1
|
Correa-Barbosa J, Brígido HPC, Matte BF, Campos PSD, Lamers ML, Sodré DF, Nascimento PHC, Ferreira GG, Vale VV, Marinho AMDR, Siqueira JEDS, Coelho-Ferreira MR, Monteiro MC, Dolabela MF. Healing and leishmanicidal activity of Zanthoxylum rhoifolium Lam. Front Chem 2025; 13:1504998. [PMID: 40235717 PMCID: PMC11996901 DOI: 10.3389/fchem.2025.1504998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Zanthoxylum rhoifolium is used in folk medicine as an antiparasitic agent. Therefore, this study evaluated the phytochemical aspects and biological activities of Z. rhoifolium. For this, the ethanolic extract (EE) was obtained by macerating the peel with ethanol and subjected to acid-base partition to obtain the neutral fractions (FN) and alkaloid fractions (FA). These samples were analyzed using chromatography techniques. From this, a substance was isolated from FN and identified by nuclear magnetic resonance. For biological activity, strains of Leishmania amazonensis were used for leishmanicidal activity. For cytotoxicity, cell viability methods were used and finally, the selectivity index (SI) was determined. Cell proliferation assay (SRB method) was also performed, such as a wound healing assay. After analysis, it was inferred that in chromatography, EE, FN and FA presented peaks suggestive of alkaloids, and the alkaloid chelerythrine was isolated from FN. In antiparasitic activity against promastigotes, EE, FN and FA were active. Against amastigotes, the infection inhibition index was dose dependent for EE and FN. In the cytotoxicity test (J774), EE and FN showed moderate cytotoxicity, while FA demonstrated cytotoxicity. In VERO strain, EE and FA showed moderate cytotoxicity, while FN was not cytotoxic. Finally, considering the SI, EE, FN and FA showed high selectivity. Furthermore, EE and FN increased cell proliferation and FN promoted a healing effect. Thus, it is highlighted that the specie Z. rhoifolium presented antileishmanial activity and selectivity for the parasite, and its FN presented healing potential.
Collapse
Affiliation(s)
- Juliana Correa-Barbosa
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences - Federal University of Pará (UFPA)Belém, Brazil
- Postgraduate Pharmaceutical Sciences Program, Institute of Health Sciences - Federal University of Pará (UFPA), Belém, Brazil
| | - Heliton Patrick Cordovil Brígido
- National Council for Scientific and Technological Development (CNPq), Federal University of Pará, Belém, Brazil
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém, Brazil
| | - Bibiana Franzen Matte
- Faculty of Dentistry, Institute of Health Sciences - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Paloma Santos De Campos
- Faculty of Dentistry, Institute of Health Sciences - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Faculty of Dentistry, Institute of Health Sciences - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniele Ferreira Sodré
- Faculty of Pharmacy, Institute of Health Sciences - Federal University of Pará (UFPA), Belém, Brazil
| | | | - Gleison Gonçalves Ferreira
- Botany Coordination, Museu Paraense Emílio Goeldi, Ministério da Ciência, Tecnologia, Inovação e Comunicações, Belém, Pará, Brazil
| | - Valdicley Vieira Vale
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences - Federal University of Pará (UFPA)Belém, Brazil
| | | | - José Edson De Sousa Siqueira
- Postgraduate Program in Chemistry, Institute of Exact and Natural Sciences - Federal University of Pará (UFPA), Belém, Brazil
| | - Márlia Regina Coelho-Ferreira
- Botany Coordination, Museu Paraense Emílio Goeldi, Ministério da Ciência, Tecnologia, Inovação e Comunicações, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Postgraduate Pharmaceutical Sciences Program, Institute of Health Sciences - Federal University of Pará (UFPA), Belém, Brazil
