1
|
Differential Spleen miRNA Expression Profile of Beagle Dogs Infected with Toxocara canis. Animals (Basel) 2022; 12:ani12192638. [PMID: 36230377 PMCID: PMC9558963 DOI: 10.3390/ani12192638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Toxocara canis is an unnoticed zoonotic helminth that causes severe disease in animals and humans. The spleen has a wide range of immunological functions in protecting the host against infection by many pathogens, but the function of the spleen in T. canis infection is still to be clarified, especially for the role of spleen microRNAs (miRNAs). In this study, deep sequencing of spleen RNA samples of 18 Beagle puppies was conducted to uncover the miRNAs expression profiling at 24 h post-infection (hpi), 96 hpi, and 36 days post infection (dpi). A total of 20, 34, and 19 differentially expressed miRNAs (DEmiRNAs) were identified at 24 hpi, 96 hpi, and 36 dpi, respectively. These DEmiRNAs (e.g., cfa-miR-206, cfa-miR-331, and cfa-miR-339) could play critical roles in Beagle puppies against T. canis infection, such as influencing inflammatory and immune-related cells and cytokines, by regulating target genes that are tightly associated with host immune function and enriched in immune response and immune pathways based on GO annotation and KEGG enrichment analysis. The current study discovered marked alterations of spleen miRNAs after T. canis infection, with potential effects on the pathogenesis of toxocariasis.
Collapse
|
2
|
Chen Y, Gu X, Zhang Y, Zhang X, Zhang C, Liu M, Sun S, Dong N, Wu Q. CD320 expression and apical membrane targeting in renal and intestinal epithelial cells. Int J Biol Macromol 2022; 201:85-92. [PMID: 34998874 DOI: 10.1016/j.ijbiomac.2021.12.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Vitamin B12 is an essential nutrient acquired via dietary intake. Receptor-mediated endocytosis is a key mechanism in vitamin B12 absorption, cellular uptake, and reabsorption. CD320 is a type I transmembrane protein responsible for cellular uptake of vitamin B12 in peripheral tissues. In this study, we examined segmental distribution and cellular expression of CD320 in mouse kidneys and intestines. We show that CD320 is expressed on the luminal surface in the small intestine and in proximal tubules in the kidney, suggesting that, in addition to its role in vitamin B12 uptake in peripheral tissues, CD320 may participate in vitamin B12 absorption in the small intestine and reabsorption in the kidney. Moreover, we show that an amino acid motif, DSSDE, in the second low-density lipoprotein receptor class A domain of CD320 is a key apical membrane targeting signal in both renal and intestinal epithelial cells. Mutations or deletion of this motif abolish the specific apical membrane expression of CD320 in polarized Madin-Darby canine kidney cells and human colon cancer-derived Caco-2 cells. In short-hairpin RNA-based gene knockdown experiments, we show that the apical membrane targeting of CD320 is mediated by a Rab11a-dependent mechanism. These results extend our knowledge regarding the cell biology of CD320 and its role in vitamin B12 metabolism.
Collapse
Affiliation(s)
- Yue Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China
| | - Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xianrui Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Elzi DJ, Bauta WE, Sanchez JR, Das T, Mogare S, Zannes Fatland P, Iza M, Pertsemlidis A, Rebel VI. Identification of a novel mechanism for meso-tetra (4-carboxyphenyl) porphyrin (TCPP) uptake in cancer cells. FASEB J 2021; 35:e21427. [PMID: 33629776 DOI: 10.1096/fj.202000197r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Porphyrins are used for cancer diagnostic and therapeutic applications, but the mechanism of how porphyrins accumulate in cancer cells remains elusive. Knowledge of how porphyrins enter cancer cells can aid the development of more accurate cancer diagnostics and therapeutics. To gain insight into porphyrin uptake mechanisms in cancer cells, we developed a flow cytometry assay to quantify cellular uptake of meso-tetra (4-carboxyphenyl) porphyrin (TCPP), a porphyrin that is currently being developed for cancer diagnostics. We found that TCPP enters cancer cells through clathrin-mediated endocytosis. The LDL receptor, previously implicated in the cellular uptake of other porphyrins, only contributes modestly to uptake. We report that TCPP instead binds strongly ( K D = 42 nM ) to CD320, the cellular receptor for cobalamin/transcobalamin II (Cbl/TCN2). Additionally, TCPP competes with Cbl/TCN2 for CD320 binding, suggesting that CD320 is a novel receptor for TCPP. Knockdown of CD320 inhibits TCPP uptake by up to 40% in multiple cancer cell lines, including lung, breast, and prostate cell lines, which supports our hypothesis that CD320 both binds to and transports TCPP into cancer cells. Our findings provide some novel insights into why porphyrins concentrate in cancer cells. Additionally, our study describes a novel function for the CD320 receptor which has been reported to transport only Cbl/TCN2 complexes.
