1
|
Štrajtenberger M, Lugović-Mihić L, Stipić-Marković A, Artuković M, Glavina A, Pravica NB, Hanžek M, Sušić T, Tešija Kuna A, Nađ Bungić L. Assesment of Salivary and Serum Levels of HBD2 in Patients with Chronic Angioedema. J Clin Med 2024; 13:7552. [PMID: 39768474 PMCID: PMC11728209 DOI: 10.3390/jcm13247552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Human β-defensin 2 (HBD2) is a protein that plays an important role in activating the immune system by modulating spinal pathways and the inflammatory response. According to previous research, HBD2 was proven to be important in chronic spontaneous urticaria (CSU) (their values were significantly elevated in CSU patients, with a significant correlation between HBD2 levels and the percentage of peripheral basophils, suggesting that elevated HBD2 levels may be a potential marker of basophil and mast cell activation), which led us to additional research on the HBD2 molecule in isolated chronic angioedema. The aim of this research is to examine HBD2 values in the saliva and serum of patients with isolated angioedema, as a potential biomarker of the disease. Methods: This cross-sectional study involved a total of 102 participants, involving three groups: 33 patients with isolated chronic non-hereditary angioedema (AE) (defined as sudden onset of localized edema without chronic urticaria), 33 patients with angioedema associated with chronic urticaria (CU+AE), and 35 healthy participants (controls, CTRL). They provided a saliva sample to determine HBD2 levels using an ELISA (Enzyme-Linked Immunosorbent Assay). Subsequently, a peripheral blood sample (serum) was taken from the participants to determine HBD2 levels using the same ELISA. Results: Salivary HBD2 levels were significantly higher in those with CU+AE than in the CTRL (p = 0.019). While salivary HBD2 values differed between those with angioedema and CTRL, the serum HBD2 values did not. Also, no correlation between the levels of HBD2 in saliva and serum was found. Conclusions: Since we found that salivary HBD2 values were significantly higher in those with CU+AE than in CTRL, this points to a possible role of the HBD2 molecule in pathogenesis of AE (namely, that it induces degranulation in mast cells and vascular permeability, and has antimicrobial properties) Therefore, more research is needed to determine how reliable salivary HBD2 measurement is, as well as its significance.
Collapse
Affiliation(s)
- Maja Štrajtenberger
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10000 Zagreb, Croatia; (M.Š.); (L.N.B.)
| | - Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Asja Stipić-Marković
- Department for Respiratory Infections, Dr. Fran Mihaljević University Hospital for Infections Diseases, 10000 Zagreb, Croatia;
| | - Marinko Artuković
- Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
| | - Ana Glavina
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia;
- Department of Oral Medicine, Study of Dental Medicine, School of Medicine, University of Split, 21000 Split, Croatia
| | - Nika Barbara Pravica
- Department of Emergency Medicine, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Milena Hanžek
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Tamara Sušić
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Andrea Tešija Kuna
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Lara Nađ Bungić
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10000 Zagreb, Croatia; (M.Š.); (L.N.B.)
| |
Collapse
|
2
|
Miao G, Yang Y, Yang X, Chen D, Liu L, Lei X. The multifaceted potential of TPT1 as biomarker and therapeutic target. Heliyon 2024; 10:e38819. [PMID: 39397949 PMCID: PMC11471257 DOI: 10.1016/j.heliyon.2024.e38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Protein Translationally-Controlled 1 (TPT1) is a highly conserved gene found across eukaryotic species. The protein encoded by TPT1 is ubiquitously expressed both intracellularly and extracellularly across various tissues, and its levels are influenced by various external factors. TPT1 interacts with several key proteins, including p53, MCL1, and immunoglobulins, highlighting its crucial role in cellular processes. The dysregulation of TPT1 expression has been documented in a wide range of diseases, indicating its potential as a valuable biomarker. Additionally, targeting TPT1 presents a promising approach for treating and preventing various conditions. This review will assess the potential of TPT1 as a biomarker and evaluate the effectiveness of current strategies designed to inhibit TPT1 in disease contexts.
