regeneration treatment. By comparing different biomaterials and the success criteria defined by the AAE, the material associated with a higher success rate was found to be the white mineral trioxide aggregate. However, the overall success rate of pulp regeneration treatment was reported for 248 out of 273 teeth (91.20%). Conclusions Data obtained support the potential that regenerative endodontics aids in continuing root development in permanent immature teeth. Further studies are needed for a more extensive evaluation of the use of different biomaterials and the success rate in regenerative endodontics.
Collapse
Affiliation(s)
- Dina Abdellatif
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Alfredo Iandolo
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | | | - Francesco Giordano
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Davide Mancino
- Faculty of Dental Surgery, Federation of Medicine Translational of Strasbourg and Federation of Materials and Nanoscience of Alsace, University of Strasbourg, Strasbourg, CHU Besançon, France
| | - Edouard Euvrard
- Service of Maxillofacial Surgery, Stomatology and Hospital Odontology, CHU Besançon, France
- Laboratoire Sinergies EA 4662, University of Franche-Comté, Besançon, France
| | - Massimo Pisano
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| |
Collapse
|
7
|
Elnawam H, Abdallah A, Nouh S, Khalil NM, Elbackly R. Influence of extracellular matrix scaffolds on histological outcomes of regenerative endodontics in experimental animal models: a systematic review. BMC Oral Health 2024; 24:511. [PMID: 38689279 PMCID: PMC11061952 DOI: 10.1186/s12903-024-04266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Decellularized extracellular matrix (dECM) from several tissue sources has been proposed as a promising alternative to conventional scaffolds used in regenerative endodontic procedures (REPs). This systematic review aimed to evaluate the histological outcomes of studies utilizing dECM-derived scaffolds for REPs and to analyse the contributing factors that might influence the nature of regenerated tissues. METHODS The PRISMA 2020 guidelines were used. A search of articles published until April 2024 was conducted in Google Scholar, Scopus, PubMed and Web of Science databases. Additional records were manually searched in major endodontic journals. Original articles including histological results of dECM in REPs and in-vivo studies were included while reviews, in-vitro studies and clinical trials were excluded. The quality assessment of the included studies was analysed using the ARRIVE guidelines. Risk of Bias assessment was done using the (SYRCLE) risk of bias tool. RESULTS Out of the 387 studies obtained, 17 studies were included for analysis. In most studies, when used as scaffolds with or without exogenous cells, dECM showed the potential to enhance angiogenesis, dentinogenesis and to regenerate pulp-like and dentin-like tissues. However, the included studies showed heterogeneity of decellularization methods, animal models, scaffold source, form and delivery, as well as high risk of bias and average quality of evidence. DISCUSSION Decellularized ECM-derived scaffolds could offer a potential off-the-shelf scaffold for dentin-pulp regeneration in REPs. However, due to the methodological heterogeneity and the average quality of the studies included in this review, the overall effectiveness of decellularized ECM-derived scaffolds is still unclear. More standardized preclinical research is needed as well as well-constructed clinical trials to prove the efficacy of these scaffolds for clinical translation. OTHER The protocol was registered in PROSPERO database #CRD42023433026. This review was funded by the Science, Technology and Innovation Funding Authority (STDF) under grant number (44426).
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt.
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Zhao B, Zhang Q, Yang H, Yu S, Fu R, Shi S, Wang Y, Zhou W, Cui Y, Guo Q, Zhang X. Peptide KN-17-Loaded Supramolecular Hydrogel Induces the Regeneration of the Pulp-Dentin Complex. ACS Biomater Sci Eng 2024; 10:2523-2533. [PMID: 38445444 DOI: 10.1021/acsbiomaterials.3c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Regenerating the pulp-dentin complex remains a decisive factor during apexification for immature permanent teeth. Peptide KN-17, which was modified based on the structure of cecropin B, could effectively interfere with bacterial growth and induce the migration of human bone marrow stromal cells (hBMSCs). This study aimed to investigate the effect of KN-17 on the tissue regeneration. To our surprise, KN-17 can significantly stimulate angiogenesis in vitro and in vivo, which may provide a guarantee for apical closure. Herein, a novel peptide/KN-17 coassembled hydrogel is developed via a heating-cooling process. Npx-FFEY/KN-17 supramolecular hydrogel can induce vessel development, stimulate odontogenic differentiation of human dental pulp stem cells (hDPSCs), and exert an antibacterial effect on Enterococcus faecalis (E. faecalis). Furthermore, coronal pulp excised rat molars are supplied with KN-17 or KN-17-loaded hydrogel and transplanted subcutaneously in BALB/c-nu mice. After 4 weeks, the hydrogel Npx-FFEY/KN-17 stimulates the formation of multiple odontoblast-like cells and dentin-like structures. Our findings demonstrate that the KN-17-loaded hydrogel can promote the regeneration of the pulp-dentin complex for continued root development.