Collapse
Affiliation(s)
- David J Elzi
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | | | | | - Trisha Das
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | - Shweta Mogare
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | | | - Moises Iza
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | - Alexander Pertsemlidis
- Department of Pediatrics, The University of Texas Health Science Center, San Antonio, TX, USA.,Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Vivienne I Rebel
- BioAffinity Technologies, Inc., San Antonio, TX, USA.,Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Zhang C, Chen Y, Sun S, Zhang Y, Wang L, Luo Z, Liu M, Dong L, Dong N, Wu Q. A conserved LDL-receptor motif regulates corin and CD320 membrane targeting in polarized renal epithelial cells. eLife 2020; 9:56059. [PMID: 33136001 PMCID: PMC7605860 DOI: 10.7554/elife.56059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Selective protein distribution on distinct plasma membranes is important for epithelial cell function. To date, how proteins are directed to specific epithelial cell surface is not fully understood. Here we report a conserved DSSDE motif in LDL-receptor (LDLR) modules of corin (a transmembrane serine protease) and CD320 (a receptor for vitamin B12 uptake), which regulates apical membrane targeting in renal epithelial cells. Altering this motif prevents specific apical corin and CD320 expression in polarized Madin-Darby canine kidney (MDCK) cells. Mechanistic studies indicate that this DSSDE motif participates in a Rab11a-dependent mechanism that specifies apical sorting. In MDCK cells, inhibition of Rab11a, but not Rab11b, expression leads to corin and CD320 expression on both apical and basolateral membranes. Together, our results reveal a novel molecular recognition mechanism that regulates LDLR module-containing proteins in their specific apical expression in polarized renal epithelial cells.
Collapse
Affiliation(s)
- Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Liang Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| |
Collapse
|
5
|
Froese DS, Fowler B, Baumgartner MR. Vitamin B 12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis 2019; 42:673-685. [PMID: 30693532 DOI: 10.1002/jimd.12009] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.
Collapse
Affiliation(s)
- D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
6
|
Zhao H, Ruberu K, Li H, Garner B. Cell Type-Specific Modulation of Cobalamin Uptake by Bovine Serum. PLoS One 2016; 11:e0167044. [PMID: 27893837 PMCID: PMC5125665 DOI: 10.1371/journal.pone.0167044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
Tracking cellular 57Co-labelled cobalamin (57Co-Cbl) uptake is a well-established method for studying Cbl homeostasis. Previous studies established that bovine serum is not generally permissive for cellular Cbl uptake when used as a supplement in cell culture medium, whereas supplementation with human serum promotes cellular Cbl uptake. The underlying reasons for these differences are not fully defined. In the current study we address this question. We extend earlier observations by showing that fetal calf serum inhibits cellular 57Co-Cbl uptake by HT1080 cells (a fibrosarcoma-derived fibroblast cell line). Furthermore, we discovered that a simple heat-treatment protocol (95°C for 10 min) ameliorates this inhibitory activity for HT1080 cell 57Co-Cbl uptake. We provide evidence that the very high level of haptocorrin in bovine serum (as compared to human serum) is responsible for this inhibitory activity. We suggest that bovine haptocorrin competes with cell-derived transcobalamin for Cbl binding, and that cellular Cbl uptake may be minimised in the presence of large amounts of bovine haptocorrin that are present under routine in vitro cell culture conditions. In experiments conducted with AG01518 cells (a neonatal foreskin-derived fibroblast cell line), overall cellular 57Co-Cbl uptake was 86% lower than for HT1080 cells, cellular TC production was below levels detectable by western blotting, and heat treatment of fetal calf serum resulted in only a modest increase in cellular 57Co-Cbl uptake. We recommend a careful assessment of cell culture protocols should be conducted in order to determine the potential benefits that heat-treated bovine serum may provide for in vitro studies of mammalian cell lines.
Collapse
Affiliation(s)
- Hua Zhao
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Kalani Ruberu
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- * E-mail:
| |
Collapse
|
7
|
DockTope: a Web-based tool for automated pMHC-I modelling. Sci Rep 2015; 5:18413. [PMID: 26674250 PMCID: PMC4682062 DOI: 10.1038/srep18413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/18/2015] [Indexed: 11/08/2022] Open
Abstract
The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8+ T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (Cα RMSD below 1 Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design.
Collapse
|
8
|
Yang HY, Kim J, Kim SH, Choe CH, Jang YS. Pro-IL-16 is Associated with MHC Class II-Mediated Negative Regulation of Mouse Resting B Cell Activation through MAP Kinases, NF-κB and Skp2-Dependent p27kipRegulation. Scand J Immunol 2013; 77:177-86. [DOI: 10.1111/sji.12026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/09/2012] [Indexed: 12/01/2022]
Affiliation(s)
- H.-Y. Yang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics; Chonbuk National University; Jeonju; Korea
| | - J. Kim
- Jeonju Biomaterials Institute; Jeonju; Korea
| | - S.-H. Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics; Chonbuk National University; Jeonju; Korea
| | | | - Y.-S. Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics; Chonbuk National University; Jeonju; Korea
| |
Collapse
|
9
|
Abstract
Vitamin B(12) (B(12); also known as cobalamin) is a cofactor in many metabolic processes; deficiency of this vitamin is associated with megaloblastic anaemia and various neurological disorders. In contrast to many prokaryotes, humans and other mammals are unable to synthesize B(12). Instead, a sophisticated pathway for specific uptake and transport of this molecule has evolved. Failure in the gastrointestinal part of this pathway is the most common cause of nondietary-induced B(12) deficiency disease. However, although less frequent, defects in cellular processing and further downstream steps in the transport pathway are also known culprits of functional B(12) deficiency. Biochemical and genetic approaches have identified novel proteins in the B(12) transport pathway--now known to involve more than 15 gene products--delineating a coherent pathway for B(12) trafficking from food to the body's cells. Some of these gene products are specifically dedicated to B(12) transport, whereas others embrace additional roles, which explains the heterogeneity in the clinical picture of the many genetic disorders causing B(12) deficiency. This Review describes basic and clinical features of this multistep pathway with emphasis on gastrointestinal transport of B(12) and its importance in clinical medicine.
Collapse
|