Collapse
Affiliation(s)
- Gelan Miao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yulian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xuelian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
3
|
Bae HD, Cho M, Lee K. Therapeutic efficacy of JEW-M449, an anti-TCTP monoclonal antibody, administered via the nasal route in a BALB/c mouse model of ovalbumin-induced acute asthma. Biomed Pharmacother 2024; 179:117362. [PMID: 39226728 DOI: 10.1016/j.biopha.2024.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Numerous studies have highlighted the role of translationally controlled tumor protein (TCTP) as a key inflammatory mediator of asthma and allergies. Our previous study revealed that blocking the cytokine-like activity of TCTP using JEW-M449, an anti-TCTP monoclonal antibody (mAb), alleviated allergic inflammation in asthmatic mice. This study aimed to determine whether directly delivering JEW-M449 into the respiratory tract is a more effective way of mitigating airway inflammation in a mouse model of ovalbumin (OVA)-induced allergic airway inflammation than delivering this antibody via the intraperitoneal (IP) route. OVA-sensitized mice were intranasally administered JEW-M449 to enable its direct delivery to the respiratory tract before OVA challenge. We evaluated the changes in the levels of bronchoalveolar lavage fluid (BALF) cells, T helper type 2 (Th2) cytokines, OVA-specific immunoglobulin E (IgE), and histopathological alterations in the lung tissues. Intranasal (IN) administration of JEW-M449 significantly ameliorated the pathological changes associated with OVA-induced lung injury, including reduced inflammatory cell infiltration and mucus hypersecretion. Mice IN administered JEW-M449 also showed decreased OVA-mediated induction of Th2 cytokines in BALF and lung homogenates. Importantly, JEW-M449 delivered via the IN route reached the lung tissue more effectively and exerted superior anti-inflammatory effects in OVA-challenged mice than the IP-delivered JEW-M449. This study is the first to demonstrate the efficacy of directly delivering JEW-M449 anti-TCTP mAb into the respiratory tract to alleviate the asthma phenotype in a mouse model, thereby highlighting a potential delivery strategy for novel inhaled mAb therapeutics for human asthma.
Collapse
Affiliation(s)
- Hae-Duck Bae
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minyoung Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Bae HD, Cho M, Seo H, Lyoo IK, Lee K. Targeting the translationally controlled tumor protein by a monoclonal antibody improves allergic airway inflammation in mice. Biomed Pharmacother 2023; 168:115655. [PMID: 37806090 DOI: 10.1016/j.biopha.2023.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Secretion of translationally controlled tumor protein (TCTP) was found in body fluids during the late phase of allergic reactions, implicating TCTP in allergic diseases. Furthermore, blocking TCTP has been shown to be helpful in treating asthma and allergies in animal models. The objectives of this study were to produce anti-TCTP monoclonal antibodies (mAbs), test their ability to inhibit the cytokine-like function of dimeric TCTP (dTCTP) in vitro and to assess their therapeutic effects in a murine model of ovalbumin (OVA)-induced airway inflammation. We first verified the inhibitory effects of 4 anti-TCTP mAbs on dTCTP-induced secretion of IL-8 in BEAS-2B cells. To investigate the anti-inflammatory effect of anti-TCTP mAbs on allergic airway inflammation, we treated OVA-sensitized mice with anti-TCTP mAbs before OVA challenge. The changes in bronchoalveolar lavage fluid (BALF) cells, IL-4, IL-5, and IL-13 levels in both BALF and lung homogenates, plasma levels of OVA-specific IgE, and lung tissues were analyzed. We found that JEW-M449 anti-TCTP mAb bound to the flexible loop of TCTP and significantly inhibited dTCTP-induced IL-8 release, making it the most effective inhibitor in our study. We also found that treatment with JEW-M449 significantly reduced the infiltration of inflammatory cells and suppressed the OVA-induced upregulation of type 2 cytokines in both BALF and lung homogenates in a dose-dependent manner. In addition, JEW-M449 significantly attenuated the degree of goblet cell hyperplasia and mucus secretion. Our results demonstrate that specific targeting of the flexible loop of TCTP is a potent strategy for treating airway inflammatory diseases.