Collapse
Affiliation(s)
- Borui Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Qian Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Houzhi Yang
- Tianjin Medical University, Tianjin 300070, China
| | - Shuipeng Yu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Rui Fu
- Tianjin Medical University, Tianjin 300070, China
| | - Shurui Shi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zhou
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yange Cui
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Liao Y, Pan T, Xing X. Regenerative Endodontic Treatment in Dentinogenesis Imperfecta-Induced Apical Periodontitis. Case Rep Dent 2024; 2024:5128588. [PMID: 38223911 PMCID: PMC10787646 DOI: 10.1155/2024/5128588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Pulp involvement of immature permanent teeth with dentinogenesis imperfecta is challenging and could lead to extraction. A case of dentinogenesis imperfecta-induced periapical periodontitis of an immature permanent tooth was treated with regenerative endodontic treatment (RET), and root maturation was observed in 12-month follow-up. An 8-year-old girl presented acute pain and swelling in central mandibular region. Clinical and radiographic examination revealed "shell teeth" appearance of teeth 31, 41, and 42. Periapical lesion of tooth 31 was observed. Tooth 41 was previously treated with apexification. RET was planned and carried out for the necrotic tooth (tooth 31) with dentinogenesis imperfecta. The 1-, 3-, 7-, and 12-month postoperative recall revealed complete healing of periapical lesions. Root maturation characterized by elongation of root, thickening of dentinal walls, and closure of root apex was observed with radiographic examinations. We show that RET could be a desirable treatment for necrotic immature permanent teeth with dentinogenesis imperfecta and lead to resolution of endodontic lesions as well as maturation of dental root. The findings of this case suggest that RET should be considered by endodontist and pediatric dentist to treat teeth with similar dental anomalies and apical periodontitis.
Collapse
Affiliation(s)
- Ying Liao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ting Pan
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
10
|
Alharbi TM, Thabet AM, Alabbadi SH, Alhazmi MY, Khan HF, AlRasheed MA, Al-Twalbeh NA, Alsuhaim AS, Alqahtani NS. Unlocking the Potential of Cellular Guidance in Endodontics: Advancing the Process of Pulp Regeneration and Beyond. Cureus 2024; 16:e51651. [PMID: 38318576 PMCID: PMC10839349 DOI: 10.7759/cureus.51651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Regenerative endodontics represents a paradigm shift in dental therapy, with the potential to not only restore damaged dental tissues but also to preserve the vitality of teeth. At the heart of this innovative approach is cell homing, a technique that harnesses the body's own healing mechanisms by recruiting endogenous stem cells to the site of dental injury for effective tissue regeneration. This review delves into the intricate processes of cell homing in the context of regenerative endodontics, particularly focusing on its application in immature teeth with open apices. It examines the role of bioactive molecules, scaffolds, and growth factors in orchestrating cell migration and differentiation within the root canal space. In addition, the review addresses the current limitations in clinical practice, such as the challenges in completely regenerating the pulp-dentin complex and the unpredictability in long-term outcomes. It also explores future possibilities, including the potential for more refined and effective regenerative strategies. By providing a comprehensive overview of the current state of cell homing in regenerative endodontics, this article aims to contribute to the ongoing development of advanced therapeutic techniques that could revolutionize endodontic treatment and improve patient care.
