1
|
Gaudin C, Born-Bony M, Villeret B, Jaillet M, Faille D, Timsit JF, Tran-Dinh A, Montravers P, Crestani B, Garcia-Verdugo I, Sallenave JM. COVID-19 PBMCs are doubly harmful, through LDN-mediated lung epithelial damage and monocytic impaired responsiveness to live Pseudomonas aeruginosa exposure. Front Immunol 2024; 15:1398369. [PMID: 38835759 PMCID: PMC11148249 DOI: 10.3389/fimmu.2024.1398369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Although many studies have underscored the importance of T cells, phenotypically and functionally, fewer have studied the functions of myeloid cells in COVID disease. In particular, the potential role of myeloid cells such as monocytes and low-density neutrophils (LDNs) in innate responses and particular in the defense against secondary bacterial infections has been much less documented. Methods Here, we compared, in a longitudinal study, healthy subjects, idiopathic fibrosis patients, COVID patients who were either hospitalized/moderate (M-) or admitted to ICU (COV-ICU) and patients in ICU hospitalized for other reasons (non-COV-ICU). Results We show that COVID patients have an increased proportion of low-density neutrophils (LDNs), which produce high levels of proteases (particularly, NE, MMP-8 and MMP-9) (unlike non-COV-ICU patients), which are partly responsible for causing type II alveolar cell damage in co-culture experiments. In addition, we showed that M- and ICU-COVID monocytes had reduced responsiveness towards further live Pseudomonas aeruginosa (PAO1 strain) infection, an important pathogen colonizing COVID patients in ICU, as assessed by an impaired secretion of myeloid cytokines (IL-1, TNF, IL-8,…). By contrast, lymphoid cytokines (in particular type 2/type 3) levels remained high, both basally and post PAO1 infection, as reflected by the unimpaired capacity of T cells to proliferate, when stimulated with anti-CD3/CD28 beads. Discussion Overall, our results demonstrate that COVID circulatory T cells have a biased type 2/3 phenotype, unconducive to proper anti-viral responses and that myeloid cells have a dual deleterious phenotype, through their LDN-mediated damaging effect on alveolar cells and their impaired responsiveness (monocyte-mediated) towards bacterial pathogens such as P. aeruginosa.
Collapse
Affiliation(s)
- Clémence Gaudin
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Maëlys Born-Bony
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Bérengère Villeret
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Madeleine Jaillet
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Dorothée Faille
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, LVTS, Paris, France
- Laboratoire d'Hématologie, AP-HP, Hôpital Bichat, Paris, France
| | - Jean-François Timsit
- Réanimation Médicale et des Maladies Infectieuses, Centre Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexy Tran-Dinh
- Inserm UMR1148, Laboratory for Vascular Translational Science Bichat Hospital, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Philippe Montravers
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Bruno Crestani
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Ignacio Garcia-Verdugo
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Jean-Michel Sallenave
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| |
Collapse
|
2
|
Mo S, Wu W, Luo K, Huang C, Wang Y, Qin H, Cai H. Identification and analysis of chemokine-related and NETosis-related genes in acute pancreatitis to develop a predictive model. Front Genet 2024; 15:1389936. [PMID: 38784040 PMCID: PMC11112067 DOI: 10.3389/fgene.2024.1389936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background: Chemokines and NETosis are significant contributors to the inflammatory response, yet there still needs to be a more comprehensive understanding regarding the specific molecular characteristics and interactions of NETosis and chemokines in the context of acute pancreatitis (AP) and severe AP (SAP). Methods: To address this gap, the mRNA expression profile dataset GSE194331 was utilized for analysis, comprising 87 AP samples (77 non-SAP and 10 SAP) and 32 healthy control samples. Enrichment analyses were conducted for differentially expressed chemokine-related genes (DECRGs) and NETosis-related genes (DENRGs). Three machine-learning algorithms were used for the identification of signature genes, which were subsequently utilized in the development and validation of nomogram diagnostic models for the prediction of AP and SAP. Furthermore, single-gene Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed. Lastly, an interaction network for the identified signature genes was constructed. Results: We identified 12 DECRGs and 7 DENRGs, and enrichment analyses indicated they were primarily enriched in cytokine-cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and T cell receptor signaling pathway. Moreover, these machine learning algorithms finally recognized three signature genes (S100A8, AIF1, and