Collapse
Affiliation(s)
- Hae-Duck Bae
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, the Republic of Korea
| | - Minyoung Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, the Republic of Korea
| | - Hyeran Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, the Republic of Korea
| | - In Kyoon Lyoo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, the Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, the Republic of Korea.
| |
Collapse
|
5
|
Maeng J, Lee K. Inhibitors of dimerized translationally controlled tumor protein, a histamine releasing factor, may serve as anti-allergic drug candidates. Biochimie 2023; 211:141-152. [PMID: 36963558 DOI: 10.1016/j.biochi.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
It has been established that translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF), exhibits cytokine-like activities associated with initiation of allergic responses only after forming dimers (dTCTP). Agents that inhibit dTCTP by preventing its dimerization or otherwise block its function, also block development of allergic reactions, thereby serving as potential drugs to treat allergic diseases. Several lines of evidence have proven that peptides and antibodies that specifically inhibit the interactions between dTCTP and either its putative receptor or immunoglobulins exhibit significant in vivo efficacy as potential anti-inflammatory agents in murine models of allergic inflammatory diseases. This review highlights the development of several inhibitors targeting dTCTP and discusses how they affect the pathophysiologic processes of allergic and inflammatory diseases in several animal models and offers new perspectives on anti-allergic drug discovery.
Collapse
Affiliation(s)
- Jeehye Maeng
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Jang EH, Bae HD, Jeon Y, Shin DH, Kang S, Lee K. Meclizine, a piperazine-derivative antihistamine, binds to dimerized translationally controlled tumor protein and attenuates allergic reactions in a mouse model. Biomed Pharmacother 2023; 157:114072. [PMID: 36493627 DOI: 10.1016/j.biopha.2022.114072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), a highly conserved protein present in most eukaryotes, is involved in numerous biological processes. Only the dimeric form of TCTP (dTCTP) formed during inflammatory conditions exhibits cytokine-like activity. Therefore, dTCTP is considered as a therapeutic target for allergic diseases. Because monomeric TCTP (mTCTP) and dTCTP share a high topological similarity, we hypothesized that small molecules interacting with mTCTP would also bind to dTCTP and interfere with dTCTP-based cellular processes. In this study, nine compounds listed in the literature as interacting with mTCTP were investigated for their ability to suppress the activity of extracellular dTCTP in bronchial epithelial cells. It was found that one of the nine, meclizine, a piperazine-derivative antihistamine, significantly reduced IL-8 release and suppressed the NF-κB pathway. The direct interaction of meclizine with dTCTP was confirmed by surface plasmon resonance (SPR). Also, we found that meclizine can attenuate ovalbumin (OVA)-induced airway inflammation in mice. Therefore, meclizine might be a potential anti-allergic drug as an inhibitor for dTCTP.