- Coordinator of the National Institute of Science, Technology and Innovation INCT-PROBIAM Pharmaceuticals Amazonia, Federal University of Pará, Belém, Brazil
- Postgraduate Neuroscience and Cellular Biology Program, Federal University of Pará, Belém, Brazil
- Postgraduate Pharmacology and Biochemistry Program, Federal University of Pará, Belém, Brazil
| | - Maria Fâni Dolabela
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences - Federal University of Pará (UFPA)Belém, Brazil
- Postgraduate Pharmaceutical Sciences Program, Institute of Health Sciences - Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
2
|
Sabila EI, Ramadhani AA, Fadhilah H, Nasution BN, Fathiya, Situmorang PC. Effectiveness of Gel from Andaliman Fruit ( Zanthoxylum acanthopodium DC.) Extract on Wound Inflammation. Pak J Biol Sci 2024; 27:142-151. [PMID: 38686736 DOI: 10.3923/pjbs.2024.142.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
<b>Background and Objective:</b> Pain is caused by damaged tissue on the outside or inside of an organ and it is regulated by chemicals. Synthetic drugs are used to ease pain because they are analgesics in the field of medicine. Traditional medicine is known to help people all over the world, in both rich and developing nations. The Andaliman fruit, or <i>Zanthoxylum acanthopodium</i> DC., comes from a spice plant that grows naturally in Toba Regency, North Sumatra, Indonesia. This study aims to determine the formulation of the nanoherbal analgesic spray gel preparation of Andaliman fruit (<i>Zanthoxylum acanthopodium</i> DC.) in terms of its effectiveness as a pain reliever. <b>Materials and Methods:</b> There were three amounts of spray gel made, namely 5, 10 and 15% and tests were done to see how well they worked. <i>Staphylococcus aureus</i> bacteria were used in the bacterial blocking test. To test how well painkillers worked, five groups of mice were used. Using a hot iron, tests for anti-inflammatory activity and wound healing were done. The tissue was then watched for 14 days and analysed using Hematoxylin and Eosin (H&E) stains. <b>Results:</b> The 15% concentration reduces pain and the time it takes for the body to respond to it. The clear zone size is the same as (K<sup>+</sup>) and it can lower the number of inflammatory cells and help wounds heal by adding fibroblast and collagen cells. These findings are supported by significant data results (p<0.05, p = 0.018). <b>Conclusion:</b> Finally, analgesic gel spray made from the Andaliman fruit at a 15% concentration can help with pain and also be antibacterial, reduce inflammation and help wounds heal.</p>.
Collapse
|
3
|
Qi J, Pan Z, Wang X, Zhang N, He G, Jiang X. Research advances of Zanthoxylum bungeanum Maxim. polyphenols in inflammatory diseases. Front Immunol 2024; 15:1305886. [PMID: 38343532 PMCID: PMC10853423 DOI: 10.3389/fimmu.2024.1305886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a well-known spice and traditional Chinese medicine ingredient with a rich history of use in treating inflammatory conditions. This review provides a comprehensive overview of the botanical classification, traditional applications, and anti-inflammatory effects of Z. bungeanum, with a specific focus on its polyphenolic components. These polyphenols have exhibited considerable promise, as evidenced by preclinical studies in animal models, suggesting their therapeutic potential in human inflammatory diseases such as ulcerative colitis, arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease, and neurodegenerative conditions. This positions them as a promising class of natural compounds with the potential to enhance human well-being. However, further research is necessary to fully elucidate their mechanisms of action and develop safe and effective therapeutic applications.