IL18). Utilizing the identified signature genes, we developed nomogram models with high predictive accuracy for AP and differentiation of SAP from non-SAP, as demonstrated by area under the curve (AUC) values of 0.968 (95% CI 0.937-0.990) and 0.862 (95% CI 0.742-0.955), respectively, in receiver operating characteristic (ROC) curve analysis. Subsequent single-gene GESA and GSVA indicated a significant positive correlation between these signature genes and the proteasome complex. At the same time, a negative association was observed with the Th1 and Th2 cell differentiation signaling pathways. Conclusion: We have identified three genes (S100A8, AIF1, and IL18) related to chemokines and NETosis, and have developed accurate diagnostic models that might provide a novel method for diagnosing AP and differentiating between severe and non-severe cases.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Kai Luo
- Department of Critical Care Medicine, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Cheng Huang
- Oncology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Heping Qin
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaiyang Cai
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| |
Collapse
|
3
|
Hernández González LL, Pérez-Campos Mayoral L, Hernández-Huerta MT, Mayoral Andrade G, Martínez Cruz M, Ramos-Martínez E, Pérez-Campos Mayoral E, Cruz Hernández V, Antonio García I, Matias-Cervantes CA, Avendaño Villegas ME, Lastre Domínguez CM, Romero Díaz C, Ruiz-Rosado JDD, Pérez-Campos E. Targeting Neutrophil Extracellular Trap Formation: Exploring Promising Pharmacological Strategies for the Treatment of Preeclampsia. Pharmaceuticals (Basel) 2024; 17:605. [PMID: 38794175 PMCID: PMC11123764 DOI: 10.3390/ph17050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophils, which constitute the most abundant leukocytes in human blood, emerge as crucial players in the induction of endothelial cell death and the modulation of endothelial cell responses under both physiological and pathological conditions. The hallmark of preeclampsia is endothelial dysfunction induced by systemic inflammation, in which neutrophils, particularly through the formation of neutrophil extracellular traps (NETs), play a pivotal role in the development and perpetuation of endothelial dysfunction and the hypertensive state. Considering the potential of numerous pharmaceutical agents to attenuate NET formation (NETosis) in preeclampsia, a comprehensive assessment of the extensively studied candidates becomes imperative. This review aims to identify mechanisms associated with the induction and negative regulation of NETs in the context of preeclampsia. We discuss potential drugs to modulate NETosis, such as NF-κβ inhibitors, vitamin D, and aspirin, and their association with mutagenicity and genotoxicity. Strong evidence supports the notion that molecules involved in the activation of NETs could serve as promising targets for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Leticia Lorena Hernández González
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Faculty of Biological Systems and Technological Innovation, Autonomous University “Benito Juárez” of Oaxaca, Oaxaca 68125, Mexico
| | - Laura Pérez-Campos Mayoral
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - María Teresa Hernández-Huerta
- CONAHCyT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
| | - Gabriel Mayoral Andrade
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - Margarito Martínez Cruz
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
| | - Edgar Ramos-Martínez
- School of Sciences, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico;
| | - Eduardo Pérez-Campos Mayoral
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | | | | | - Carlos Alberto Matias-Cervantes
- CONAHCyT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
| | - Miriam Emily Avendaño Villegas
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
| | | | - Carlos Romero Díaz
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - Juan de Dios Ruiz-Rosado
- Kidney and Urinary Tract Research Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Eduardo Pérez-Campos
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Clinical Pathology Laboratory, “Eduardo Pérez Ortega”, Oaxaca 68000, Mexico
| |
Collapse
|
4
|
Galkina SI, Golenkina EA, Fedorova NV, Ksenofontov AL, Serebryakova MV, Stadnichuk VI, Baratova LA, Sud'ina GF. Effect of Dexamethasone on Adhesion of Human Neutrophils and Concomitant Secretion. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2094-2106. [PMID: 38462453 DOI: 10.1134/s000629792312012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 03/12/2024]
Abstract