Collapse
Affiliation(s)
- Eun-Hwa Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hae-Duck Bae
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yejin Jeon
- Bone Science R&D Center, 3, Magokjungang 12-ro, Gangseo-gu, Seoul 07789, South Korea
| | - Dong Hae Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
7
|
Cho H, Je JH, Kang J, Jeong MG, Song J, Jeon Y, Lee K, Hwang ES. Dimeric translationally controlled tumor protein-binding peptide 2 attenuates imiquimod-induced psoriatic inflammation through induction of regulatory T cells. Biomed Pharmacother 2022; 152:113245. [PMID: 35689858 DOI: 10.1016/j.biopha.2022.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Psoriasis is a chronic skin inflammation caused by a dysfunctional immune system, which causes systemic inflammation in various organs and tissues. Due to the risk of systemic inflammation and recurrence of psoriasis, it is important to identify the critical targets in the pathogenesis of psoriasis and develop targeted therapeutics. Dimerized translationally controlled tumor protein (dTCTP) promotes immune cell activation as a pro-inflammatory cytokine and plays a role in developing allergic diseases such as asthma and rhinitis. Here, we sought to explore whether dTCTP and its inhibition contributed to the development and control of imiquimod (IMQ)-induced psoriasis. Topical application of IMQ inflamed the skin of the back and ear, increased inflammatory cytokines, and decreased regulatory T cell markers. Interestingly, TCTP was significantly increased in inflamed skin and immune cells such as T cells, B cells, and macrophages after IMQ treatment and was secreted into the serum to undergo dimerization. Extracellular dTCTP treatment selectively suppressed regulatory T (Treg) cells, not other effector T helper (Th) cells, and increased M1 macrophages. Moreover, dTCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, effectively attenuated the systemic inflammatory responses, including Th17 cell response, and alleviated psoriatic skin inflammation. dTBP2 blocked dTCTP-mediated Treg suppression and stimulated the expression of Treg cell markers in the spleen and inflammatory skin lesions. These results suggest that dTCTP dysregulated immune balance through Treg suppression in psoriatic inflammation and that functional inhibition of dTCTP by dTBP2 maintained immune homeostasis and attenuated inflammatory skin diseases by expanding Treg cells.
Collapse
Affiliation(s)
- Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jeong Hwan Je
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jio Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yejin Jeon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
8
|
Zhou B, Li J, Liu R, Zhu L, Peng C. The Role of Crosstalk of Immune Cells in Pathogenesis of Chronic Spontaneous Urticaria. Front Immunol 2022; 13:879754. [PMID: 35711438 PMCID: PMC9193815 DOI: 10.3389/fimmu.2022.879754] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is defined as recurrent episodes of spontaneous wheal development and/or angioedema for more than six weeks and at least twice a week. The core link in the pathogenesis of CSU is the activation of mast cells, T cells, eosinophils, and other immune cells infiltrating around the small venules of the lesion. Increased vascular permeability, vasodilatation, and recruitment of inflammatory cells directly depend on mast cell mediators’ release. Complex regulatory systems tightly influence the critical roles of mast cells in the local microenvironment. The bias toward Th2 inflammation and autoantibodies derived from B cells, histamine expressed by basophils, and initiation of the extrinsic coagulation pathway by eosinophils or monocytes exerts powerful modulatory influences on mast cells. Cell-to-cell interactions between mast cells and eosinophils/T cells also are regulators of their function and may involve CSU’s pathomechanism. This review summarizes up-to-date knowledge regarding the crosstalk between mast cells and other immune cells, providing the impetus to develop new research concepts and treatment strategies for CSU.
Collapse
Affiliation(s)
- Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cong Peng,
| |
Collapse
|
9
|
Cho H, Kim HK, Oh A, Jeong MG, Song J, Lee K, Hwang ES. dTBP2 attenuates severe airway inflammation by blocking inflammatory cellular network mediated by dTCTP. Biomed Pharmacother 2021; 144:112316. [PMID: 34628164 DOI: 10.1016/j.biopha.2021.112316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
Dimeric translationally controlled tumor protein (dTCTP), also known as histamine-releasing factor, amplifies allergic responses and its production has been shown to increase in inflammatory diseases such as allergic asthma. Despite the critical role of dTCTP in allergic inflammation, little is known about its production pathways, associated cellular networks, and underlying molecular mechanisms. In this study, we explored the dTCTP-mediated inflammatory networks and molecular mechanisms of dTCTP associated with lipopolysaccharides (LPS)-induced severe asthma. LPS stimulation increased dTCTP production by mast cells and dTCTP secretion during degranulation, and extracellular dTCTP subsequently increased the production of pro-inflammatory molecules, including IL-8, by airway epithelial cells without affecting mast cell activation. Furthermore, dimeric TCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, selectively blocked the dTCTP-mediated signaling network from mast cells to epithelial cells and decreased IL-8 production through IkB induction and nuclear p65 export in airway epithelial cells. More importantly, dTBP2 efficiently attenuated LPS-induced severe airway inflammation in vivo, resulting in decreased immune cell infiltration and IL-17 production and attenuated dTCTP secretion. These results suggest that dTCTP produced by mast cells exacerbates airway inflammation through activation of airway epithelial cells in a paracrine signaling manner, and that dTBP2 is beneficial in the treatment of severe airway inflammation by blocking the dTCTP-mediated inflammatory cellular network.