Collapse
Affiliation(s)
- Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Liang W, Yang H, Lei H, Xiang Z, Duan Y, Xin H, Han T, Su J. Phytochemistry and health functions of Zanthoxylum bungeanum Maxim and Zanthoxylum schinifolium Sieb. et Zucc as pharma-foods: A systematic review. Trends Food Sci Technol 2024; 143:104225. [DOI: 10.1016/j.tifs.2023.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Yan Z, Li S, Gong Z. Bisacurone gel ameliorated burn wounds in experimental rats via its anti-inflammatory, antioxidant, and angiogenic properties. Acta Cir Bras 2023; 38:e382423. [PMID: 37610964 PMCID: PMC10443232 DOI: 10.1590/acb382423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/26/2023] [Indexed: 08/25/2023] Open
Abstract
PURPOSE To investigate putative mechanism of wound healing for chitosan-based bisacurone gel against secondary burn wounds in rats. METHODS A second-degree burn wound with an open flame using mixed fuel (2 mL, 20 seconds) was induced in Sprague Dawley rats (male, 180-220 g, n = 15, each) followed by topical treatments with either vehicle control (white petroleum gel, 1%), silver sulfadiazine (1%) or bisacurone gel (2.5, 5, or 10%) for 20 days. Wound contraction rate and paw withdrawal threshold were monitored on various days. Oxidative stress (superoxide dismutase, glutathione, malondialdehyde, and nitric oxide), pro-inflammatory cytokines (tumour necrosis factor-alpha, interleukins by enzyme-linked immunosorbent assay), growth factors (transforming growth factor-β, vascular endothelial growth factor C using real time polymerase chain reaction and Western blot assay) levels, and histology of wound skin were assessed at the end. RESULTS Bisacurone gel showed 98.72% drug release with a 420.90-442.70 cps viscosity. Bisacurone gel (5 and 10%) significantly (p < 0.05) improved wound contraction rate and paw withdrawal threshold. Bisacurone gel attenuated oxidative stress, pro-inflammatory cytokines, and water content. It also enhanced angiogenesis (hydroxyproline and growth factor) and granulation in wound tissue than vehicle control. CONCLUSIONS These findings suggested that bisacurone gel can be a potential candidate to treat burn wounds via its anti-inflammatory, antioxidant, and angiogenic properties.
Collapse
Affiliation(s)
- Zengqiang Yan
- Inner Mongolia Baogang Hospital – Department of Burns Surgery – Baotou, Inner Mongolia, China
| | - Shuyan Li
- Inner Mongolia Tongliao Mental Health Center – Department of Cardiology – Tongliao, Inner Mongolia, China
| | - Zhenzhong Gong
- Fifth Hospital of Harbin City – Department of Burns – Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Wang W, Pang W, Yan S, Zheng X, Han Q, Yao Y, Jin L, Zhang C. Zanthoxylum bungeanum seed oil inhibits tumorigenesis of human melanoma A375 by regulating CDC25A/CyclinB1/CDK1 signaling pathways in vitro and in vivo. Front Pharmacol 2023; 14:1165584. [PMID: 37081962 PMCID: PMC10110958 DOI: 10.3389/fphar.2023.1165584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Background:Zanthoxylum bungeanum seed oil (ZBSO) is extracted from the seeds of the traditional Chinese medicine Z. bungeanum Maxim, which has been shown to have anti-melanoma effects. However, the specific mechanisms are not illustrated adequately.Aims: To further investigate the mechanism by which ZBSO inhibits melanoma and to provide scientific evidence to support ZBSO as a potential melanoma therapeutic candidate.Methods: CCK-8 assays were used to detect the function of ZBSO on A375 cells. Based on transcriptomics analyses, Western blot analysis was applied to determine whether an association existed in ZBSO with the CDC25A/CyclinB1/CDK1 signaling pathway. In addition, RT-qPCR and immunohistochemistry analysis validated that ZBSO has the anti-melanoma effect in a nude mouse xenograft model of human melanoma. Then, 16S rRNA sequencing was used to detect the regulation of gut microbes.Results: Cellular assays revealed that ZBSO could inhibit A375 cell viability by regulating the cell cycle pathway. Further studies presented that ZBSO could constrain CDC25A/CyclinB1/CDK1 signaling pathway in vitro and in vivo models of melanoma. ZBSO did not produce toxicity in mice, and significantly reduced tumor volume in xenotransplants of A375 cells. Genome analysis indicated that ZBSO successfully altered specific gut microbes.Conclusion: ZBSO inhibited the growth of A375 cells by regulating CDC25A/cyclinB1/CDK1 signaling pathway both in vitro and in vivo, suggesting that ZBSO may be a novel potential therapeutic agent.
