1
|
Ahmad GV, Nouri S, Mohammad Gholian A, Abdollahi E, Ghorbaninezhad F, Tahmasebi S, Eterafi M, Askari MR, Safarzadeh E. Breaking barriers: CAR-NK cell therapy breakthroughs in female-related cancers. Biomed Pharmacother 2025; 187:118071. [PMID: 40253831 DOI: 10.1016/j.biopha.2025.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Cancer stands as a leading cause of mortality globally. The main female-related malignancies are breast cancer, with 2.3 million new cases annually, and ovarian cancer, with 300,000 new cases per year worldwide. The current treatments like surgery, chemotherapy, and radiation therapy have presumably had deficiencies in sustaining long-term anti-tumor responses. Cellular immunotherapy, also referred to as adoptive cell therapy, has shown encouraging advances by employing genetically modified immune cells in fighting cancer by engineering chimeric antigen receptors (CARs) mainly on T cells and natural killer (NK) cells. Studies in NK cell therapies involve unmodified NK cells and CAR-NK cell therapies, targeting cancer cells while limiting the destruction of normal cells. CAR-NK cells represent the next generation of therapeutic immune cells that have been shown to eliminate malignancies through CAR-dependent and CAR-independent mechanisms. They also represent possible candidates for "off-the-shelf" therapies due to their advantages, including the ability to target cancer cells independently of the major histocompatibility complex, reduced risk of alloreactivity, and fewer severe toxicities compared to CAR-T cells. To date, there have been no comprehensive review studies examining the therapeutic potential of CAR-NK cell therapy specifically for female-related malignancies, such as breast and ovarian cancers. This review offers a thorough exploration of CAR-NK cell therapy in relation to these cancers and their responses to treatment.
Collapse
Affiliation(s)
- Ghorbani Vanan Ahmad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Samaneh Nouri
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Eileen Abdollahi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farid Ghorbaninezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Tahmasebi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Askari
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Zhang BL, Gao W, He L, Liu XT, Wang ZM, Tan L. Functional heterogeneity and clinical implications of CD4+ T cell subtypes in high-grade serous ovarian carcinoma. World J Clin Oncol 2025; 16:104138. [DOI: 10.5306/wjco.v16.i5.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/21/2025] [Accepted: 04/15/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is among the most lethal gynecological malignancies, characterized by late-stage diagnosis, extensive peritoneal dissemination, and limited treatment options, resulting in poor survival outcomes. The tumor microenvironment plays a critical role in disease progression and therapy resistance, with CD4+ T cells exhibiting significant plasticity and functional heterogeneity. Regulatory T cells (Tregs) are particularly implicated in immune suppression and tumor evasion. However, the spatial distribution, functional states, and prognostic significance of CD4+ T cell subtypes in HGSOC remain poorly understood.
AIM To characterize the functional heterogeneity and tissue-specific distributions of CD4+ T cell subtypes in HGSOC and identify biomarkers for therapy.
METHODS We analyzed single-cell RNA sequencing (scRNA-seq) data from 42 HGSOC patients, examining samples collected from adnexal tissues and ascites. CD4+ T cells were identified and classified into subtypes using unsupervised clustering and marker gene analysis. Functional profiling was performed using pathway enrichment, differential expression analysis, and functional signature scoring. Kaplan-Meier survival and Cox proportional hazards modeling were conducted to evaluate the prognostic value of CD4+ T cell subtypes.
RESULTS Distinct distributions of CD4+ T cell subtypes were identified between adnexal tissues and ascites. Naive CD4+ T cells were predominant in ascites, while Tregs and CXCL13-expressing CD4+ T cells were enriched in adnexal tissues. Tregs were further categorized into four subtypes (Treg1, Treg2, Treg3, and TISG), each exhibiting unique molecular signatures and tissue-specific adaptations. Treg3 cells, enriched in adnexal tissues, were characterized by high levels of activation and exhaustion markers, correlating with poor clinical outcomes in HGSOC patients.
CONCLUSION Treg3 cells drive immune suppression and tumor progression in HGSOC, making them a key immunotherapy target. Their adnexal enrichment highlights the need for tissue-specific immune profiling in precision treatment.
Collapse
Affiliation(s)
- Bei-Lei Zhang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Hunan Province (Brain Hospital of Hunan Province), Changsha 410007, Hunan Province, China
| | - Wei Gao
- Department of Traumatic Orthopedics, The Second People's Hospital of Hunan Province (Brain Hospital of Hunan Province), Changsha 410007, Hunan Province, China
| | - Ling He
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Changsha 410011, Hunan Province, China
| | - Xiao-Ting Liu
- Department of Obstetrics and Gynecology, The Second People's Hospital of Hunan Province (Brain Hospital of Hunan Province), Changsha 410007, Hunan Province, China
| | - Zhong-Ming Wang
- Epilepsy Center, The Second People's Hospital of Hunan Province (Brain Hospital of Hunan Province), Changsha 410007, Hunan Province, China
| | - Li Tan
- Department of Obstetrics and Gynecology, The Second People's Hospital of Hunan Province (Brain Hospital of Hunan Province), Changsha 410007, Hunan Province, China
| |
Collapse
|
3
|
Sureka N, Zaheer S. Regulatory T Cells in Tumor Microenvironment: Therapeutic Approaches and Clinical Implications. Cell Biol Int 2025. [PMID: 40365758 DOI: 10.1002/cbin.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Regulatory T cells (Tregs), previously referred to as suppressor T cells, represent a distinct subset of CD4+ T cells that are uniquely specialized for immune suppression. They are characterized by the constitutive expression of the transcription factor FoxP3 in their nuclei, along with CD25 (the IL-2 receptor α-chain) and CTLA-4 on their cell surface. Tregs not only restrict natural killer cell-mediated cytotoxicity but also inhibit the proliferation of CD4+ and CD8+ T-cells and suppress interferon-γ secretion by immune cells, ultimately impairing an effective antitumor immune response. Treg cells are widely recognized as a significant barrier to the effectiveness of tumor immunotherapy in clinical settings. Extensive research has consistently shown that Treg cells play a pivotal role in facilitating tumor initiation and progression. Conversely, the depletion of Treg cells has been linked to a marked delay in tumor growth and development.
Collapse
Affiliation(s)
- Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
4
|
Gao Q, Wu H, Li Z, Yang Z, Li L, Sun X, Wu Q, Sui X. Synergistic Strategies for Lung Cancer Immunotherapy: Combining Phytochemicals and Immune-Checkpoint Inhibitors. Phytother Res 2025. [PMID: 40122686 DOI: 10.1002/ptr.8482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 03/25/2025]
Abstract
Lung cancer remains one of the most widespread and deadliest malignant tumors globally, with a particularly high mortality rate among all cancers. Recently, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has emerged as a crucial treatment strategy for lung cancer patients, following surgical intervention, radiotherapy, chemotherapy, and targeted drug therapies. However, the therapeutic limitations are caused owing to their low response rate and undesirable side effects such as immune-related pneumonitis. Therefore, developing new strategies to improve the efficacy of ICIs while minimizing immune-related adverse events will be crucial for cancer immunotherapy. The tumor immune microenvironment plays a significant role in the success of lung cancer immunotherapy, and the immunosuppressive characteristics of the immune microenvironment are one of the major obstacles to the poor immunotherapeutic effect. Phytochemicals, naturally occurring compounds in plants, have shown promise in enhancing cancer immunotherapy by remodeling the immunosuppressive microenvironment, offering the potential to increase the efficacy of ICIs. Therefore, this review summarizes the associated mechanisms of phytochemicals remodeling the immunosuppressive microenvironment in lung cancer. Additionally, the review will focus on the synergistic effects of combining phytochemicals with ICIs, aiming to improve anticancer efficacy and reduce side effects, which may hopefully offer novel strategies to overcome current limitations in immunotherapy.
Collapse
Affiliation(s)
- Quan Gao
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Hao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Yang
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Lin Li
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Xueni Sun
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Qibiao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Xinbing Sui
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
5
|
Che J, Liu Y, Liu Y, Song J, Cui H, Feng D, Tian A, Zhang Z, Xu Y. The application of emerging immunotherapy in the treatment of prostate cancer: progress, dilemma and promise. Front Immunol 2025; 16:1544882. [PMID: 40145100 PMCID: PMC11937122 DOI: 10.3389/fimmu.2025.1544882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, there has been a growing trend towards the utilization of immunotherapy techniques for the treatment of cancer. Some malignancies have acquired significant progress with the use of cancer vaccines, immune checkpoint inhibitors, and adoptive cells therapy. Scholars are exploring the aforementioned methods as potential treatments for advanced prostate cancer (PCa) due to the absence of effective adjuvant therapy to improve the prognosis of metastatic castration-resistant prostate cancer (mCRPC). Immunotherapy strategies have yet to achieve significant advancements in the treatment of PCa, largely attributed to the inhibitory tumor microenvironment and low mutation load characteristic of this malignancy. Hence, researchers endeavor to address these challenges by optimizing the design and efficacy of immunotherapy approaches, as well as integrating them with other therapeutic modalities. To date, studies have also shown potential clinical benefits. This comprehensive review analyzed the utilization of immunotherapy techniques in the treatment of PCa, assessing their advantages and obstacles, with the aim of providing healthcare professionals and scholars with a comprehensive understanding of the progress in this field.
