1
|
Rago V, Conforti F, La Russa D, Antonucci G, Urlandini L, Lofaro D, Bossio S, Mandalà M, Pellegrino D, Aversa A, Di Agostino S, Perri A. The Effects of Caloric Restriction on Inflammatory Targets in the Prostates of Aged Rats. Int J Mol Sci 2024; 25:5236. [PMID: 38791274 PMCID: PMC11120753 DOI: 10.3390/ijms25105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous animal models have demonstrated that caloric restriction (CR) is an excellent tool to delay aging and increase the quality of life, likely because it counteracts age-induced oxidative stress and inflammation. The aging process can affect the prostate in three ways: the onset of benign prostatic hyperplasia, prostatitis, and prostate cancer. In this study, we used 14 aged male Sprague Dawley rats, which were allocated into two groups, at the age of 18 months old. One group was fed ad libitum (a normal diet (ND)), and the other group followed a caloric restriction diet with a 60% decrease in intake. The rats were sacrificed at the age of 24 months. By immunohistochemical (IHC) and Western blot (WB) analyses, we studied the variations between the two groups in immune inflammation and fibrosis-related markers in aged prostate tissues. Morphological examinations showed lower levels of prostatic hyperplasia and fibrosis in the CR rats vs. the ND rats. The IHC results revealed that the prostates of the CR rats exhibited a lower immune proinflammatory infiltrate level and a reduced expression of the NLRP3 inflammasome pathway, together with significantly reduced expressions of mesenchymal markers and the profibrotic factor TGFβ1. Finally, by WB analysis, we observed a reduced expression of ERα, which is notoriously implicated in prostate stromal proliferation, and increased expressions of SOD1 and Hsp70, both exerting protective effects against oxidative stress. Overall, these data suggest that CR brings potential benefits to prostatic tissues as it reduces the physiological immune-inflammatory processes and the tissue remodeling caused by aging.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (V.R.); (L.U.)
| | | | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.R.); (G.A.); (M.M.); (D.P.)
| | - Gemma Antonucci
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.R.); (G.A.); (M.M.); (D.P.)
| | - Lidia Urlandini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (V.R.); (L.U.)
| | - Danilo Lofaro
- de-Health Lab, Department of Mechanical, Energy, Management Engineering, University of Calabria, 87036 Rende, Italy;
| | - Sabrina Bossio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.B.); (A.A.)
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.R.); (G.A.); (M.M.); (D.P.)
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.R.); (G.A.); (M.M.); (D.P.)
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.B.); (A.A.)
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.B.); (A.A.)
| |
Collapse
|
2
|
Lafront C, Germain L, Campolina-Silva GH, Weidmann C, Berthiaume L, Hovington H, Brisson H, Jobin C, Frégeau-Proulx L, Cotau R, Gonthier K, Lacouture A, Caron P, Ménard C, Atallah C, Riopel J, Latulippe É, Bergeron A, Toren P, Guillemette C, Pelletier M, Fradet Y, Belleannée C, Pouliot F, Lacombe L, Lévesque É, Audet-Walsh É. The estrogen signaling pathway reprograms prostate cancer cell metabolism and supports proliferation and disease progression. J Clin Invest 2024; 134:e170809. [PMID: 38625747 PMCID: PMC11142735 DOI: 10.1172/jci170809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Just like the androgen receptor (AR), the estrogen receptor α (ERα) is expressed in the prostate and is thought to influence prostate cancer (PCa) biology. Yet the incomplete understanding of ERα functions in PCa hinders our ability to fully comprehend its clinical relevance and restricts the repurposing of estrogen-targeted therapies for the treatment of this disease. Using 2 human PCa tissue microarray cohorts, we first demonstrate that nuclear ERα expression was heterogeneous among patients, being detected in only half of the tumors. Positive nuclear ERα levels were correlated with disease recurrence, progression to metastatic PCa, and patient survival. Using in vitro and in vivo models of the normal prostate and PCa, bulk and single-cell RNA-Seq analyses revealed that estrogens partially mimicked the androgen transcriptional response and activated specific biological pathways linked to proliferation and metabolism. Bioenergetic flux assays and metabolomics confirmed the regulation of cancer metabolism by estrogens, supporting proliferation. Using cancer cell lines and patient-derived organoids, selective estrogen receptor modulators, a pure anti-estrogen, and genetic approaches impaired cancer cell proliferation and growth in an ERα-dependent manner. Overall, our study revealed that, when expressed, ERα functionally reprogrammed PCa metabolism, was associated with disease progression, and could be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Camille Lafront
- Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Lucas Germain
- Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Gabriel H. Campolina-Silva