Collapse
Affiliation(s)
- Wanting Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Wenwen Pang
- Department of Clinical Laboratory, Tianjin Union Medical Center, Tianjin, China
| | - Suying Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xiaoli Zheng
- Department of Clinical Laboratory, Tianjin Union Medical Center, Tianjin, China
| | - Qiurong Han
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yao Yao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Leixin Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
- *Correspondence: Chunze Zhang,
| |
Collapse
|
7
|
Skowrońska W, Bazylko A. The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn-A Review. Pharmaceutics 2023; 15:pharmaceutics15020633. [PMID: 36839954 PMCID: PMC9958865 DOI: 10.3390/pharmaceutics15020633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Treating burns remains a challenge for modern medicine, especially in developing countries that cannot afford expensive, advanced therapies. This review article summarises clinical and animal model studies of botanical preparations and their mixtures in treating burn wounds and sunburn. Articles available in electronic databases such as PubMed, Scopus, Web of Science, Science Direct and Google Scholar, published in English in 2010-2022, were considered. In the described clinical trials, it was shown that some herbal preparations have better effectiveness in treating burn wounds, including shortening the healing time and reducing inflammation, than the conventional treatment used hitherto. These herbal preparations contained extracts from Albizia julibrissin, Alkanna tinctoria, Aloe vera, Arnebia euchroma, Betula pendula and Betula pubescens, Centella asiatica, Hippophaë rhamnoides, Juglans regia, Lawsonia inermis, and mixtures of Matricaria chamomilla and Rosa canina. Research on animal models shows that many extracts may potentially benefit the treatment of burn wounds and sunburn. Due to the diverse mechanism of action, antibacterial activity, the safety of use and cost-effectiveness, herbal preparations can compete with conventional treatment. The growing interest in alternative medicine and herbal medicine encourages further research. Not only single preparations but also their mixtures should be taken into account because the research conducted so far often suggests a synergistic effect of the ingredients.
Collapse
|
8
|
α-Linolenic Acid Inhibits RANKL-Induced Osteoclastogenesis In Vitro and Prevents Inflammation In Vivo. Foods 2023; 12:foods12030682. [PMID: 36766210 PMCID: PMC9914290 DOI: 10.3390/foods12030682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Inflammation is an important risk factor for bone-destroying diseases. Our preliminary research found that Zanthoxylum bungeanum seed oil (ZBSO) is abundant in unsaturated fatty acids and could inhibit osteoclastogenesis in receptor activator of nuclear factor κB ligand (RANKL)-induced RAW264.7 cells. However, the key constituents in ZBSO in the prevention of osteoclastogenesis and its possible mechanism related to inflammation are still unclear. Therefore, in this study, oleic acid (OA), linoleic acid (LA), palmitoleic acid (PLA), and alpha-linolenic acid (ALA) in ZBSO, havingthe strongest effect on RANKL-induced osteoclastogenesis, were selected by a tartrate-resistant acid phosphatase (TRAP) staining method. Furthermore, the effects of the selected fatty acids on anti-inflammation and anti-osteoclastogenesis in vitro and in vivo were assessed using RT-qPCR. Among the four major unsaturated fatty acids we tested, ALA displayed the strongest inhibitory effect on osteoclastogenesis. The increased expression of free fatty acid receptor 4 (FFAR4) and β-arrestin2 (βarr2), as well as the decreased expression of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), nuclear factor of activated T-cells c1 (NFATc1), and tartrate-resistant acid phosphatase (TRAP) in RAW264.7 cells after ALA treatment were observed. Moreover, in ovariectomized osteoporotic rats with ALA preventive intervention, we found that the expression of TNF-α, interleukin-6 (IL-6), interleukin-1β (IL-1β), NFATc1, and TRAP were decreased, while with the ALA therapeutic intervention, downregulated expression of NF-κB, NFATc1, TRAP, and transforming growth factor beta-activated kinase 1 (TAK1) were noticed. These results indicate that ALA, as the major unsaturated fatty acid in ZBSO, could inhibit RANKL-induced osteoclastogenesis via the FFAR4/βarr2 signaling pathway and could prevent inflammation, suggesting that ZBSO may be a promising potential natural product of unsaturated fatty acids and a dietary supplement for the prevention of osteoclastogenesis and inflammatory diseases.