Collapse
Affiliation(s)
- Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yuanyuan Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yangyang Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Jingheng Song
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Hongguo Cui
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Dongdong Feng
- Department of Urology, Haiyang City People’s Hospital, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Zhengchao Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
6
|
Jiramonai L, Liang XJ, Zhu M. Extracellular Vesicle-Based Strategies for Tumor Immunotherapy. Pharmaceutics 2025; 17:257. [PMID: 40006624 PMCID: PMC11859549 DOI: 10.3390/pharmaceutics17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Immunotherapy is one of the most promising approaches for cancer management, as it utilizes the intrinsic immune response to target cancer cells. Normally, the human body uses its immune system as a defense mechanism to detect and eliminate foreign objects, including cancer cells. However, cancers develop a 'switch off' mechanism, known as immune checkpoint proteins, to evade immune surveillance and suppress immune activation. Therefore, significant efforts have been made to develop the strategies for stimulating immune responses against cancers. Among these, the use of extracellular vesicles (EVs) to enhance the anti-tumor immune response has emerged as a particularly promising approach in cancer management. EVs possess several unique properties that elevate the potency in modulating immune responses. This review article provides a comprehensive overview of recent advances in this field, focusing on the strategic usage of EVs to overcome tumor-induced immune tolerance. We discuss the biogenesis and characteristics of EVs, as well as their potential applications in medical contexts. The immune mechanisms within the tumor microenvironment and the strategies employed by cancers to evade immune detection are explored. The roles of EVs in regulating the tumor microenvironment and enhancing immune responses for immunotherapy are also highlighted. Additionally, this article addresses the challenges and future directions for the development of EV-based nanomedicine approaches, aiming to improve cancer immunotherapy outcomes with greater precision and efficacy while minimizing off-target effects.
Collapse
Affiliation(s)
- Luksika Jiramonai
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Mareboina M, Bakhl K, Agioti S, Yee NS, Georgakopoulos-Soares I, Zaravinos A. Comprehensive Analysis of Granzymes and Perforin Family Genes in Multiple Cancers. Biomedicines 2025; 13:408. [PMID: 40002821 PMCID: PMC11853441 DOI: 10.3390/biomedicines13020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cancer remains a significant global health concern, with immunotherapies emerging as promising treatments. This study explored the role of perforin-1 (PRF1) and granzymes A, B and K (GZMA, GZMB and GZMK) in cancer biology, focusing on their impact on tumor cell death and immune response modulation. Methods: Through a comprehensive genomic analysis across various cancer types, we explored the differential expression, mutation profiles and methylation patterns of these genes, providing insights into their potential as therapeutic targets. Furthermore, we investigated their association with immune cell infiltration and pathway activation within the tumor microenvironment in each tumor type. Results: Our findings revealed distinct expression patterns and prognostic implications for PRF1, GZMA, GZMB and GZMK across different cancers, highlighting their multifaceted roles in tumor immunity. We found increased immune infiltration across all tumor types and significant correlations between the genes of interest and cytotoxic T cells, as well as the most significant survival outcomes in breast cancer. We also show that granzymes and perforin-1 are significantly associated with indicators of immunosuppression and T cell dysfunction within patient cohorts. In skin melanoma, glioblastoma, kidney and bladder cancers, we found significant correlations between the genes of interest and patient survival after receiving immune-checkpoint inhibition therapy. Additionally, we identified potential associations between the mRNA expression levels of these genes and drug sensitivity. Conclusions: Overall, this study enhances our understanding of the molecular mechanisms underlying tumor immunity and provides valuable insights into the potential therapeutic implications of PRF1, GZMA, GZMB and GZMK in cancer treatment.
Collapse
Affiliation(s)
- Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Katrina Bakhl
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Stephanie Agioti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Nelson S. Yee
- Department of Medicine, Division of Hematology-Oncology, Penn State Health Milton S. Hershey Medical Center, Next-Generation Therapies Program, Penn State Cancer Institute, Hershey, PA 17033, USA;
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.M.); (K.B.)
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
8
|
Chen Z, Yu T, Wang Y, Li J, Zhang B, Zhou L. Mechanistic insights into the role of traditional Chinese medicine in treating gastric cancer. Front Oncol 2025; 14:1443686. [PMID: 39906672 PMCID: PMC11790455 DOI: 10.3389/fonc.2024.1443686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Gastric cancer remains a leading cause of cancer-related mortality worldwide, with advanced stages presenting significant challenges due to metastasis and drug resistance. Traditional Chinese Medicine (TCM) offers a promising complementary approach characterized by holistic treatment principles and minimal side effects. This review comprehensively explores the multifaceted mechanisms by which TCM addresses gastric cancer. Specifically, we detail how TCM inhibits aerobic glycolysis by downregulating key glycolytic enzymes and metabolic pathways, thereby reducing the energy supply essential for cancer cell proliferation. We examine how TCM suppresses angiogenesis by targeting the vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) pathways, effectively starving tumors of nutrients and oxygen required for growth and metastasis. Furthermore, TCM modulates the immune microenvironment by enhancing the activity of effector immune cells such as CD4+ and CD8+ T cells and natural killer (NK) cells while reducing immunosuppressive cells like regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). These actions collectively contribute to slowing tumor progression, inhibiting metastasis, and enhancing the body's antitumor response. The insights presented underscore the significant potential of TCM as an integral component of comprehensive gastric cancer treatment strategies, highlighting avenues for future research and clinical application to improve patient outcomes.
Collapse
Affiliation(s)
- Ziqiang Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ting Yu
- Department of Rheumatism, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yunhe Wang
- Department of Endocrinology, Metabolism and Gastroenterology, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiaxin Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bo Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liya Zhou
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
9
|
Mohd Faizal NF, Shai S, Savaliya BP, Karen-Ng LP, Kumari R, Kumar R, Vincent-Chong VK. A Narrative Review of Prognostic Gene Signatures in Oral Squamous Cell Carcinoma Using LASSO Cox Regression. Biomedicines 2025; 13:134. [PMID: 39857718 PMCID: PMC11759772 DOI: 10.3390/biomedicines13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies of the head and neck squamous cell carcinoma (HNSCC). HNSCC is recognized as the eighth most commonly occurring cancer globally in men. It is essential to distinguish between cancers arising in the head and neck regions due to significant differences in their etiologies, treatment approaches, and prognoses. As the Cancer Genome Atlas (TCGA) dataset is available in HNSCC, the survival analysis prognosis of OSCC patients based on the TCGA dataset for discovering gene expression-based prognostic biomarkers is limited. To address this paucity, we aimed to provide comprehensive evidence by recruiting studies that have reported new biomarkers/signatures to establish a prognostic model to predict the survival of OSCC patients. Using PubMed search, we have identified 34 studies that have been using the least absolute shrinkage and selection operator (LASSO)-based Cox regression analyses to establish signature prognosis that related to different pathways in OSCC from the past 4 years. Our review was focused on summarizing these signatures and implications for targeted therapy using FDA-approved drugs. Furthermore, we conducted an analysis of the LASSO Cox regression gene signatures. Our findings revealed 13 studies that correlated a greater number of regulatory T cells (Tregs) cells in protective gene signatures with increased recurrence-free and overall survival rates. Conversely, two studies displayed an opposing trend in cases of OSCC. We will also explore how the dysregulation of these signatures impacts immune status, promoting tumor immune evasion or, conversely, enhancing immune surveillance. Overall, this review will provide new insight for future anti-cancer therapies based on the potential gene that is associated with poor prognosis in OSCC.
Collapse
Affiliation(s)
- Nur Fatinazwa Mohd Faizal
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Saptarsi Shai
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Bansi P. Savaliya
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55901, USA;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Rupa Kumari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Vui King Vincent-Chong
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
10
|
Garg S, Rai G, Singh S, Gauba P, Ali J, Dang S. An insight into the role of innate immune cells in breast tumor microenvironment. Breast Cancer 2025; 32:79-100. [PMID: 39460874 DOI: 10.1007/s12282-024-01645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The immune background of breast cancer is highly heterogeneous and the immune system of the human body plays a dual role by both promoting and suppressing its progression. Innate immune cells are the first line of defense in the immune system and impart protection by identifying and interacting with foreign pathogens and cancer cells. Different innate immune cells like natural killer cells, macrophages, dendritic cells, and myeloid suppressor cells take part in hosting the cancer cells. Autophagy is another key component inside the tumor microenvironment and is linked to the disintegration and recycling of cellular components. Within the tumor microenvironment autophagy is involved with Pattern Recognition Receptors and inflammation. Various clinical studies have shown prominent results where innate immune cells and autophagy in combination are used for pathogen as well as cancer cell clearance. However, it is necessary to comprehend the complex tumor microenvironment so that different therapeutic approaches can be developed to enhance the suppressive actions of the cells toward breast cancer cells. In this review article, the complex interaction between immune cells and breast cancer cells and their role in developing effective immunotherapies to improve patient outcomes are discussed in detail.