Collapse
Affiliation(s)
- Tariq M Alharbi
- Endodontics, King Fahad General Hospital, Medina, SAU
- Endodontics, Speciality Dental Center, Medina, SAU
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dubey B, Rathore M. Mineral Trioxide Aggregate as an Apexogenesis Agent for Complicated Crown Fractures in Young Permanent Incisor. Case Rep Dent 2023; 2023:5597996. [PMID: 37435432 PMCID: PMC10332921 DOI: 10.1155/2023/5597996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
Traumatic dental injuries are extremely common in children, and trauma to developing permanent teeth can disrupt root maturation; vital pulp therapy is an appropriate treatment for these teeth. This case report describes a 9-year-old boy who suffered dental trauma while playing football, resulting in an enamel-dentin fracture with pulp exposure in the left central incisor with an open apex (Cvek's stage 3) and an enamel-dentin fracture in the right central incisor with an open apex (Cvek's stage 3). Apexogenesis with mineral trioxide aggregate was performed to preserve the neurovascular bundle, allowing normal radicular formation in the left central incisor. During a 2-year follow-up, the tooth showed no signs and symptoms, and radiographic examinations revealed no evidence of radiolucent lesions in the periapical region. This case study provides compelling evidence that the utilization of the described agent yields significant efficacy in treating traumatic fractures accompanied by pulp exposure.
Collapse
Affiliation(s)
- Bibhav Dubey
- Department of Pediatric and Preventive Dentistry, BBD College of Dental Sciences, BBD University, Lucknow, Uttar Pradesh, India
| | - Monika Rathore
- Department of Pediatric and Preventive Dentistry, BBD College of Dental Sciences, BBD University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Naik SV, Prakash AJ, Prabhakar Attiguppe R. A survey on awareness and knowledge among dentist practicing regenerative endodontics towards current regenerative endodontic protocols and the scaffolds used in regenerative dentistry. Saudi Dent J 2023; 35:559-566. [PMID: 37520602 PMCID: PMC10373079 DOI: 10.1016/j.sdentj.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 08/01/2023] Open
Abstract
There are many inconsistencies in the protocols followed for Regenerative Endodontic Procedures (REP's).This study was formulated with an aim to conduct a survey among Pediatric Dentists, Endodontists and General Practioners treating Necrotic young permanent teeth to examine their awareness and Knowledge on Current Regenerative Endodontic Protocols and Scaffolds used in regenerative dentistry. Methods A Cross-Sectional Survey was carried out amongst 100 Pediatric dentists,100 Endodontists and 100 General Practioners. It was web-based survey and the questionnaire was formulated and all the items in the questionnaire were tested for reliability and validity before circulation of the questionnaire for the purpose of the study. Results The results of the study indicated that all the three groups were unaware that failure of cases should be reported to AEE (American Academy of Endodontics) REP Database and only 20.2, 20.1 and 0.3 % of Pediatric dentists,Endodontists and General Dentists preferred Regenerative Dentistry as a clinical protocol for REP. With respect to knowledge regarding irrigation and disinfection procedures all three groups were lacking in the knowledge regarding intracanal medicament for disinfection and the irrigation solutions. Conclusion There is a lack of homogeneity in protocols followed for REP among those practicing Regenerative Endodontics as a protocol. Since it's an evolving science there is a need to bring about a uniformity in practices to increase the evidences to support the causal effect relation of regenerative endodontics.