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec City, Québec, Canada
- Reproduction, Mother and Youth Health Division, CRCHUQ-UL, Quebec City, Québec, Canada
| | - Cindy Weidmann
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Line Berthiaume
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Hélène Hovington
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Department of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Hervé Brisson
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Department of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Cynthia Jobin
- Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Lilianne Frégeau-Proulx
- Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Raul Cotau
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Oncology Research Division, CRCHUQ-UL, Quebec City, Québec, Canada
| | - Kevin Gonthier
- Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Aurélie Lacouture
- Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Patrick Caron
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| | - Claire Ménard
- Department of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Chantal Atallah
- Department of Medicine, Université Laval, Quebec City, Québec, Canada
- Department of Pathology, CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Julie Riopel
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Department of Pathology, CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Éva Latulippe
- Department of Pathology, CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Alain Bergeron
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Oncology Research Division, CRCHUQ-UL, Quebec City, Québec, Canada
- Department of Surgery
| | - Paul Toren
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Oncology Research Division, CRCHUQ-UL, Quebec City, Québec, Canada
- Department of Surgery
| | - Chantal Guillemette
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Faculty of Pharmacy, and
| | - Martin Pelletier
- Department of Microbiology-Infectious Diseases and Immunology, Université Laval, Quebec City, Québec, Canada
- Infectious and Immune Diseases Research Division, CRCHUQ-UL, Quebec City, Québec, Canada
- ARThrite Research Center, Université Laval, Quebec City, Québec, Canada
| | - Yves Fradet
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Oncology Research Division, CRCHUQ-UL, Quebec City, Québec, Canada
- Department of Surgery
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec City, Québec, Canada
- Reproduction, Mother and Youth Health Division, CRCHUQ-UL, Quebec City, Québec, Canada
| | - Frédéric Pouliot
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Oncology Research Division, CRCHUQ-UL, Quebec City, Québec, Canada
- Department of Surgery
| | - Louis Lacombe
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Oncology Research Division, CRCHUQ-UL, Quebec City, Québec, Canada
- Department of Surgery
| | - Éric Lévesque
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
- Department of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Université Laval, Quebec City, Québec, Canada
- Endocrinology and Nephrology Division, CHU de Québec – Université Laval Research Center (CRCHUQ-UL), Quebec City, Québec, Canada
- Cancer Research Center (CRC) of Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
3
|
Yan W, Han Q, Gong L, Zhan X, Li W, Guo Z, Zhao J, Li T, Bai Z, Wu J, Huang Y, Lv L, Zhao H, Cai H, Huang S, Diao X, Chen Y, Gong W, Xia Q, Man J, Chen L, Dai G, Zhou T. MBD3 promotes hepatocellular carcinoma progression and metastasis through negative regulation of tumour suppressor TFPI2. Br J Cancer 2022; 127:612-623. [PMID: 35501390 PMCID: PMC9381593 DOI: 10.1038/s41416-022-01831-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background The mechanism of recurrence and metastasis of hepatocellular carcinoma (HCC) is complex and challenging. Methyl-CpG binding domain protein 3 (MBD3) is a key epigenetic regulator involved in the progression and metastasis of several cancers, but its role in HCC remains unknown. Methods MBD3 expression in HCC was detected by immunohistochemistry and its association with clinicopathological features and patient’s survival was analysed. The effects of MBD3 on hepatoma cells growth and metastasis were investigated, and the mechanism was explored. Results MBD3 is significantly highly expressed in HCC, associated with the advanced tumour stage and poor prognosis in HCC patients. MBD3 promotes the growth, angiogenesis and metastasis of HCC cells by inhibiting the tumour suppressor tissue factor pathway inhibitor 2 (TFPI2). Mechanistically, MBD3 can inhibit the TFPI2 transcription via the Nucleosome Remodeling and Deacetylase (NuRD) complex-mediated deacetylation, thus reactivating the activity of matrix metalloproteinases (MMPs) and PI3K/AKT signaling pathway, leading to the progression and metastasis of HCC Conclusions Our results unravel the novel regulatory function of MBD3 in the progression and metastasis of HCC and identify MBD3 as an independent unfavourable prognostic factor for HCC patients, suggesting its potential as a promising therapeutic target as well.