Collapse
Affiliation(s)
- Sandini Garg
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
11
|
Dash P, Nayak S, Parida PK. The Efficacy of Curcumin in Reducing Immunosuppressive States of Peripheral Blood Mononuclear Cells Extracted From Oral Squamous Cell Carcinoma Patients: An In Vitro Study. Cureus 2025; 17:e77899. [PMID: 39991356 PMCID: PMC11847154 DOI: 10.7759/cureus.77899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Background and objectives Prior studies have shown that patients with oral cancer overexpress programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) in cancer cells and immunocompetent lymphocytes. Current immunotherapeutic interventions include antibodies targeting PD-1/PD-L1. This observational, in vitro, cell culture-based study aimed to assess the concentrations of PD-1 and PD-L1 in the peripheral blood mononuclear cells (PBMCs) of patients with oral squamous cell carcinoma (OSCC) and compare their levels with those in healthy controls, both pre- and post-curcumin intervention. This study also compared the soluble fraction of PD-L1 in the serum of patients with that in controls. We aimed to determine a cutoff level for cell surface PD-1/PD-L1 to differentiate between patients and healthy controls, in order to identify potential targets for immunotherapy. Methodology Blood samples (5 mL) were collected from both controls (n=20) and patients (n=20). Of this, 2 mL was used to collect serum samples, and 3 mL was used for isolation and culture of PBMCs. Cells were analyzed pre- and post-intervention with curcumin for PD-1 and PD-L1 expression. Results This study provides relevant data regarding cellular and serum PD-1/PD-L1 levels in patients with OSCC, which were significantly higher than in controls. Intervention with curcumin decreased PD-L1/PD-1 levels, indicating the therapeutic efficacy of curcumin in suppressing immunotolerance in the tumor microenvironment. We also found that cell lysate PD-L1 and PD-1 had a sensitivity of 75% and specificity of 89%, with cutoff values of 0.602 and 5.53 ng/mL for PD-L1 and PD-1, respectively. The receiver operating characteristic (ROC) curve analysis determined that these markers were suitable for OSCC diagnosis and identifying the appropriate cohort for immunotherapy. Conclusions Our study showed that serum and PBMC lysate PD-1 and PD-L1 levels were higher in advanced cancer cases compared to patients with localized disease without metastasis. Curcumin reduced the levels of PD-1 and PD-L1 in PBMC lysates. Further studies and clinical trials are required to gain deeper insights into its utility as an effective chemo adjuvant.
Collapse
Affiliation(s)
- Prakruti Dash
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Saurav Nayak
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Pradipta K Parida
- Otorhinolaryngology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
- ENT-Head and Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
12
|
Geils C, Kathrein K. Augmentation of Solid Tumor Immunotherapy With IL-12. J Gene Med 2024; 26:e70000. [PMID: 39618102 PMCID: PMC11609498 DOI: 10.1002/jgm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Immunotherapy describes a class of therapies in which the immune system is manipulated for therapeutic benefit. These treatments include immune checkpoint inhibitors, adoptive cell therapy, and vaccines. For many hematological malignancies, immunotherapy has emerged as an essential treatment component. However, this success has yet to be replicated for solid tumors, which develop advanced physical and molecular mechanisms for suppressing and evading immune destruction. Nevertheless, cytokine immunotherapy presents a potential remedy to these barriers by delivering a proinflammatory immune signal to the tumor and thereby transforming it from immunologically "cold" to "hot." Interleukin-12 (IL-12), one of the most potent proinflammatory cytokines, was initially investigated for this purpose. However, initial murine and human studies in which IL-12 was administered systemically resulted in dangerous immunotoxicity associated with off-target immune activation. As a result, recent studies have employed advanced cell and molecular engineering approaches to reduce IL-12 toxicity while increasing or maintaining its efficacy such that its effective doses can be tolerated in humans. This review highlights such developments and identifies promising future directions.
Collapse
Affiliation(s)
- Christian Geils
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Katie L. Kathrein
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
13
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Venkatachalapathy M. Targeting intratumoral Tregs: The promise of CD25×TIGIT bispecific antibodies in solid tumor therapy. Mol Ther 2024; 32:3758-3760. [PMID: 39489908 PMCID: PMC11573739 DOI: 10.1016/j.ymthe.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
|
15
|
Wu H, Li J, Zhang Z, Zhang Y. Characteristics and mechanisms of T-cell senescence: A potential target for cancer immunotherapy. Eur J Immunol 2024; 54:e2451093. [PMID: 39107923 DOI: 10.1002/eji.202451093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 11/08/2024]
Abstract
Immunosenescence, the aging of the immune system, leads to functional deficiencies, particularly in T cells, which undergo significant changes. While numerous studies have investigated age-related T-cell phenotypes in healthy aging, senescent T cells have also been observed in younger populations during pathological conditions like cancer. This review summarizes the recent advancements in age-associated alterations and markers of T cells, mechanisms, and the relationship between senescent T cells and the tumor microenvironment. We also discuss potential strategies for targeting senescent T cells to prevent age-related diseases and enhance tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Han Wu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junru Li
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Mneimneh AT, Darwiche N, Mehanna MM. Investigating the therapeutic promise of drug-repurposed-loaded nanocarriers: A pioneering strategy in advancing colorectal cancer treatment. Int J Pharm 2024; 664:124473. [PMID: 39025341 DOI: 10.1016/j.ijpharm.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Globally, colorectal cancer is a major health problem that ranks in third place in terms of occurrence and second in terms of mortality worldwide. New cases increase annually, with the absence of effective therapies, especially for metastatic colorectal cancer, emphasizing the need for novel therapeutic approaches. Although conventional treatments are commonly used in oncotherapy, their success rate is low, which leads to the exploration of novel technologies. Recent efforts have focused on developing safe and efficient cancer nanocarriers. With their nanoscale properties, nanocarriers have the potential to utilize internal metabolic modifications amid cancer and healthy cells. Drug repurposing is an emerging strategy in cancer management as it is a faster, cheaper, and safer method than conventional drug development. However, most repurposed drugs are characterized by low-key pharmacokinetic characteristics, such as poor aqueous solubility, permeability, retention, and bioavailability. Nanoparticles formulations and delivery have expanded over the past few decades, creating opportunities for drug repurposing and promises as an advanced cancer modality. This review provides a concise and updated overview of colorectal cancer treatment regimens and their therapeutic limitations. Furthermore, the chemotherapeutic effect of various FDA-approved medications, including statins, non-steroidal anti-inflammatory drugs, antidiabetic and anthelmintic agents, and their significance in colorectal cancer management. Along with the role of various nanocarrier systems in achieving the desired therapeutic outcomes of employing these redefined drugs.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
17
|
Karimi-Sani I, Molavi Z, Naderi S, Mirmajidi SH, Zare I, Naeimzadeh Y, Mansouri A, Tajbakhsh A, Savardashtaki A, Sahebkar A. Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials. J Nanobiotechnology 2024; 22:601. [PMID: 39367418 PMCID: PMC11453023 DOI: 10.1186/s12951-024-02882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Naderi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Al Ageeli E, Abdulhakim JA, Hussein MH, Alnoman MM, Alkhalil SS, Issa PP, Nemr NA, Abdelmaksoud A, Alenizi DA, Fawzy MS, Toraih EA. The HCV-Melanoma Paradox: First Multi-Cohort and Molecular Net-Work Analysis Reveals Lower Incidence but Worse Outcomes-Integrating Clinical, Real-World, and In Silico Data. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1531. [PMID: 39336572 PMCID: PMC11433761 DOI: 10.3390/medicina60091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: The relationship between hepatitis C virus (HCV) infection and melanoma remains poorly understood. This study aimed to investigate the association between HCV and melanoma, assess outcomes in patients with both conditions, and explore potential molecular mechanisms connecting the two diseases. Materials and Methods: We conducted a retrospective cohort study of 142 melanoma patients, including 29 with HCV-related cirrhosis, and analyzed their clinical outcomes. For external validation, we used the TriNetX Global Collaborative Network database, comprising 219,960 propensity-matched patients per group. An in silico analysis was performed to identify the molecular pathways linking HCV and melanoma. Results: In the retrospective cohort, HCV-positive melanoma patients showed an increased risk of early relapse (41.4% vs. 18.6%, p = 0.014), recurrence (65.5% vs. 39.8%, p = 0.020), and mortality (65.5% vs. 23.0%, p < 0.001) compared to HCV-negative patients. TriNetX data analysis revealed that HCV-positive patients had a 53% lower risk of developing melanoma (RR = 0.470, 95% CI: 0.443-0.498, p < 0.001). However, HCV-positive melanoma patients had higher all-cause mortality (HR = 1.360, 95% CI: 1.189-1.556, p < 0.001). An in silico analysis identified key molecular players, including IL-6 and CTLA4, in the HCV-melanoma network. Conclusions: While HCV infection may be associated with a lower risk of melanoma development, HCV-positive patients who develop melanoma have poorer outcomes. The identified molecular pathways provide potential targets for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan 45141, Saudi Arabia;
| | - Jawaher A. Abdulhakim
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia;
| | | | - Maryam M. Alnoman
- Department of Biology, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Peter P. Issa
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Nader A. Nemr
- Endemic and Infectious Diseases Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Ahmed Abdelmaksoud
- Department of Internal Medicine, University of California, Riverside, CA 92521, USA;
| | - Dhaifallah A. Alenizi
- Department of Medicine, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia;
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
19
|
Zhou Z, Xu J, Liu S, Lv Y, Zhang R, Zhou X, Zhang Y, Weng S, Xu H, Ba Y, Zuo A, Han X, Liu Z. Infiltrating treg reprogramming in the tumor immune microenvironment and its optimization for immunotherapy. Biomark Res 2024; 12:97. [PMID: 39227959 PMCID: PMC11373505 DOI: 10.1186/s40364-024-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Immunotherapy has shown promising anti-tumor effects across various tumors, yet it encounters challenges from the inhibitory tumor immune microenvironment (TIME). Infiltrating regulatory T cells (Tregs) are important contributors to immunosuppressive TIME, limiting tumor immunosurveillance and blocking effective anti-tumor immune responses. Although depletion or inhibition of systemic Tregs enhances the anti-tumor immunity, autoimmune sequelae have diminished expectations for the approach. Herein, we summarize emerging strategies, specifically targeting tumor-infiltrating (TI)-Tregs, that elevate the capacity of organisms to resist tumors by reprogramming their phenotype. The regulatory mechanisms of Treg reprogramming are also discussed as well as how this knowledge could be utilized to develop novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jiaxin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Human Anatomy, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
20
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
21
|
Thapa B, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline MK, Previs RA, Conroy JM, DePietro P, Pabla S, Kurzrock R. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev 2024; 43:1001-1013. [PMID: 38526805 PMCID: PMC11300540 DOI: 10.1007/s10555-024-10184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Immune checkpoint inhibitors have changed the treatment landscape for various malignancies; however, their benefit is limited to a subset of patients. The immune machinery includes both mediators of suppression/immune evasion, such as PD-1, PD-L1, CTLA-4, and LAG-3, all of which can be inhibited by specific antibodies, and immune-stimulatory molecules, such as T-cell co-stimulatory receptors that belong to the tumor necrosis factor receptor superfamily (TNFRSF), including OX40 receptor (CD134; TNFRSF4), 4-1BB (CD137; TNFRSF9), and glucocorticoid-induced TNFR-related (GITR) protein (CD357; TNFRSF18). In particular, OX40 and its binding ligand OX40L (CD134L; TNFSF4; CD252) are critical for immunoregulation. When OX40 on activated T cells binds OX40L on antigen-presenting cells, T-cell activation and immune stimulation are initiated via enhanced T-cell survival, proliferation and cytotoxicity, memory T-cell formation, and abrogation of regulatory T cell (Treg) immunosuppressive functions. OX40 agonists are in clinical trials both as monotherapy and in combination with other immunotherapy agents, in particular specific checkpoint inhibitors, for cancer treatment. To date, however, only a minority of patients respond. Transcriptomic profiling reveals that OX40 and OX40L expression vary between and within tumor types, and that only ~ 17% of cancer patients have high OX40 and low OX40L, one of the expression patterns that might be theoretically amenable to OX40 agonist enhancement. Taken together, the data suggest that the OX40/OX40L machinery is a critical part of the immune stimulatory system and that understanding endogenous expression patterns of these molecules and co-existing checkpoints merits further investigation in the context of a precision immunotherapy strategy for cancer therapy.