Collapse
Affiliation(s)
- Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Areum Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
10
|
Cho H, Park J, Kim HK, Hwang ES, Lee K. Dimerized Translationally Controlled Tumor Protein-Binding Peptide 2 Attenuates Systemic Anaphylactic Reactions Through Direct Suppression of Mast Cell Degranulation. Front Pharmacol 2021; 12:764321. [PMID: 34737708 PMCID: PMC8560797 DOI: 10.3389/fphar.2021.764321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dimerized translationally controlled tumor protein (dTCTP) amplifies allergic responses through activation of several types of immune cells and release of inflammatory mediators. In particular, dTCTP plays an important role in histamine release by triggering mast cells and has been proposed as a target in the treatment of allergic diseases. dTCTP-binding peptide 2 (dTBP2) is known to attenuate severe allergic rhinitis and asthma through inhibition of dTCTP activity on airway epithelial cells and T cells; however, it is unclear whether dTBP2 affects mast cell function and mast cell disease. In this study, we explored the effects of dTBP2 on mast cell degranulation and allergen-induced anaphylactic reactions. We found that bacterial product lipopolysaccharide increased the expression of dTCTP in mast cells and rapidly released dTCTP by the mast cell stimulator compound 48/80. Interestingly, the released dTCTP further promoted mast cell degranulation in an autocrine activation manner and increased calcium mobilization in mast cells, which is essential for degranulation. Furthermore, dTBP2 directly and dose-dependently inhibited in vitro mast cell degranulation enhanced by compound 48/80, suggesting a direct and potent anti-anaphylactic activity of dTBP2. dTBP2 also significantly suppressed the dTCTP-induced degranulation and histamine release through inhibition of the p38 MAPK signaling pathway and suppression of lysosomal expansion and calcium mobilization in mast cells. More importantly, in vivo administration of dTBP2 decreased mortality and significantly attenuated histamine release and inflammatory cytokine production in compound 48/80-induced systemic anaphylactic reactions. These results suggest that dTBP2 is beneficial for the control of anaphylaxis with increased dTCTP.
Collapse
Affiliation(s)
- Hyunsoo Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Jiyoung Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea.,Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Hyo Kyeong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Eun Sook Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
11
|
Pyun H, Nam JW, Cho H, Park J, Seo EK, Lee K. Allergic Inflammation Caused by Dimerized Translationally Controlled Tumor Protein is Attenuated by Cardamonin. Front Pharmacol 2021; 12:765521. [PMID: 34690788 PMCID: PMC8527174 DOI: 10.3389/fphar.2021.765521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
We demonstrated in our previous reports that dimeric form of translationally controlled tumor protein (dTCTP) initiates a variety of allergic phenomena. In the present study, we examined whether and how dTCTP's role in allergic inflammation can be modulated or negated. The possible potential of cardamonin as an anti-allergic agent was assessed by ELISA using BEAS-2B cells and OVA-challenged allergic mouse model. The interaction between cardamonin and dTCTP was confirmed by SPR assay. Cardamonin was found to reduce the secretion of IL-8 caused by dTCTP in BEAS-2B cells by interacting with dTCTP. This interaction between dTCTP and cardamonin was confirmed through kinetic analysis (KD = 4.72 ± 0.07 μM). Also, cardamonin reduced the migration of various inflammatory cells in the bronchoalveolar lavage fluid (BALF), inhibited OVA specific IgE secretion and bronchial remodeling. In addition, cardamonin was observed to have an anti-allergic response by inhibiting the activity of NF-κB. Cardamonin exerts anti-allergic anti-inflammatory effect by inhibiting dTCTP, suggesting that it may be useful in the therapy of allergic diseases.