Collapse
|
9
|
Bioinspired gelatin based sticky hydrogel for diverse surfaces in burn wound care. Sci Rep 2022; 12:13735. [PMID: 35962001 PMCID: PMC9374690 DOI: 10.1038/s41598-022-17054-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Proper burn wound management considers patient’s compliance and provides an environment to accelerate wound closure. Sticky hydrogels are conducive to wound management. They can act as a preventive infection patch with controlled drug delivery and diverse surface adherence. A hypothesis-driven investigation explores a bioinspired polydopamine property in a gelatin-based hydrogel (GbH) where polyvinyl alcohol and starch function as hydrogel backbone. The GbH displayed promising physical properties with O–H group rich surface. The GbH was sticky onto dry surfaces (glass, plastic and aluminium) and wet surfaces (pork and chicken). The GbH demonstrated mathematical kinetics for a transdermal formulation, and the in vitro and in vivo toxicity of the GbH on test models confirmed the models’ healthy growth and biocompatibility. The quercetin-loaded GbH showed 45–50% wound contraction on day 4 for second-degree burn wounds in rat models that were equivalent to the silver sulfadiazine treatment group. The estimates for tensile strength, biochemicals, connective tissue markers and NF-κB were restored on day 21 in the GbH treated healed wounds to imitate the normal level of the skin. The bioinspired GbH promotes efficient wound healing of second-degree burn wounds in rat models, indicating its pre-clinical applicability.
Collapse
|
10
|
He F, Luo S, Liu S, Wan S, Li J, Chen J, Zuo H, Pei X. Zanthoxylum bungeanum seed oil inhibits RANKL-induced osteoclastogenesis by suppressing ERK/c-JUN/NFATc1 pathway and regulating cell cycle arrest in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115094. [PMID: 35149133 DOI: 10.1016/j.jep.2022.115094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum bungeanum Maxim (ZBM), a traditional Chinese medicine, is traditionally used for osteoporosis treatment recorded in ancient Chinese medicine work Benjingshuzheng and reported to have the anti-bone loss activity in recent studies. However, the anti-osteoporotic activities of the seed of ZBM have not been elucidated yet. Our previous study found that Zanthoxylum bungeanum Maxim seed oil (ZBSO) was rich in polyunsaturated fatty acids (PUFAs), which were reported to prevent bone loss. Thus, we propose a hypothesis that ZBSO could be a potential natural resource for anti-bone loss. AIM OF THE STUDY To investigate whether ZBSO could prevent bone loss by targeting osteoclastogenesis and investigate the potential mechanisms in receptor-activator of nuclear factor κB ligand (RANKL)-induced RAW264.7 cells. MATERIALS AND METHODS RAW264.7 cells were treated with RANKL in the presence or absence of ZBSO. The effect of ZBSO on osteoclast differentiation and bone resorption activity of RAW264.7 cells were evaluated by tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, and bone resorption assay. Differentially expression genes (DEGs) and relevant pathways of different cell groups were obtained from RNA sequencing and protein-protein interaction (PPI) network analysis followed by KEGG pathway enrichment analysis. The effect of ZBSO on the RANKL-induced cell cycle change was analyzed by flow cytometry assay, and the expression of genes and proteins related to the selected pathways was further verified by RT-qPCR and western blot analysis. RESULTS The inhibitory effects of ZBSO on osteoclast differentiation and bone resorption activity in a dose-dependent manner were demonstrated by TRAP staining, F-actin ring staining, and bone resorption assay in RANKL-induced RAW264.7 cells. Osteoclast differentiation and cell cycle pathways were the most enriched pathways based on DEGs enrichment analysis among different cell groups. The reversion effect of ZBSO on the RANKL-induced RAW264.7 cell cycle arrest at the G1 phase was observed by flow cytometry assay. Western blot results showed that ZBSO markedly decreased RANKL-induced activation of ERK, as well as the phosphorylation of c-JUN and NFATc1 expression, and subsequently suppressed osteoclast-specific genes, such as Ctsk, Trap, and Dc-stamp. CONCLUSIONS ZBSO exhibited an inhibitory effect on osteoclastogenesis via suppressing the ERK/c-JUN/NFATc1 pathway and regulating cell cycle arrest induced by RANKL, suggesting that ZBSO may serve as a promising agent for anti-bone loss.