Collapse
Affiliation(s)
- Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | - Suzanna Lee
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | | | | | | | | | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
22
|
Du L, Zhang Q, Li Y, Li T, Deng Q, Jia Y, Lei K, Kan D, Xie F, Huang S. Research progress on the role of PTEN deletion or mutation in the immune microenvironment of glioblastoma. Front Oncol 2024; 14:1409519. [PMID: 39206155 PMCID: PMC11349564 DOI: 10.3389/fonc.2024.1409519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Recent advances in immunotherapy represent a breakthrough in solid tumor treatment but the existing data indicate that immunotherapy is not effective in improving the survival time of patients with glioblastoma. The tumor microenvironment (TME) exerts a series of inhibitory effects on immune effector cells, which limits the clinical application of immunotherapy. Growing evidence shows that phosphate and tension homology deleted on chromosome ten (PTEN) plays an essential role in TME immunosuppression of glioblastoma. Emerging evidence also indicates that targeting PTEN can improve the anti-tumor immunity in TME and enhance the immunotherapy effect, highlighting the potential of PTEN as a promising therapeutic target. This review summarizes the function and specific upstream and downstream targets of PTEN-associated immune cells in glioblastoma TME, providing potential drug targets and therapeutic options for glioblastoma.
Collapse
Affiliation(s)
- Leiya Du
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Qian Zhang
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yi Li
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Ting Li
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Qingshan Deng
- Department of Neurosurgery, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yuming Jia
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Kaijian Lei
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Daohong Kan
- Department of Burn and Plastic Surgery, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Fang Xie
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Shenglan Huang
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| |
Collapse
|
23
|
Li C, Sun C, Li Y, Dong L, Wang X, Li R, Su J, Cao Q, Xin S. Therapeutic and prognostic effect of disulfidptosis-related genes in lung adenocarcinoma. Heliyon 2024; 10:e33764. [PMID: 39050421 PMCID: PMC11267016 DOI: 10.1016/j.heliyon.2024.e33764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Disulfidptosis, a new form of cell death, may be induced by disulfide stress associated with cystine disulfide buildup, which can promote cell toxicity, leading to cell death. Nevertheless, the role of direct prognosis and the mechanism underlying the regulation of disulfidptosis-related genes (DRGs) in lung adenocarcinoma (LUAD) are still unknown. This study aimed to investigate the role of DRGs in LUAD prognosis and diagnosis through multiomics analysis. First, copy number variations (CNVs) and mutations in the 10 genes were assessed. Considering that five differentially expressed genes (DEGs) were associated with disulfidptosis, a novel DRG score that can be utilized to anticipate LUAD prognosis was developed. Next, the generated receiver operating characteristic (ROC) and survival curves demonstrated that the model had an excellent predictive quality in LUAD in both the training and validation cohorts. Meanwhile, substantial functional disparities between the high DRG group and the low DRG group were observed, and the second gap mitosis (G2M) checkpoint, E2 promoter-binding factor (E2F) targets, and myelocytomatosis (MYC) target activities were consistently higher in the high DRG group than in the low DRG group. Additionally, the T-cell dysfunction score and tumor inflammation signature (Merck18) were negatively correlated with DRGs, whereas myeloid-derived suppressor cells (MDSCs) were positively correlated with DRGs. Moreover, DRGs were negatively linked to most of the immunological checkpoints. Meanwhile, samples of low DRGs benefited more from immune checkpoint blockade (ICB). The correlation analysis between DRGs and clinical characteristics revealed increasing malignancy with increasing DRG scores. Drug sensitization experiment results indicated that sensitivity to cisplatin, vincristine, docetaxel, and gemcitabine was higher in the high DRG group than in the low DRG group. The function of model genes in LUAD was also verified using immunohistochemistry, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, 5-ethynyl-2'-deoxyuridine (EDU), and clonogenic formation.
Collapse
Affiliation(s)
- Changshuan Li
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Chao Sun
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Yakun Li
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Lin Dong
- Department of Oncology, The Third People's Hospital of Luoyang, No.560, Chanjian Avenue, Chan River Hui District, Luoyang 471002, China
| | - Xian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang 471000, China
| |
Collapse
|
24
|
Ferrari DP, Ramos-Gomes F, Alves F, Markus MA. KPC-luciferase-expressing cells elicit an anti-tumor immune response in a mouse model of pancreatic cancer. Sci Rep 2024; 14:13602. [PMID: 38866899 PMCID: PMC11169258 DOI: 10.1038/s41598-024-64053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Mouse models for the study of pancreatic ductal adenocarcinoma (PDAC) are well-established and representative of many key features observed in human PDAC. To monitor tumor growth, cancer cells that are implanted in mice are often transfected with reporter genes, such as firefly luciferase (Luc), enabling in vivo optical imaging over time. Since Luc can induce an immune response, we aimed to evaluate whether the expression of Luc could affect the growth of KPC tumors in mice by inducing immunogenicity. Although both cell lines, KPC and Luc transduced KPC (KPC-Luc), had the same proliferation rate, KPC-Luc tumors had significantly smaller sizes or were absent 13 days after orthotopic cell implantation, compared to KPC tumors. This coincided with the loss of bioluminescence signal over the tumor region. Immunophenotyping of blood and spleen from KPC-Luc tumor-bearing mice showed a decreased number of macrophages and CD4+ T cells, and an increased accumulation of natural killer (NK) cells in comparison to KPC tumor mice. Higher infiltration of CD8+ T cells was found in KPC-Luc tumors than in their controls. Moreover, the immune response against Luc peptide was stronger in splenocytes from mice implanted with KPC-Luc cells compared to those isolated from KPC wild-type mice, indicating increased immunogenicity elicited by the presence of Luc in the PDAC tumor cells. These results must be considered when evaluating the efficacy of anti-cancer therapies including immunotherapies in immunocompetent PDAC or other cancer mouse models that use Luc as a reporter for bioluminescence imaging.