Collapse
Affiliation(s)
- Weiwei Yan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China.,Department of Radiation Oncology, 5th Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Qiuying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China.,Nanhu Laboratory, 314002, Jiaxing, Zhejiang Province, China
| | - Lin Gong
- Department of Hepatobiliary Surgery, PLA navy No. 971 Hospital, 266071, Qingdao, Shandong Province, China
| | - Xiaoyan Zhan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Wanjin Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Zenglin Guo
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Jiangman Zhao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Tingting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Zhaofang Bai
- Department of Liver Disease, 5th Medical Center of Chinese PLA General Hospital, 100039, Beijing, China
| | - Jin Wu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Yan Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Luye Lv
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Haixin Zhao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Hong Cai
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Shaoyi Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Xinwei Diao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Yuan Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Weili Gong
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Qing Xia
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Liang Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China. .,Nanhu Laboratory, 314002, Jiaxing, Zhejiang Province, China.
| | - Guanghai Dai
- Department of Oncology, 5th Medical Center of Chinese PLA General Hospital, 100853, Beijing, China.
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China. .,Nanhu Laboratory, 314002, Jiaxing, Zhejiang Province, China.
| |
Collapse
|
4
|
Li X, Du S, Tian F, Wang M, Wang Y, Zhang H, Zang L. Screening of Estrogenic-Disrupting Compounds in Dairy Products Based on the Estrogen Receptor Cocktail. Foods 2022; 11:foods11091178. [PMID: 35563901 PMCID: PMC9101475 DOI: 10.3390/foods11091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The residue of estrogenic-disrupting compounds (EDCs) that are secreted by cows, added as drugs, and present in the feed may exist in dairy products. A gold nanoparticles (AuNPs)-estrogen receptor (ER) cocktail colorimetric assay equipped with ER cocktail solid phase extraction (SPE) was established to screen EDCs. Nine EDCs with high, moderate, and low estrogenic activity were selected to be the representative targets. The recognition range of the colorimetric assay combined with the ER cocktail SPE was wider than that of a single ERα or ERβ. The lowest detection limit of the established assay was about 10-9 mg·mL-1. The detection limits of estrone, bisphenol A, and bisphenol B were about one order of magnitude lower than the method based on a single ER. The recoveries of the spiked nine EDCs were between 80.0% and 110.0%, and daidzein was identified in the dairy product. The developed method has potential application prospects in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Xiaoqi Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.L.); (S.D.); (F.T.); (M.W.); (H.Z.)
| | - Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.L.); (S.D.); (F.T.); (M.W.); (H.Z.)
| | - Fangyuan Tian
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.L.); (S.D.); (F.T.); (M.W.); (H.Z.)
| | - Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.L.); (S.D.); (F.T.); (M.W.); (H.Z.)
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.L.); (S.D.); (F.T.); (M.W.); (H.Z.)
| | - Liguo Zang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.L.); (S.D.); (F.T.); (M.W.); (H.Z.)