Collapse
Affiliation(s)
- Fangting He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Shuhan Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Sijing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Siqi Wan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Jingjing Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Jiayi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China; Non-communicable Diseases Research Center, West China-PUMC C.C Chen Institute of Health, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
11
|
Devi MV, Poornima V, Sivagnanam UT. Wound healing in second-degree burns in rats treated with silver sulfadiazine: a systematic review and meta-analysis. J Wound Care 2022; 31:S31-S45. [DOI: 10.12968/jowc.2022.31.sup4.s31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: This study aims to assess the wound healing efficacy in second-degree burns in rats treated with 1% silver sulfadiazine (SSD)—a sulfonamide antibiotic. Method: This is a systematic literature review and meta-analysis performed according to the PICO (Population, Intervention, Comparison and Outcomes) strategy. Results: The review found 100 studies in PubMed, Web of Science and other search engines. Of these, 70 studies were pre-selected after removing duplicates. After independent analysis by two reviewers, only seven studies met the inclusion criteria for meta-analysis. All studies except one showed faster wound closure by the application of silver sulfadiazine ointment. Using a random effects model, healing was faster in SSD-treated groups when compared to the control group on day 21, with a statistically significant mean difference of –2.72 days (95% confidence interval: –4.99, –0.45) between treatment and control groups (p<0.01). Conclusion: The results of this meta-analysis revealed that SSD aided in faster healing of second-degree burns.
Collapse
Affiliation(s)
- Mohan Vimala Devi
- Biological Materials Laboratory, CSIR–Central Leather Research Institute, Adyar, Chennai, India
- Department of Leather Technology, (Housed at CSIR–Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai-600020, India
| | - Velswamy Poornima
- Biological Materials Laboratory, CSIR–Central Leather Research Institute, Adyar, Chennai, India
- Department of Leather Technology, (Housed at CSIR–Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai-600020, India
| | | |
Collapse
|
12
|
Zanthoxylum bungeanum Seed Oil Attenuates LPS-Induced BEAS-2B Cell Activation and Inflammation by Inhibiting the TLR4/MyD88/NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2073296. [PMID: 34603465 PMCID: PMC8486531 DOI: 10.1155/2021/2073296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Background Zanthoxylum bungeanum seed oil (ZBSO) is a natural essential oil derived from the seeds of the Chinese medicinal plant Zanthoxylum bungeanum, which has been investigated for antitumor and anti-inflammatory effects. However, little is known regarding the effects of ZBSO in chronic obstructive pulmonary disease (COPD). Methods In this study, lung epithelial cells (BEAS-2B) were induced by lipopolysaccharide (LPS) to establish an in vitro model of COPD, and cytotoxicity was detected by a cell counting kit 8 (CCK-8) assay. Griess test, enzyme-linked immunosorbent assay (ELISA), reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), western blot, immunofluorescence, and molecular docking analyses were used to investigate the effects of ZBSO and its potential mechanisms. Results The results showed that LPS promoted the expression of nitric oxide (NO), reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-2 (MMP-2), MMP-9, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2), suggesting that LPS can induce inflammation and oxidative stress in BEAS-2B cells. ZBSO inhibits the LPS-induced expression of inflammatory mediators and proinflammatory cytokines in BEAS-2B cells. The molecular docking results indicated that active components in ZBSO could successfully dock with toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and p65. Immunofluorescence and western blot analyses further demonstrated that ZBSO repressed protein expression associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) signaling pathway. Conclusions ZBSO reduced the inflammatory response and oxidative stress induced by LPS by inhibiting the TLR4/MyD88/NF-κB signaling pathway, thereby suppressing COPD. ZBSO may represent a promising therapeutic candidate for COPD treatment.