Neutrophils play a dual role in protecting the body. They are able to penetrate infected tissues and destroy pathogens there by releasing aggressive bactericidal substances. While into the surrounding tissues, the aggressive products secreted by neutrophils initiate development of inflammatory processes. Invasion of neutrophils into tissues is observed during the development of pneumonia in the patients with lung diseases of various etiologies, including acute respiratory distress syndrome caused by coronavirus disease. Synthetic corticosteroid hormone dexamethasone has a therapeutic effect in treatment of lung diseases, including reducing mortality in the patients with severe COVID-19. The acute (short-term) effect of dexamethasone on neutrophil adhesion to fibrinogen and concomitant secretion was studied. Dexamethasone did not affect either attachment of neutrophils to the substrate or their morphology. Production of reactive oxygen species (ROS) and nitric oxide (NO) by neutrophils during adhesion also did not change in the presence of dexamethasone. Dexamethasone stimulated release of metalloproteinases in addition to the proteins secreted by neutrophils during adhesion under control conditions, and selectively stimulated release of free amino acid hydroxylysine, a product of lysyl hydroxylase. Metalloproteinases play a key role and closely interact with lysyl hydroxylase in the processes of modification of the extracellular matrix. Therapeutic effect of dexamethasone could be associated with its ability to reorganize extracellular matrix in the tissues by changing composition of the neutrophil secretions, which could result in the improved gas exchange in the patients with severe lung diseases.
Collapse
Affiliation(s)
- Svetlana I Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Ekaterina A Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia V Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Ludmila A Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina F Sud'ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Padasas BT, Españo E, Kim SH, Song Y, Lee CK, Kim JK. COVID-19 Therapeutics: An Update on Effective Treatments Against Infection With SARS-CoV-2 Variants. Immune Netw 2023; 23:e13. [PMID: 37179752 PMCID: PMC10166656 DOI: 10.4110/in.2023.23.e13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 05/15/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is one of the most consequential global health crises in over a century. Since its discovery in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to mutate into different variants and sublineages, rendering previously potent treatments and vaccines ineffective. With significant strides in clinical and pharmaceutical research, different therapeutic strategies continue to be developed. The currently available treatments can be broadly classified based on their potential targets and molecular mechanisms. Antiviral agents function by disrupting different stages of SARS-CoV-2 infection, while immune-based treatments mainly act on the human inflammatory response responsible for disease severity. In this review, we discuss some of the current treatments for COVID-19, their mode of actions, and their efficacy against variants of concern. This review highlights the need to constantly evaluate COVID-19 treatment strategies to protect high risk populations and fill in the gaps left by vaccination.
Collapse
Affiliation(s)
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Youngcheon Song
- Department of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Chong-Kil Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
6
|
Kanwar B, Khattak A, Kast RE. Dapsone Lowers Neutrophil to Lymphocyte Ratio and Mortality in COVID-19 Patients Admitted to the ICU. Int J Mol Sci 2022; 23:ijms232415563. [PMID: 36555204 PMCID: PMC9779021 DOI: 10.3390/ijms232415563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Some physicians use dapsone as part of the standard treatment of severe COVID-19 patients entering the ICU, though some do not. To obtain an indication of whether dapsone is helping or not, we undertook a retrospective chart review of 29 consecutive ICU COVID-19 patients receiving dapsone and 30 not receiving dapsone. As we previously reported, of those given dapsone, 9/29 (30%) died, while of those not given dapsone, 18/30 (60%) died. We looked back on that data set to determine if there might be basic laboratory findings in these patients that might give an indication of a mechanism by which dapsone was acting. We found that the neutrophil-to-lymphocyte ratio decreased in 48% of those given dapsone and in 30% of those not given dapsone. We concluded that dapsone might be lowering that ratio. We then reviewed collected data on neutrophil related inflammation pathways on which dapsone might act as presented here. As this was not a controlled study, many variables prevent drawing any conclusions from this work; a formal, randomized controlled study of dapsone in severe COVID-19 is warranted.
Collapse
Affiliation(s)
| | - Asif Khattak
- Department of Neonatal Intensive Care Unit, Hunt Regional Hospital, Greenville, TX 75401, USA
| | - Richard E. Kast
- IIAIGC Study Center, Burlington, VT 05408, USA
- Correspondence:
| |
Collapse
|