- Correspondence: ; Tel.: +86-0531-86182695
| |
Collapse
|
5
|
Wang K, Huang D, Zhou P, Su X, Yang R, Shao C, Wu J. BPA-induced prostatic hyperplasia in vitro is correlated with the unbalanced gene expression of AR and ER in the epithelium and stroma. Toxicol Ind Health 2021; 37:585-593. [PMID: 34486460 DOI: 10.1177/07482337211042986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a typical environmental endocrine disruptor (EED), bisphenol A (BPA) can induce pathological hyperplasia of the prostatic epithelium and stroma. This study concentrates mainly on the effect and underlying mechanisms of BPA on prostatic hyperplasia, which is based on the culture of primary human prostate epithelial cells (HPEpiC) and human prostate fibroblasts (HPrF). In an effect to screen the optimal pro-survival BPA levels, HPEpiC and HPrF were, respectively, exposed to concentration gradients of BPA (10-12 M-10-4 M) solution diluted with two corresponding medium and incubated for 72 h at 37°C. CCK-8 assay showed that 10-9 M-10-5 M BPA could facilitate the proliferation of HPEpiC, while similar proliferative effect of HPrF only needed 10-11 M-10-7 M BPA. HPrF were more sensitive to BPA than HPEpiC. The qualification of PCNA gene expression measured using quantitative real-time polymerase chain reaction (qRT-PCR) also mirrored the BPA-induced cell proliferation. Additionally, our results considered that androgen receptor (AR), estrogen receptor (ERα, ERβ), and NFKB1 gene expressions exhibited up-regulation in HPEpiC treated with 10-9 M BPA for 72 h. However, in HPrF, the identical BPA treatment could activate ERα, ERβ, and NFKB1 gene expressions and down-regulated the expression of AR levels. It is further confirmed that low-dose BPA can indeed promote the proliferation of human prostate cells in vitro, and the mechanisms of BPA for prostatic epithelial and stromal hyperplasia may not be consistent.
Collapse
Affiliation(s)
- Kaiyue Wang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Dongyan Huang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Ping Zhou
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Xin Su
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Rongfu Yang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Congcong Shao
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jianhui Wu
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
6
|
Ranjithkumar R, Saravanan K, Balaji B, Hima S, Sreeja S, Timane SR, Ram Pravin Kumar M, Kabilan S, Ramanathan M. Novel daidzein molecules exhibited anti-prostate cancer activity through nuclear receptor ERβ modulation, in vitro and in vivo studies. J Chemother 2021; 33:582-594. [PMID: 34060437 DOI: 10.1080/1120009x.2021.1924935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Eight novel ERβ selective daidzein analogues (NCE1-8) were synthesized and their anti-cancer activity was evaluated by in vitro and in vivo methods. Cytotoxicity study, Receptor binding studies, Luciferase assay, cMYC & Cyclin D1 expression and Caspase 3, 8 & 9 activities were measured to ascertain the anticancer activity and mechanism. Uterotropic, anti-androgenic and anti-tumour activities were performed in rodents. The results revealed that NCEs produced anti-prostate cancer activity in DU145, LNCaP and PC3 cell lines and 50% more active than genistein. NCEs was significantly down-regulated cMYC & Cyclin D1 genes and elevated caspase 3 & 9 levels and did not show any difference in uterotropic, anti-androgenic activities. The tumour weight was also reduced. The NCE 1 and 2 have shown ERβ selectivity in receptor binding studies. Daidzein with methyl substitution at R or R1 position exhibited more ERβ selectivity and could be considered as lead molecules for anti-prostate cancer activity.