Collapse
|
13
|
Zhang L, Hu Q, Jin H, Yang Y, Yang Y, Yang R, Shen Z, Chen P. Effects of ginsenoside Rb1 on second-degree burn wound healing and FGF-2/PDGF-BB/PDGFR-β pathway modulation. Chin Med 2021; 16:45. [PMID: 34147112 PMCID: PMC8214283 DOI: 10.1186/s13020-021-00455-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background Panax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a traditional Chinese medicine that has been used therapeutically for cardiovascular diseases, inflammatory diseases and traumatic injuries as well as for external and internal bleeding due to injury. Ginsenoside Rb1, a crucial monomeric active constituent extracted from P. notoginseng, has attracted widespread attention because of its potential anti-inflammatory, bacteriostatic, and cell growth-promoting effects. In this study, the therapeutic effects of ginsenoside Rb1 on second-degree burn in rats and the potential underlying mechanisms were explored. Methods A rat model of second-degree burn injury was established, and skin wound healing was monitored at different time points after ginsenoside Rb1 treatment. HE staining was performed to identify burn severity, and biological tissues were biopsied on days 0, 7, 14, and 24 after treatment. Skin wound healing at different time points was monitored by macroscopic observation. Furthermore, IHC, WB, and RT-PCR were utilized to determine the protein and mRNA expression levels of PDGF-BB, PDGFR-β, and FGF-2 in wound tissues after treatment. Results HE staining showed that after 24 days of ginsenoside Rb1 treatment, skin tissue morphology was significant improved. Macroscopic observation demonstrated that in ginsenoside Rb1-treated rats, the scab removal time and fur growth time were decreased, and the wound healing rate was increased. Collectively, the results of IHC, WB and RT-PCR showed that PDGF-BB, PDGFR-β, and FGF-2 expressions peaked earlier in ginsenoside Rb1-treated rats than in model rats, consistent with the macroscopic observations. Conclusion Collectively, these findings indicated that ginsenoside Rb1 promotes burn wound healing via a mechanism possibly associated with upregulation of FGF-2/PDGF-BB/PDGFR-β gene and protein expressions.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chunrong Road, Chenggong, Kunming, Yunnan, 650500, PR China
| | - Qin Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chunrong Road, Chenggong, Kunming, Yunnan, 650500, PR China
| | - Haonan Jin
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chunrong Road, Chenggong, Kunming, Yunnan, 650500, PR China
| | - Yongzhao Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chunrong Road, Chenggong, Kunming, Yunnan, 650500, PR China
| | - Yan Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chunrong Road, Chenggong, Kunming, Yunnan, 650500, PR China
| | - Renhua Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chunrong Road, Chenggong, Kunming, Yunnan, 650500, PR China
| | - Zhiqiang Shen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chunrong Road, Chenggong, Kunming, Yunnan, 650500, PR China.
| | - Peng Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chunrong Road, Chenggong, Kunming, Yunnan, 650500, PR China.
| |
Collapse
|
14
|
Fei X, Qi Y, Lei Y, Wang S, Hu H, Wei A. Transcriptome and Metabolome Dynamics Explain Aroma Differences between Green and Red Prickly Ash Fruit. Foods 2021; 10:391. [PMID: 33579038 PMCID: PMC7916813 DOI: 10.3390/foods10020391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/04/2022] Open
Abstract
Green prickly ash (Zanthoxylum armatum) and red prickly ash (Zanthoxylum bungeanum) fruit have unique flavor and aroma characteristics that affect consumers' purchasing preferences. However, differences in aroma components and relevant biosynthesis genes have not been systematically investigated in green and red prickly ash. Here, through the analysis of differentially expressed genes (DEGs), differentially abundant metabolites, and terpenoid biosynthetic pathways, we characterize the different aroma components of green and red prickly ash fruits and identify key genes in the terpenoid biosynthetic pathway. Gas chromatography-mass spectrometry (GC-MS) was used to identify 41 terpenoids from green prickly ash and 61 terpenoids from red prickly ash. Piperitone was the most abundant terpenoid in green prickly ash fruit, whereas limonene was most abundant in red prickly ash. Intergroup correlation analysis and redundancy analysis showed that HDS2, MVK2, and MVD are key genes for terpenoid synthesis in green prickly ash, whereas FDPS2 and FDPS3 play an important role in the terpenoid synthesis of red prickly ash. In summary, differences in the composition and content of terpenoids are the main factors that cause differences in the aromas of green and red prickly ash, and these differences reflect contrasting expression patterns of terpenoid synthesis genes.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Yu Lei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Shujie Wang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| |
Collapse
|
15
|
Song Y, Cui Y, Hao L, Zhu J, Yi J, Kang Q, Huang J, Lu J. Wound-healing activity of glycoproteins from white jade snail (Achatina fulica) on experimentally burned mice. Int J Biol Macromol 2021; 175:313-321. [PMID: 33539960 DOI: 10.1016/j.ijbiomac.2021.01.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Burns are a global public health problem and the treatment of burn wounds is a major medical and economic issue. White jade snails (Achatina fulica) are now widely distributed in Asia, and they have been used to treat burns in folk medicine of China. In this study, the glycoproteins from white jade snails were investigated and their effect on burn healing was evaluated by a mouse burn model. The results showed that the snail mucus was mainly composed of proteins and polysaccharides, and it had good adhesion. The main component of snail mucus was glycoprotein from the results of DEAE Sepharose FF ion exchange chromatography. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging effect of 1 mg/mL snail mucus reached 13.77%. The wound healing rate of the snail mucus group was higher than that of the control group (p < 0.0001). Histopathological results showed that mice in the snail mucus group had a faster healing than that of the control group. The biochemical analysis was in agreement with the histopathological findings. These results suggested that glycoproteins from snail mucus showed effective wound healing activities in the skin of experimentally burned mice.