Collapse
Affiliation(s)
- Haejun Pyun
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Hyunsoo Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Jiyoung Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea.,Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
12
|
Ando T, Kitaura J. Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells 2021; 10:cells10071697. [PMID: 34359869 PMCID: PMC8305778 DOI: 10.3390/cells10071697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The recent emergence of anti-immunoglobulin E (IgE) drugs and their candidates for humans has endorsed the significance of IgE-dependent pathways in allergic disorders. IgE is distributed locally in the tissues or systemically to confer a sensory mechanism in a domain of adaptive immunity to the otherwise innate type of effector cells, namely, mast cells and basophils. Bound on the high-affinity IgE receptor FcεRI, IgE enables fast memory responses against revisiting threats of venoms, parasites, and bacteria. However, the dysregulation of IgE-dependent reactions leads to potentially life-threatening allergic diseases, such as asthma and anaphylaxis. Therefore, reactivity of the IgE sensor is fine-tuned by various IgE-associating molecules. In this review, we discuss the mechanistic basis for how IgE-dependent mast cell activation is regulated by the IgE-associating molecules, including the newly developed therapeutic candidates.
Collapse
Affiliation(s)
- Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| |
Collapse
|
13
|
Sánchez-Borges M, Díaz SG, Ortega-Martell JA, Rojo MI, Ansotegui IJ. Current and Potential Biologic Drugs for the Treatment of Chronic Urticaria. Immunol Allergy Clin North Am 2020; 40:609-623. [PMID: 33012323 DOI: 10.1016/j.iac.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article reviews biologic treatments that are currently applied for the treatment of severe chronic urticaria. Monoclonal anti-immunoglobulin E (omalizumab) is effective and safe in many patients, but accessibility and cost constitute barriers to its wider use. Questions on the optimal duration of the treatment and possible symptom recurrences after discontinuing the drug are still raised. A discussion is presented about several other biologics currently under investigation with potential to be incorporated in the near future in patients with severe chronic urticaria.
Collapse
Affiliation(s)
- Mario Sánchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela; Allergy and Clinical Immunology Department, Clínica El Avila, Caracas, Venezuela.
| | - Sandra González Díaz
- Centro Regional de Excelencia CONACYT/WAO en Alergia Asma e Inmunologia Clìnica, Hospital Universitario, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León, Mexico; San Francisco Centro de Especialistas Médicos 27196008(82)
| | - Jose Antonio Ortega-Martell
- Universidad Autónoma del Estado de Hidalgo, Artículo 27 # 102. Col. Constitución, Pachuca, Hidalgo CP 42080, Mexico
| | | | - Ignacio J Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Carretera Leioa-Unbe 33 bis, Erandio-Bilbao 48950, Spain
| |
Collapse
|
14
|
Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020; 9:cells9071632. [PMID: 32645936 PMCID: PMC7407922 DOI: 10.3390/cells9071632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer.
Collapse
|
15
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double-Edged Sword in Immunity: Their Function in Health and Disease. First of Two Parts. Endocr Metab Immune Disord Drug Targets 2019; 20:654-669. [PMID: 31789135 DOI: 10.2174/1871530319666191202120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
Mast cells (MCs) have recently been re-interpreted in the context of the immune scenario in the sense that their pro-allergic role is no longer exclusive. In fact, MCs even in steady state conditions maintain homeostatic functions, producing mediators and intensively cross-talking with other immune cells. Here, emphasis will be placed on the array of receptors expressed by MCs and the variety of cytokines they produce. Then, the bulk of data discussed will provide readers with a wealth of information on the dual ability of MCs not only to defend but also to offend the host. This double attitude of MCs relies on many variables, such as their subsets, tissues of residency and type of stimuli ranging from microbes to allergens and food antigens. Finally, the relationship between MCs with basophils and eosinophils will be discussed.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|