Collapse
Affiliation(s)
- Daniele Pereira Ferrari
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - M Andrea Markus
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany.
| |
Collapse
|
25
|
Mandal SK, Yadav P, Sheth RA. The Neuroimmune Axis and Its Therapeutic Potential for Primary Liver Cancer. Int J Mol Sci 2024; 25:6237. [PMID: 38892423 PMCID: PMC11172507 DOI: 10.3390/ijms25116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The autonomic nervous system plays an integral role in motion and sensation as well as the physiologic function of visceral organs. The nervous system additionally plays a key role in primary liver diseases. Until recently, however, the impact of nerves on cancer development, progression, and metastasis has been unappreciated. This review highlights recent advances in understanding neuroanatomical networks within solid organs and their mechanistic influence on organ function, specifically in the liver and liver cancer. We discuss the interaction between the autonomic nervous system, including sympathetic and parasympathetic nerves, and the liver. We also examine how sympathetic innervation affects metabolic functions and diseases like nonalcoholic fatty liver disease (NAFLD). We also delve into the neurobiology of the liver, the interplay between cancer and nerves, and the neural regulation of the immune response. We emphasize the influence of the neuroimmune axis in cancer progression and the potential of targeted interventions like neurolysis to improve cancer treatment outcomes, especially for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | | | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1471, Houston, TX 77030-4009, USA; (S.K.M.); (P.Y.)
| |
Collapse
|
26
|
El-Tanani M, Rabbani SA, Babiker R, Rangraze I, Kapre S, Palakurthi SS, Alnuqaydan AM, Aljabali AA, Rizzo M, El-Tanani Y, Tambuwala MM. Unraveling the tumor microenvironment: Insights into cancer metastasis and therapeutic strategies. Cancer Lett 2024; 591:216894. [PMID: 38626856 DOI: 10.1016/j.canlet.2024.216894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
This comprehensive review delves into the pivotal role of the tumor microenvironment (TME) in cancer metastasis and therapeutic response, offering fresh insights into the intricate interplay between cancer cells and their surrounding milieu. The TME, a dynamic ecosystem comprising diverse cellular and acellular elements, not only fosters tumor progression but also profoundly affects the efficacy of conventional and emerging cancer therapies. Through nuanced exploration, this review illuminates the multifaceted nature of the TME, elucidating its capacity to engender drug resistance via mechanisms such as hypoxia, immune evasion, and the establishment of physical barriers to drug delivery. Moreover, it investigates innovative therapeutic approaches aimed at targeting the TME, including stromal reprogramming, immune microenvironment modulation, extracellular matrix (ECM)-targeting agents, and personalized medicine strategies, highlighting their potential to augment treatment outcomes. Furthermore, this review critically evaluates the challenges posed by the complexity and heterogeneity of the TME, which contribute to variable therapeutic responses and potentially unintended consequences. This underscores the need to identify robust biomarkers and advance predictive models to anticipate treatment outcomes, as well as advocate for combination therapies that address multiple facets of the TME. Finally, the review emphasizes the necessity of an interdisciplinary approach and the integration of cutting-edge technologies to unravel the intricacies of the TME, thereby facilitating the development of more effective, adaptable, and personalized cancer treatments. By providing critical insights into the current state of TME research and its implications for the future of oncology, this review highlights the dynamic and evolving landscape of this field.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rasha Babiker
- Physiology Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Imran Rangraze
- Internal Medicine Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Sushesh Srivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Manfredi Rizzo
- (D)epartment of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
27
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
28
|
Lin Z, Wang Q, Zheng Z, Zhang B, Zhou S, Zheng D, Chen Z, Zheng S, Zhu S, Zhang X, Lan E, Zhang Y, Lin X, Zhuang Q, Qian H, Hu X, Zhuang Y, Jin Z, Jiang S, Ma Y. Identification and validation of a platelet-related signature for predicting survival and drug sensitivity in multiple myeloma. Front Pharmacol 2024; 15:1377370. [PMID: 38818376 PMCID: PMC11137312 DOI: 10.3389/fphar.2024.1377370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Significant progress has been achieved in the management of multiple myeloma (MM) by implementing high-dose therapy and stem cell transplantation. Moreover, the prognosis of patients has been enhanced due to the introduction of novel immunomodulatory drugs and the emergence of new targeted therapies. However, predicting the survival rates of patients with multiple myeloma is still tricky. According to recent researches, platelets have a significant impact in affecting the biological activity of tumors and are essential parts of the tumor microenvironment. Nonetheless, it is still unclear how platelet-related genes (PRGs) connect to the prognosis of multiple myeloma. Methods: We analyzed the expression of platelet-related genes and their prognostic value in multiple myeloma patients in this study. We also created a nomogram combining clinical metrics. Furthermore, we investigated disparities in the biological characteristics, immunological microenvironment, and reaction to immunotherapy, along with analyzing the drug susceptibility within diverse risk groups. Results: By using the platelet-related risk model, we were able to predict patients' prognosis more accurately. Subjects in the high-risk cohort exhibited inferior survival outcomes, both in the training and validation datasets, as compared to those in the low-risk cohort (p < 0.05). Moreover, there were differences in the immunological microenvironments, biological processes, clinical features, and chemotherapeutic drug sensitivity between the groups at high and low risk. Using multivariable Cox regression analyses, platelet-related risk score was shown to be an independent prognostic influence in MM (p < 0.001, hazard ratio (HR) = 2.001%, 95% confidence interval (CI): 1.467-2.730). Furthermore, the capacity to predict survival was further improved when a combined nomogram was utilized. In training cohort, this outperformed the predictive value of International staging system (ISS) alone from a 5-years area under curve (AUC) = 0.668 (95% CI: 0.611-0.725) to an AUC = 0.721 (95% CI: 0.665-0.778). Conclusion: Our study revealed the potential benefits of PRGs in terms of survival prognosis of MM patients. Furthermore, we verified its potential as a drug target for MM patients. These findings open up novel possibilities for prognostic evaluation and treatment choices for MM.
Collapse
Affiliation(s)
- Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuxia Zhu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyi Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Enqing Lan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, China
| |
Collapse
|
29
|
Wójcik M, Juhas U, Mohammadi E, Mattisson J, Drężek-Chyła K, Rychlicka-Buniowska E, Bruhn-Olszewska B, Davies H, Chojnowska K, Olszewski P, Bieńkowski M, Jankowski M, Rostkowska O, Hellmann A, Pęksa R, Kowalski J, Zdrenka M, Kobiela J, Zegarski W, Biernat W, Szylberg Ł, Remiszewski P, Mieczkowski J, Filipowicz N, Dumanski JP. Loss of Y in regulatory T lymphocytes in the tumor micro-environment of primary colorectal cancers and liver metastases. Sci Rep 2024; 14:9458. [PMID: 38658633 PMCID: PMC11043399 DOI: 10.1038/s41598-024-60049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Male sex is a risk factor for colorectal cancer (CRC) with higher illness burden and earlier onset. Thus, we hypothesized that loss of chromosome Y (LOY) in the tumor micro-environment (TME) might be involved in oncogenesis. Previous studies show that LOY in circulating leukocytes of aging men was associated with shorter survival and non-hematological cancer, as well as higher LOY in CD4 + T-lymphocytes in men with prostate cancer vs. controls. However, nothing is known about LOY in leukocytes infiltrating TME and we address this aspect here. We studied frequency and functional effects of LOY in blood, TME and non-tumorous tissue. Regulatory T-lymphocytes (Tregs) in TME had the highest frequency of LOY (22%) in comparison to CD4 + T-lymphocytes and cytotoxic CD8 + T-lymphocytes. LOY score using scRNA-seq was also linked to higher expression of PDCD1, TIGIT and IKZF2 in Tregs. PDCD1 and TIGIT encode immune checkpoint receptors involved in the regulation of Tregs function. Our study sets the direction for further functional research regarding a probable role of LOY in intensifying features related to the suppressive phenotype of Tregs in TME and consequently a possible influence on immunotherapy response in CRC patients.
Collapse
Affiliation(s)
- Magdalena Wójcik
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Ulana Juhas
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Elyas Mohammadi
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Jonas Mattisson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kinga Drężek-Chyła
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | | | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarzyna Chojnowska
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Paweł Olszewski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier's Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Surgical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Olga Rostkowska
- Department of Oncological, Transplant and General Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Hellmann
- Department of Oncological, Transplant and General Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Kowalski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Jarek Kobiela
- Department of Oncological, Transplant and General Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier's Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Surgical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Piotr Remiszewski
- Department of Oncological, Transplant and General Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Natalia Filipowicz
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Jan P Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Kawada T, Yanagisawa T, Rajwa P, Motlagh RS, Mostafaei H, Quhal F, Laukhtina E, Pallauf M, König F, Pradere B, Araki M, Nasu Y, Shariat SF. The Prognostic Value of Tumor Infiltrating Lymphocytes After Radical Cystectomy for Bladder Cancer: A Systematic Review and Meta-Analysis. Clin Genitourin Cancer 2024; 22:535-543.e4. [PMID: 38336572 DOI: 10.1016/j.clgc.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND We aimed to assess the prognostic value of tumor infiltrating lymphocytes (TILs) in patients with bladder cancer (BC) after radical cystectomy (RC). MATERIALS AND METHODS We searched Pubmed, Web of Science and Scopus in April 2022 to identify studies assessing the prognostic value of TILs, including a subset of lymphocytes (eg, CD3, CD8, FOXP3), after RC. The endpoints were overall survival and recurrent free survival. Subgroup analyses were performed based on the evaluation method for TILs (ie, CD3, CD8, FOXP3, HE staining). RESULTS Overall, 9 studies comprising 1413 patients were included in this meta-analysis. The meta-analysis revealed that elevated expressions of TILs were significantly associated with favorable OS (pooled hazard ratio [HR]: 0.65, 95% confidence interval [CI]: 0.51-0.83) and RFS (pooled HR: 0.48, 95% CI: 0.35-0.64). In subgroup analyses, high CD8+ TILs were also associated with favorable OS (HR: 0.51, 95% CI: 0.33-0.80) and RFS (pooled HR: 0.53, 95% CI: 0.36-0.76). Among 3 studies comprising 146 patients, high intratumoral TILs were significantly associated with favorable OS (pooled HR: 0.34, 95% CI: 0.19-0.60). CONCLUSION TILs are useful prognostic markers in patients treated with RC for BC. Although the prognostic value of TILs is varied, depending on the subset and infiltration site, CD8+ TILs and intratumoral TILs are associated with oncologic outcomes. Further studies are warranted to explicate the predictive value of TILs on the response to perioperative systemic therapy to help clinical decision-making in patients with BC.