Collapse
Affiliation(s)
- Saraswathi V. Naik
- Department of Pedodontics and Preventive Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | - Aarathi J. Prakash
- Department of Pediatrics and Preventive Dentistry, Malabar Dental College and Research Center, India
| | - R. Prabhakar Attiguppe
- Department of Pediatrics and Preventive Dentistry, Malabar Dental College and Research Center, India
| |
Collapse
|
13
|
Al Turkestani N, Zhang Z, Nör JE. Semaphorin 4D Induces Vasculogenic Differentiation of Dental Pulp Stem Cells. Dent J (Basel) 2023; 11:160. [PMID: 37504226 PMCID: PMC10378119 DOI: 10.3390/dj11070160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
This work aimed to evaluate the effect of Semaphorin 4D (SEMA4D) signaling through Plexin B1 on the vasculogenic differentiation of dental pulp stem cells. We assessed the protein expression of SEMA4D and Plexin B1 in dental pulp stem cells (DPSC) from permanent human teeth and stem cells from human exfoliated deciduous (SHED) teeth using Western blots. Their expression in human dental pulp tissues and DPSC-engineered dental pulps was determined using immunofluorescence. We then exposed dental pulp stem cells to recombinant human SEMA4D (rhSEMA4D), evaluated the expression of endothelial cell differentiation markers, and assessed the vasculogenic potential of rhSEMA4D using an in vitro sprouting assay. Lastly, Plexin B1 was silenced to ascertain its role in SEMA4D-mediated vasculogenic differentiation. We found that SEMA4D and Plexin B1 are expressed in DPSC, SHED, and human dental pulp tissues. rhSEMA4D (25-100 ng/mL) induced the expression of endothelial markers, i.e., vascular endothelial growth factor receptor (VEGFR)-2, cluster of differentiation (CD)-31, and tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie)-2, in dental pulp stem cells and promoted capillary-like sprouting in vitro (p < 0.05). Furthermore, Plexin B1 silencing abrogated the vasculogenic differentiation of dental pulp stem cells and significantly inhibited capillary sprouting upon exposure to rhSEMA4D. Collectively, these data provide evidence that SEMA4D induces vasculogenic differentiation of dental pulp stem cells through Plexin B1 signaling.
Collapse
Affiliation(s)
- Najla Al Turkestani
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (N.A.T.); (Z.Z.)
- Department of Restorative and Aesthetic Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (N.A.T.); (Z.Z.)
| | - Jacques Eduardo Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (N.A.T.); (Z.Z.)
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Arias Z, Nizami MZI, Chen X, Chai X, Xu B, Kuang C, Omori K, Takashiba S. Recent Advances in Apical Periodontitis Treatment: A Narrative Review. Bioengineering (Basel) 2023; 10:bioengineering10040488. [PMID: 37106675 PMCID: PMC10136087 DOI: 10.3390/bioengineering10040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Apical periodontitis is an inflammatory response caused by pulp infection. It induces bone resorption in the apical and periapical regions of the tooth. The most conservative approach to treat this condition is nonsurgical endodontic treatment. However, clinical failure has been reported with this approach; thus, alternative procedures are required. This review highlights recent literature regarding advanced approaches for the treatment of apical periodontitis. Various therapies, including biological medications, antioxidants, specialized pro-resolving lipid mediators, and stem cell therapy, have been tested to increase the success rate of treatment for apical periodontitis. Some of these approaches remain in the in vivo phase of research, while others have just entered the translational research phase to validate clinical application. However, a detailed understanding of the molecular mechanisms that occur during development of the immunoinflammatory reaction in apical periodontitis remains unclear. The aim of this review was to summarize advanced approaches for the treatment of apical periodontitis. Further research can confirm the potential of these alternative nonsurgical endodontic treatment approaches.
Collapse
Affiliation(s)
- Zulema Arias
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mohammed Zahedul Islam Nizami
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China
| | - Xiaoting Chen
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xinyi Chai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Bin Xu
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Canyan Kuang
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
15
|
Cytotoxicity and Biomineralization Potential of Flavonoids Incorporated into PNVCL Hydrogels. J Funct Biomater 2023; 14:jfb14030139. [PMID: 36976063 PMCID: PMC10058549 DOI: 10.3390/jfb14030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to evaluate the effects of flavonoids incorporated into poly(N-vinylcaprolactam) (PNVCL) hydrogel on cell viability and mineralization markers of odontoblast-like cells. MDPC-23 cells were exposed to ampelopsin (AMP), isoquercitrin (ISO), rutin (RUT) and control calcium hydroxide (CH) for evaluation of cell viability, total protein (TP) production, alkaline phosphatase (ALP) activity and mineralized nodule deposition by colorimetric assays. Based on an initial screening, AMP and CH were loaded into PNVCL hydrogels and had their cytotoxicity and effect on mineralization markers determined. Cell viability was above 70% when MDPC-23 cells were treated with AMP, ISO and RUT. AMP showed the highest ALP activity and mineralized nodule deposition. Extracts of PNVCL+AMP and PNVCL+CH in culture medium (at the dilutions of 1/16 and 1/32) did not affect cell viability and stimulated ALP activity and mineralized nodules’ deposition, which were statistically higher than the control in osteogenic medium. In conclusion, AMP and AMP-loaded PNVCL hydrogels were cytocompatible and able to induce bio-mineralization markers in odontoblast-cells.