Collapse
Affiliation(s)
- Yiming Song
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yinxin Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Limin Hao
- The Quartermaster Research Institute of Engineering and Technology, Academy of Military Sciences PLA China, Beijing 100010, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
16
|
Abstract
Abstract
The purpose of this review is to summarize the current knowledge acquired during preclinical and clinical studies regarding topically used herbal products with burn wound-healing activity. Moreover, antimicrobial, anti-inflammatory, and antioxidant mechanisms of their action as well as adverse effects of herbal therapy will be also described.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Warsaw, Poland
| | - Andrzej P Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna near Warsaw, Poland
| |
Collapse
|
17
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
18
|
Pang W, Liu S, He F, Li X, Saira B, Zheng T, Chen J, Dong K, Pei XF. Anticancer activities of Zanthoxylum bungeanum seed oil on malignant melanoma. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:180-189. [PMID: 30336305 DOI: 10.1016/j.jep.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum bungeanum Maxim. (ZBM), a Chinese herb medicine and food additive, has been shown to have broad-spectrum beneficial effects. However, the anticancer activities of its seed have not been reported. AIM OF THE STUDY for the first time investigated the anti-proliferation activity of seed oil of ZBM (ZBSO) on melanoma A375 cells as well as the underlying mechanisms. MATERIALS AND METHODS The chemical composition of ZBSO was analyzed by Ultra Performance Liquid Chromatography. A375 cells exposure at different concentrations of ZBSO to examine the selectivity versus normal skin cells, invasion, apoptosis and cell cycle arrest. Furthermore, transcriptome analysis was employed to investigate potential anticancer mechanisms of ZBSO. RESULTS Major compounds of ZBSO were identified and unsaturated fatty acid made up the major compound. ZBSO-treated A375 cells showed more typical apoptotic morphologic features than normal cells. ZBSO can significantly inhibit invasion and proliferation of A375 cells by G1 phase arrest and induction of apoptosis. Transcriptome analysis showed that ZBSO may affect cell cycle and MAPK signaling pathway of A375 cells. CONCLUSION ZBSO possessed anticancer activities that were selectively effective to A375 cells. This study support the hypothesis that ZBSO is a capable candidate for anti-melanoma agent, and provide new insights for future work on investigating the utilization of ZBSO in malignant melanoma treatment.
Collapse
Affiliation(s)
- Wenwen Pang
- Department of Public Health Laboratory Sciences, West China School Of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| | - Shan Liu
- Department of Laboratory Medicine, Affiliated Hospital of University of Electronic Science and Technology of China, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Fangting He
- Department of Public Health Laboratory Sciences, West China School Of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| | - Xinyang Li
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Baloch Saira
- Department of Public Health Laboratory Sciences, West China School Of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| | - Tianli Zheng
- Department of Public Health Laboratory Sciences, West China School Of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| | - Jiayi Chen
- Department of Public Health Laboratory Sciences, West China School Of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| | - Ke Dong
- Department of Public Health Laboratory Sciences, West China School Of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| | - Xiao-Fang Pei
- Department of Public Health Laboratory Sciences, West China School Of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China.
| |
Collapse
|