Collapse
Affiliation(s)
- Tatsushi Kawada
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Takafumi Yanagisawa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Reza Sari Motlagh
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Tehran, Iran
| | - Hadi Mostafaei
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahad Quhal
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ekaterina Laukhtina
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Maximilian Pallauf
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Paracelsus Medical University Salzburg, University Hospital Salzburg, Salzburg, Austria
| | - Frederik König
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Pradere
- Department of Urology, La Croix Du Sud Hospital, Quint-Fonsegrives, France
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan; Department of Urology, University of Texas Southwestern, Dallas, Texas, USA; Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria; Research Center for Evidence Medicine, Urology Department Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Liu K, Wang H, Zhou J, Zhu S, Ma M, Xiao H, Ding Y. HMGB1 in exosomes derived from gastric cancer cells induces M2-like macrophage polarization by inhibiting the NF-κB signaling pathway. Cell Biol Int 2024; 48:334-346. [PMID: 38105539 DOI: 10.1002/cbin.12110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Gastric cancer (GC) seriously threatens human health. High mobility group protein B1 (HMGB1) and M2-like macrophages are closely associated with core events about human cancers, such as invasion, and metastasis, and cancer microenvironment. This study mainly determined the regulatory effect of HMGB1 in GC cell-derived exosomes on M2-like macrophage polarization as well as the underlying mechanism. HMGB1 was found to be highly expressed in gastric tissue specimens, which might lead to the poor prognosis of GC. High levels of HMGB1 were also observed in the plasma of GC patients, indicating the possibility that it regulates the immune microenvironment via exosomes. Further study revealed and confirmed the regulatory effect of exosomes derived from GC cells with high HMGB1 level on inducing M2-like macrophage polarization. Mechanistically, by interacting with the transcription factor POU2F1, exosomal HMGB1 inhibited the transcriptional activity of p50, resulting in the inactivation of NF-κB signaling pathway and thereby inducing M2-like macrophage polarization. Moreover, instead of promoting the proliferation of GC cells, exosomes with high HMGB1 levels induced M2-like macrophage polarization and promoted GC progression. This study reveals a novel mechanism by which HMGB1 promotes GC progression, which may provide new insights for improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ke Liu
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jumei Zhou
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Suyu Zhu
- Department of Radiotherapy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hua Xiao
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi Ding
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
33
|
Kumar S, Acharya S, Karthikeyan M, Biswas P, Kumari S. Limitations and potential of immunotherapy in ovarian cancer. Front Immunol 2024; 14:1292166. [PMID: 38264664 PMCID: PMC10803592 DOI: 10.3389/fimmu.2023.1292166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological cancer and alone has an emergence rate of approximately 308,069 cases worldwide (2020) with dire survival rates. To put it into perspective, the mortality rate of OC is three times higher than that of breast cancer and it is predicted to only increase significantly by 2040. The primary reasons for such a high rate are that the physical symptoms of OC are detectable only during the advanced phase of the disease when resistance to chemotherapies is high and around 80% of the patients that do indeed respond to chemotherapy initially, show a poor prognosis subsequently. This highlights a pressing need to develop new and effective therapies to tackle advanced OC to improve prognosis and patient survival. A major advance in this direction is the emergence of combination immunotherapeutic methods to boost CD8+ T cell function to tackle OC. In this perspective, we discuss our view of the current state of some of the combination immunotherapies in the treatment of advanced OC, their limitations, and potential approaches toward a safer and more effective response.
Collapse
Affiliation(s)
| | | | | | | | - Sudha Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
34
|
Abizanda-Campo S, Virumbrales-Muñoz M, Humayun M, Marmol I, Beebe DJ, Ochoa I, Oliván S, Ayuso JM. Microphysiological systems for solid tumor immunotherapy: opportunities and challenges. MICROSYSTEMS & NANOENGINEERING 2023; 9:154. [PMID: 38106674 PMCID: PMC10724276 DOI: 10.1038/s41378-023-00616-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Immunotherapy remains more effective for hematologic tumors than for solid tumors. One of the main challenges to immunotherapy of solid tumors is the immunosuppressive microenvironment these tumors generate, which limits the cytotoxic capabilities of immune effector cells (e.g., cytotoxic T and natural killer cells). This microenvironment is characterized by hypoxia, nutrient starvation, accumulated waste products, and acidic pH. Tumor-hijacked cells, such as fibroblasts, macrophages, and T regulatory cells, also contribute to this inhospitable microenvironment for immune cells by secreting immunosuppressive cytokines that suppress the antitumor immune response and lead to immune evasion. Thus, there is a strong interest in developing new drugs and cell formulations that modulate the tumor microenvironment and reduce tumor cell immune evasion. Microphysiological systems (MPSs) are versatile tools that may accelerate the development and evaluation of these therapies, although specific examples showcasing the potential of MPSs remain rare. Advances in microtechnologies have led to the development of sophisticated microfluidic devices used to recapitulate tumor complexity. The resulting models, also known as microphysiological systems (MPSs), are versatile tools with which to decipher the molecular mechanisms driving immune cell antitumor cytotoxicity, immune cell exhaustion, and immune cell exclusion and to evaluate new targeted immunotherapies. Here, we review existing microphysiological platforms to study immuno-oncological applications and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Sara Abizanda-Campo
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - María Virumbrales-Muñoz
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI USA
| | - Mouhita Humayun
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Cambridge, MA USA
| | - Ines Marmol
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
| | - David J Beebe
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI USA
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Sara Oliván
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
| | - Jose M Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
| |
Collapse
|
35
|
Xin S, Li R, Su J, Cao Q, Wang H, Wei Z, Li G, Qin W, Zhang Z, Wang C, Zhang C, Zhang J. A novel model based on disulfidptosis-related genes to predict prognosis and therapy of bladder urothelial carcinoma. J Cancer Res Clin Oncol 2023; 149:13925-13942. [PMID: 37541976 DOI: 10.1007/s00432-023-05235-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Disulfidptosis is a novel type of cell death induced by disulphide stress that depends on the accumulation of cystine disulphide, causing cytotoxicity and triggering cell death. However, the direct prognostic effect and regulatory mechanism of disulfidptosis-related genes in bladder urothelial carcinoma (BLCA) remain unclear. METHODS To explore the role of 10 disulfidptosis-related genes, the multiomic data of 10 genes were comprehensively analysed. Next, based on seven disulfidptosis-related differentially expressed genes, a novel disulfidptosis-related gene score was developed to help predict the prognosis of BLCA. Immunohistochemistry, EDU, Real-time PCR and western blot were used to verify the model. RESULTS Significant functional differences were found between the high- and low-risk score groups, and samples with a higher risk score were more malignant. Furthermore, the tumour exclusion and Tumour Immune Dysfunction and Exclusion scores of the high-risk score group were higher than those of the low-risk score group. The risk score was positively correlated with the expression of immune checkpoints. Drug sensitivity analyses revealed that the low-risk score group had a higher sensitivity to cisplatin, doxorubicin, docetaxel and gemcitabine than the high-risk score group. Moreover, the expression of the TM4SF1 was positively correlated with the malignancy degree of BLCA, and the proliferation ability of BLCA cells was reduced after knockdown TM4SF1. CONCLUSION The present study results suggest that disulfidptosis-related genes influence the prognosis of BLCA through their involvement in immune cell infiltration. Thus, these findings indicate the role of disulfidptosis in BLCA and its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China.
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Luoyang Central Hospital, Zhengzhou University, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, 471023, China
| | - Guanyu Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Wang Qin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Zheng Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Chengliang Wang
- Department of Urology, Shangcheng County People's Hospital, Xinyang, 465300, China
| | - Chengdong Zhang
- Department of Urology, Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Jianguo Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| |
Collapse
|
36
|
Alfar R, Napoleon JV, Shahriar I, Finnell R, Walchle C, Johnson A, Low PS. Selective reprogramming of regulatory T cells in solid tumors can strongly enhance or inhibit tumor growth. Front Immunol 2023; 14:1274199. [PMID: 37928524 PMCID: PMC10623129 DOI: 10.3389/fimmu.2023.1274199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Folate receptor delta (FRδ) has been used as a biomarker for regulatory T cells (Tregs), because its expression is limited to Tregs and ovum. Although FRδ is unable to bind folate, we have used molecular docking software to identify a folate congener that binds FRδ with high affinity and have exploited this FRδ-specific ligand to target attached drugs (imaging agents, immune activators, and immune suppressors) specifically to Tregs in murine tumor xenografts. Analysis of treated tumors demonstrates that targeting of a Toll-like receptor 7 agonist inhibits Treg expression of FOXP3, PD-1, CTLA4, and HELIOS, resulting in 40-80% reduction in tumor growth and repolarization of other tumor-infiltrating immune cells to more inflammatory phenotypes. Targeting of the immunosuppressive drug dexamethasone, in contrast, promotes enhanced tumor growth and shifts the tumor-infiltrating immune cells to more anti-inflammatory phenotypes. Since Tregs comprise <1% of cells in the tumor masses examined, and since the targeted drugs are not internalized by cancer cells, these data demonstrate that Tregs exert a disproportionately large effect on tumor growth. Because the targeted drug did not bind to Tregs or other immune cells in healthy tissues, the data demonstrate that the immunosuppressive properties of Tregs in tumors can be manipulated without causing systemic toxicities associated with global reprogramming of the immune system.