Collapse
|
16
|
Liu L, Wu D, Tu H, Cao M, Li M, Peng L, Yang J. Applications of Hydrogels in Drug Delivery for Oral and Maxillofacial Diseases. Gels 2023; 9:gels9020146. [PMID: 36826316 PMCID: PMC9956178 DOI: 10.3390/gels9020146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Oral and maxillofacial diseases have an important impact on local function, facial appearance, and general health. As a multifunctional platform, hydrogels are widely used in the biomedical field due to their excellent physicochemical properties. In recent years, a large number of studies have been conducted to adapt hydrogels to the complex oral and maxillofacial environment by modulating their pore size, swelling, degradability, stimulus-response properties, etc. Meanwhile, many studies have attempted to use hydrogels as drug delivery carriers to load drugs, cytokines, and stem cells for antibacterial, anticancer, and tissue regeneration applications in oral and maxillofacial regions. This paper reviews the application and research progress of hydrogel-based drug delivery systems in the treatment of oral and maxillofacial diseases such as caries, endodontic diseases, periodontal diseases, maxillofacial bone diseases, mucosal diseases, oral cancer, etc. The characteristics and applications of hydrogels and drug-delivery systems employed for the treatment of different diseases are discussed in order to provide a reference for further research on hydrogel drug-delivery systems in the future.
Collapse
Affiliation(s)
- Lijia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
17
|
Cell-Based Transplantation versus Cell Homing Approaches for Pulp-Dentin Complex Regeneration. Stem Cells Int 2021; 2021:8483668. [PMID: 34646323 PMCID: PMC8505125 DOI: 10.1155/2021/8483668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Regenerative dentistry has paved the way for a new era for the replacement of damaged dental tissues. Whether the causative factor is dental caries, trauma, or chemical insult, the loss of the pulp vitality constitutes one of the major health problems worldwide. Two regenerative therapies were introduced for a fully functional pulp-dentin complex regeneration, namely, cell-based (cell transplantation) and cell homing (through revascularization or homing by injection of stem cells in situ or intravenously) therapies, with each demonstrating advantages as well as drawbacks, especially in clinical application. The present review is aimed at elaborating on these two techniques in the treatment of irreversibly inflamed or necrotic pulp, which is aimed at regenerating a fully functional pulp-dentin complex.
Collapse
|
18
|
Different Approaches to the Regeneration of Dental Tissues in Regenerative Endodontics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
(1) Background: The regenerative procedure has established a new approach to root canal therapy, to preserve the vital pulp of the tooth. This present review aimed to describe and sum up the different approaches to regenerative endodontic treatment conducted in the last 10 years; (2) Methods: A literature search was performed in the PubMed and Cochrane Library electronic databases, supplemented by a manual search. The search strategy included the following terms: “regenerative endodontic protocol”, “regenerative endodontic treatment”, and “regenerative endodontics” combined with “pulp revascularization”. Only studies on humans, published in the last 10 years and written in English were included; (3) Results: Three hundred and eighty-six potentially significant articles were identified. After exclusion of duplicates, and meticulous analysis, 36 case reports were selected; (4) Conclusions: The pulp revascularization procedure may bring a favorable outcome, however, the prognosis of regenerative endodontics (RET) is unpredictable. Permanent immature teeth showed greater potential for positive outcomes after the regenerative procedure. Further controlled clinical studies are required to fully understand the process of the dentin–pulp complex regeneration, and the predictability of the procedure.
Collapse
|