Collapse
Affiliation(s)
- Rami Alfar
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Imrul Shahriar
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Richard Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Cole Walchle
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Austin Johnson
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
37
|
Topchyan P, Lin S, Cui W. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. Immune Netw 2023; 23:e41. [PMID: 37970230 PMCID: PMC10643329 DOI: 10.4110/in.2023.23.e41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
CD4 and CD8 T cells are key players in the immune response against both pathogenic infections and cancer. CD4 T cells provide help to CD8 T cells via multiple mechanisms, including licensing dendritic cells (DCs), co-stimulation, and cytokine production. During acute infection and vaccination, CD4 T cell help is important for the development of CD8 T cell memory. However, during chronic viral infection and cancer, CD4 helper T cells are critical for the sustained effector CD8 T cell response, through a variety of mechanisms. In this review, we focus on T cell responses in conditions of chronic Ag stimulation, such as chronic viral infection and cancer. In particular, we address the significant role of CD4 T cell help in promoting effector CD8 T cell responses, emerging techniques that can be utilized to further our understanding of how these interactions may take place in the context of tertiary lymphoid structures, and how this key information can be harnessed for therapeutic utility against cancer.
Collapse
Affiliation(s)
- Paytsar Topchyan
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Siying Lin
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
38
|
Liu J, Zhao J, Qiao X. Research Progress of Metformin in the Treatment of Oral Squamous Cell Carcinoma. Endocrinology 2023; 164:bqad139. [PMID: 37738154 DOI: 10.1210/endocr/bqad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and has a high mortality, posing a great threat to both human physical and mental health. With the advancement of scientific research, a variety of cancer therapies have been used for OSCC treatment. However, the prognosis of OSCC shows no significant improvement. Metformin has been recognized as the first-line drug for the treatment of diabetes, and recent studies have shown that metformin has a remarkable suppressive effect on tumor progression. Metformin can not only affect the energy metabolism of tumor cells but also play an antitumor role by modulating the tumor microenvironment and cancer stem cells. In this review, the molecular mechanism of metformin and its anticancer mechanism in OSCC are summarized. In addition, this article summarizes the side effects of metformin and the future prospects of its application in the treatment of OSCC.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Jing Zhao
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
| |
Collapse
|
39
|
Yang J, Bae H. Drug conjugates for targeting regulatory T cells in the tumor microenvironment: guided missiles for cancer treatment. Exp Mol Med 2023; 55:1996-2004. [PMID: 37653036 PMCID: PMC10545761 DOI: 10.1038/s12276-023-01080-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 09/02/2023] Open
Abstract
Within the tumor microenvironment (TME), regulatory T cells (Tregs) play a key role in suppressing anticancer immune responses; therefore, various strategies targeting Tregs are becoming important for tumor therapy. To prevent the side effects of nonspecific Treg depletion, such as immunotherapy-related adverse events (irAEs), therapeutic strategies that specifically target Tregs in the TME are being investigated. Tumor-targeting drug conjugates are efficient drugs in which a cytotoxic payload is assembled into a carrier that binds Tregs via a linker. By allowing the drug to act selectively on target cells, this approach has the advantage of increasing the therapeutic effect and minimizing the side effects of immunotherapy. Antibody-drug conjugates, immunotoxins, peptide-drug conjugates, and small interfering RNA conjugates are being developed as Treg-targeting drug conjugates. In this review, we discuss key themes and recent advances in drug conjugates targeting Tregs in the TME, as well as future design strategies for successful use of drug conjugates for Treg targeting in immunotherapy.
Collapse
Affiliation(s)
- Juwon Yang
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu Bae
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Park SH, Eun R, Heo J, Lim YT. Nanoengineered drug delivery in cancer immunotherapy for overcoming immunosuppressive tumor microenvironment. Drug Deliv Transl Res 2023; 13:2015-2031. [PMID: 36581707 DOI: 10.1007/s13346-022-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Almost like a living being in and of itself, tumors actively interact with and modify their environment to escape immune responses. Owing to the pre-formation of cancer-favorable microenvironment prior to anti-cancer treatment, the numerous attempts that followed propose limited efficacy in oncology. Immunogenicity by activation of immune cells within the tumor microenvironment or recruitment of immune cells from nearby lymph nodes is quickly offset as the immunosuppressive environment, rapidly converting immunogenic cells into immune suppressive cells, overriding the immune system. Tumor cells, as well as regulatory cells, namely M2 macrophages, Treg cells, and MDSCs, derived by the immunosuppressive environment, also cloak from potential anti-tumoral factors by directly or indirectly secreting cytokines, such as IL-10 and TGF-β, related to immune regulation. Enzymes and other metabolic or angiogenetic constituents - VEGF, IDO1, and iNOS - are also employed directed for anti-cancer immune cell malfunctioning. Therefore, the conversion of "cold" immunosuppressive environment into "hot" immune responsive environment is of paramount importance, bestowing the advances in the field of cancer immunotherapy the opportunity to wholly fulfill its intended purpose. This paper reviews the mechanisms by which tumors wield to exercise immune suppression and the nanoengineered delivery strategies being developed to overcome this suppression.
Collapse
Affiliation(s)
- Sei Hyun Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Ryounho Eun
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Janghun Heo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea.
| |
Collapse
|
41
|
Zheng H, Wang G, Liu M, Cheng H. Traditional Chinese medicine inhibits PD-1/PD-L1 axis to sensitize cancer immunotherapy: a literature review. Front Oncol 2023; 13:1168226. [PMID: 37397393 PMCID: PMC10312112 DOI: 10.3389/fonc.2023.1168226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Programmed death-1 (PD-1) and its programmed death-ligand 1 (PD-L1) comprise the PD-1/PD-L1 axis and maintain tumor immune evasion. Cancer immunotherapy based on anti-PD-1/PD-L1 antibodies is the most promising anti-tumor treatment available but is currently facing the thorny problem of unsatisfactory outcomes. Traditional Chinese Medicine (TCM), with its rich heritage of Chinese medicine monomers, herbal formulas, and physical therapies like acupuncture, moxibustion, and catgut implantation, is a multi-component and multi-target system of medicine known for enhancing immunity and preventing the spread of disease. TCM is often used as an adjuvant therapy for cancer in clinical practices, and recent studies have demonstrated the synergistic effects of combining TCM with cancer immunotherapy. In this review, we examined the PD-1/PD-L1 axis and its role in tumor immune escape while exploring how TCM therapies can modulate the PD-1/PD-L1 axis to improve the efficacy of cancer immunotherapy. Our findings suggest that TCM therapy can enhance cancer immunotherapy by reducing the expression of PD-1 and PD-L1, regulating T-cell function, improving the tumor immune microenvironment, and regulating intestinal flora. We hope this review may serve as a valuable resource for future studies on the sensitization of immune checkpoint inhibitors (ICIs) therapy.
Collapse
Affiliation(s)
- Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Li Y, Chen T, Nie TY, Han J, He Y, Tang X, Zhang L. Hyperprogressive disease in non-small cell lung cancer after PD-1/PD-L1 inhibitors immunotherapy: underlying killer. Front Immunol 2023; 14:1200875. [PMID: 37283759 PMCID: PMC10239849 DOI: 10.3389/fimmu.2023.1200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) target the negative regulatory pathway of T cells and effectively reactive the anti-tumor immune function of T cells by blocking the key pathway of the immune escape mechanism of the tumor-PD-1/PD-L1, and fundamentally changing the prospect of immunotherapy for non-small cell lung cancer patients. However, such promising immunotherapy is overshadowed by Hyperprogressive Disease, a response pattern associated with unwanted accelerated tumor growth and characterized by poor prognosis in a fraction of treated patients. This review comprehensively provides an overview of Hyperprogressive Disease in immune checkpoint inhibitor-based immunotherapy for non-small cell lung cancer including its definition, biomarkers, mechanisms, and treatment. A better understanding of the black side of immune checkpoint inhibitors therapy will provide a more profound insight into the pros and cons of immunotherapy.
Collapse
Affiliation(s)
- Yanping Li
- Department of Respiratory Medicine, The Third People’s Hospital of Honghe Prefecture, Gejiu, China
| | - Tianhong Chen
- Department of Thoracic Surgery , The Third People’s Hospital of Honghe Prefecture, Gejiu, China
| | - Tian Yi Nie
- Department of Respiratory Medicine, The Third People’s Hospital of Honghe Prefecture, Gejiu, China
| | - Juyuan Han
- Department of Respiratory Medicine, The Third People’s Hospital of Honghe Prefecture, Gejiu, China
| | - Yunyan He
- Department of Thoracic Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingxing Tang
- Department of Thoracic Surgery , The Third People’s Hospital of Honghe Prefecture, Gejiu, China
| | - Li Zhang
- Department of Oncology, Gejiu City People’s Hospital, Diannan Central Hospital of Honghe Prefecture, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu, China
| |
Collapse
|
43
|
Jiang H, Suo H, Gao L, Liu Y, Chen B, Lu S, Jin F, Cao Y. Metformin plays an antitumor role by downregulating inhibitory cells and immune checkpoint molecules while activating protective immune responses in breast cancer. Int Immunopharmacol 2023; 118:110038. [PMID: 36996738 DOI: 10.1016/j.intimp.2023.110038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023]
Abstract
This study seeks to test the effect of metformin treatment on the outcomes of breast cancer in BALB/c mice bearing 4 T1 breast cancer cells. The survival rate and tumor size of mice were compared, as well as evaluation of the changes of immune cells in spleens and the microenvironment of tumors using flow cytometry and ELISA. Our results demonstrate that metformin prolongs mouse survival. A significant decrease in M2-like macrophages (F4/80+CD206+) was found in mice spleen treated with metformin. The treatment also inhibited monocytic myeloid-derived suppressor cells (M-MDSCs, CD11b+Gr-1+) and regulatory T cells (Tregs, CD4+CD25+Foxp3+). Metformin treatment resulted in an increase in the level of IFN-γ and a decrease in IL-10. Expression of the immune checkpoint molecule PD-1 on T cells was inhibited following treatment. Metformin enhances local antitumor activity in the tumor microenvironment, and our data supports the drug as a candidate for evaluation in the treatment of breast cancer.
Collapse
|
44
|
Berger A, Colpitts SJ, Zych M, Paige CJ. Engineered murine IL-21-secreting leukemia cells induce granzyme B + T cells and CD4 +CD44 +CD62L - effector memory cells while suppressing regulatory T cells, leading to long-term survival. Cancer Immunol Immunother 2023:10.1007/s00262-023-03442-2. [PMID: 37061631 DOI: 10.1007/s00262-023-03442-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023]
Abstract
We have explored the use of an IL-21 cell-based anti-leukemia treatment in a mouse model of acute lymphoblastic leukemia. 70Z/3 leukemia cells, engineered to secrete IL-21 and injected into the peritoneum of syngeneic mice, induced a strong anti-leukemia response resulting in 100% survival. Mice that mounted an IL-21-induced anti-leukemia immune response were immune to the parent cell line (no IL-21) when rechallenged.Above a certain threshold, IL-21 secretion correlated with improved survival compared to mice injected with parent 70Z/3 cells. IL-21 was detected in serum with peak levels on day 7, correlating with the maximum expansion of IL-21-secreting 70Z/3 cells which subsequently were eliminated. Mice injected with IL-21-secreting leukemia cells had elevated numbers of granzyme B+ CD4+ and CD8+ T cells in the peritoneum, compared to mice injected with the parent cell line. Regulatory T cells, which increased greatly in 70Z/3-injected mice, failed to do so in mice injected with IL-21-secreting cells. Upon rechallenge, IL-21-primed mice went through a secondary immune response, primarily requiring CD4+ T cells, triggering a significant increase of CD4+CD44+CD62L- effector memory T cells. Adoptive transfer of T cells from IL21-primed/rechallenged hosts into naïve mice was successful, indicating that IL-21-primed antigen-experienced T cells convey immunity to naïve mice.Our study shows that delivery of IL-21 in a cell-based anti-leukemia protocol has the potential to induce a potent immune response leading to cancer elimination and long-term immunity-properties which make IL-21 an attractive candidate for cancer immunotherapy. Protecting against tumor antigens as well as improving cancer immunity is justified, as current strategies are limited.
Collapse
Affiliation(s)
- Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada.
| | - Sarah J Colpitts
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Morgan Zych
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
45
|
Halder S, Chatterjee S. Bistability regulates TNFR2-mediated survival and death of T-regulatory cells. J Biol Phys 2023; 49:95-119. [PMID: 36780123 PMCID: PMC9958227 DOI: 10.1007/s10867-023-09625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 02/14/2023] Open
Abstract
A subgroup of T cells called T-regulatory cells (Tregs) regulates the body's immune responses to maintain homeostasis and self-tolerance. Tregs are crucial for preventing illnesses like cancer and autoimmunity. However, contrasting patterns of Treg frequency are observed in different autoimmune diseases. The commonality of tumour necrosis factor receptor 2 (TNFR2) defects and decrease in Treg frequency on the onset of autoimmunity demands an in-depth study of the TNFR2 pathway. To unravel this mystery, we need to study the mechanism of cell survival and death in Tregs. Here, we construct an ordinary differential equation (ODE)-based model to capture the mechanism of cell survival and apoptosis in Treg cells via TNFR2 signalling. The sensitivity analysis reveals that the input stimulus, the concentration of tumour necrosis factor (TNF), is the most sensitive parameter for the model system. The model shows that the cell goes into survival or apoptosis via bistable switching. Through hysteretic switching, the system tries to cope with the changing stimuli. In order to understand how stimulus strength and feedback strength influence cell survival and death, we compute bifurcation diagrams and obtain cell fate maps. Our results indicate that the elevated TNF concentration and increased c-Jun N-terminal kinase (JNK) phosphorylation are the major contributors to the death of T-regulatory cells. Biological evidence cements our hypothesis and can be controlled by reducing the TNF concentration. Finally, the system was studied under stochastic perturbation to see the effect of noise on the system's dynamics. We observed that introducing random perturbations disrupts the bistability, reducing the system's bistable region, which can affect the system's normal functioning.
Collapse
Affiliation(s)
- Suvankar Halder
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana India
| |
Collapse
|
46
|
Yang N, Jin X, Zhu C, Gao F, Weng Z, Du X, Feng G. Subunit vaccines for Acinetobacter baumannii. Front Immunol 2023; 13:1088130. [PMID: 36713441 PMCID: PMC9878323 DOI: 10.3389/fimmu.2022.1088130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative bacterium and a crucial opportunistic pathogen in hospitals. A. baumannii infection has become a challenging problem in clinical practice due to the increasing number of multidrug-resistant strains and their prevalence worldwide. Vaccines are effective tools to prevent and control A. baumannii infection. Many researchers are studying subunit vaccines against A. baumannii. Subunit vaccines have the advantages of high purity, safety, and stability, ease of production, and highly targeted induced immune responses. To date, no A. baumannii subunit vaccine candidate has entered clinical trials. This may be related to the easy degradation of subunit vaccines in vivo and weak immunogenicity. Using adjuvants or delivery vehicles to prepare subunit vaccines can slow down degradation and improve immunogenicity. The common immunization routes include intramuscular injection, subcutaneous injection, intraperitoneal injection and mucosal vaccination. The appropriate immunization method can also enhance the immune effect of subunit vaccines. Therefore, selecting an appropriate adjuvant and immunization method is essential for subunit vaccine research. This review summarizes the past exploration of A. baumannii subunit vaccines, hoping to guide current and future research on these vaccines.
Collapse
Affiliation(s)
- Ning Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenghua Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fenglin Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheqi Weng
- The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingran Du
- Department of Infectious Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xingran Du, ; Ganzhu Feng,
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xingran Du, ; Ganzhu Feng,
| |
Collapse
|
47
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [PMID: 36332452 DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
48
|
Rial Saborido J, Völkl S, Aigner M, Mackensen A, Mougiakakos D. Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers (Basel) 2022; 14:5442. [PMID: 36358860 PMCID: PMC9658570 DOI: 10.3390/cancers14215442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells hold enormous potential. However, a substantial proportion of patients receiving CAR T cells will not reach long-term full remission. One of the causes lies in their premature exhaustion, which also includes a metabolic anergy of adoptively transferred CAR T cells. T cell phenotypes that have been shown to be particularly well suited for CAR T cell therapy display certain metabolic characteristics; whereas T-stem cell memory (TSCM) cells, characterized by self-renewal and persistence, preferentially meet their energetic demands through oxidative phosphorylation (OXPHOS), effector T cells (TEFF) rely on glycolysis to support their cytotoxic function. Various parameters of CAR T cell design and manufacture co-determine the metabolic profile of the final cell product. A co-stimulatory 4-1BB domain promotes OXPHOS and formation of central memory T cells (TCM), while T cells expressing CARs with CD28 domains predominantly utilize aerobic glycolysis and differentiate into effector memory T cells (TEM). Therefore, modification of CAR co-stimulation represents one of the many strategies currently being investigated for improving CAR T cells' metabolic fitness and survivability within a hostile tumor microenvironment (TME). In this review, we will focus on the role of CAR T cell metabolism in therapeutic efficacy together with potential targets of intervention.
Collapse
Affiliation(s)
- Judit Rial Saborido
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Medical Center, Department of Hematology and Oncology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
49
|
Wang M, Qin Z, Wan J, Yan Y, Duan X, Yao X, Jiang Z, Li W, Qin Z. Tumor-derived exosomes drive pre-metastatic niche formation in lung via modulating CCL1+ fibroblast and CCR8+ Treg cell interactions. Cancer Immunol Immunother 2022; 71:2717-2730. [DOI: 10.1007/s00262-022-03196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
50
|
Boccalatte F, Mina R, Aroldi A, Leone S, Suryadevara CM, Placantonakis DG, Bruno B. Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers (Basel) 2022; 14:5108. [PMID: 36291891 PMCID: PMC9600451 DOI: 10.3390/cancers14205108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells in solid tumors have so far yielded limited results, in terms of therapeutic effects, as compared to the dramatic results observed for hematological malignancies. Many factors involve both the tumor cells and the microenvironment. The lack of specific target antigens and severe, potentially fatal, toxicities caused by on-target off-tumor toxicities constitute major hurdles. Furthermore, the tumor microenvironment is usually characterized by chronic inflammation, the presence of immunosuppressive molecules, and immune cells that can reduce CAR T cell efficacy and facilitate antigen escape. Nonetheless, solid tumors are under investigation as possible targets despite their complexity, which represents a significant challenge. In preclinical mouse models, CAR T cells are able to efficiently recognize and kill several tumor xenografts. Overall, in the next few years, there will be intensive research into optimizing novel cell therapies to improve their effector functions and keep untoward effects in check. In this review, we provide an update on the state-of-the-art CAR T cell therapies in solid tumors, focusing on the preclinical studies and preliminary clinical findings aimed at developing optimal strategies to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Roberto Mina
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, MB, Italy
| | - Sarah Leone
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Carter M. Suryadevara
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center/Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benedetto Bruno
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| |
Collapse
|