Collapse
Affiliation(s)
- R Ranjithkumar
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - K Saravanan
- Drug Discovery Lab, Department of Chemistry, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - B Balaji
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - S Hima
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S Sreeja
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S R Timane
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - M Ram Pravin Kumar
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - S Kabilan
- Drug Discovery Lab, Department of Chemistry, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - M Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| |
Collapse
|
7
|
Holst BS, Carlin S, Fouriez-Lablée V, Hanås S, Ödling S, Langborg LM, Ubhayasekera SJKA, Bergquist J, Rydén J, Holmroos E, Hansson K. Concentrations of canine prostate specific esterase, CPSE, at baseline are associated with the relative size of the prostate at three-year follow-up. BMC Vet Res 2021; 17:173. [PMID: 33902583 PMCID: PMC8074475 DOI: 10.1186/s12917-021-02874-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Background Enlargement of the prostate is associated with prostatic diseases in dogs, and an estimation of prostatic size is a central part in the diagnostic workup. Ultrasonography is often the method of choice, but biomarkers constitute an alternative. Canine prostate specific esterase (CPSE) shares many characteristics with human prostate specific antigen (PSA) and is related to prostate size. In men with clinical symptoms of prostatic disease, PSA concentrations are related to prostate growth. The aims of the present follow-up study were to evaluate if the concentration of CPSE is associated with future growth of the prostate, and if analysis of a panel of 16 steroids gives further information on prostatic growth. Owners of dogs included in a previous study were 3 years later contacted for a follow-up study that included an interview and a clinical examination. The prostate was examined by ultrasonography. Serum concentrations of CPSE were measured, as was a panel of steroids. Results Of the 79 dogs included at baseline, owners of 77 dogs (97%) were reached for an interview, and 22 were available for a follow-up examination. Six of the 79 dogs had clinical signs of prostatic disease at baseline, and eight of the remaining 73 dogs (11%) developed clinical signs between baseline and follow-up, information was lacking for two dogs. Development of clinical signs was significantly more common in dogs with a relative prostate size of ≥2.5 at baseline (n = 20) than in dogs with smaller prostates (n = 51). Serum concentrations of CPSE at baseline were not associated with the change in prostatic size between baseline and follow-up. Serum concentrations of CPSE at baseline and at follow-up were positively associated with the relative prostatic size (Srel) at follow-up. Concentrations of corticosterone (P = 0.024), and the class corticosteroids (P = 0.0035) were positively associated with the difference in Srel between baseline and follow-up. Conclusions The results support the use of CPSE for estimating present and future prostatic size in dogs ≥4 years, and the clinical usefulness of prostatic size for predicting development of clinical signs of prostatic disease in the dog. The association between corticosteroids and prostate growth warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02874-1.
Collapse
Affiliation(s)
- Bodil S Holst
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden.
| | - Sofia Carlin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden
| | - Virginie Fouriez-Lablée
- Diagnostic Imaging Clinic, University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sofia Hanås
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden.,Evidensia Specialist Animal Hospital Strömsholm, Strömsholm, Sweden
| | - Sofie Ödling
- Evidensia Specialist Animal Hospital Strömsholm, Strömsholm, Sweden
| | | | - S J Kumari A Ubhayasekera
- Department of Chemistry - Biomedical Center, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - Biomedical Center, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jesper Rydén
- Department of Energy and Technology, Applied Statistics and Mathematics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elin Holmroos
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden
| | - Kerstin Hansson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07, Uppsala, Sweden
| |
Collapse
|
8
|
Pascal LE, Mizoguchi S, Chen W, Rigatti LH, Igarashi T, Dhir R, Tyagi P, Wu Z, Yang Z, de Groat WC, DeFranco DB, Yoshimura N, Wang Z. Prostate-Specific Deletion of Cdh1 Induces Murine Prostatic Inflammation and Bladder Overactivity. Endocrinology 2021; 162:5992231. [PMID: 33211830 PMCID: PMC7745638 DOI: 10.1210/endocr/bqaa212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Benign prostatic hyperplasia (BPH) is an age-related debilitating prostatic disease that is frequently associated with prostatic inflammation and bothersome lower urinary tract symptoms (LUTS). Animal models have shown that formalin- and bacterial-induced prostatic inflammation can induce bladder dysfunction; however, the underlying mechanisms contributing to prostatic inflammation in BPH and bladder dysfunction are not clear. We previously reported that E-cadherin expression in BPH is downregulated in hyperplastic nodules compared with expression in adjacent normal tissues. Here, we explored the potential consequences of prostatic E-cadherin downregulation on the prostate and bladder in vivo using an inducible murine model of prostate luminal epithelial-specific deletion of Cdh1. The prostate-specific antigen (PSA)-CreERT2 transgenic mouse strain expressing tamoxifen-inducible CreERT2 recombinase driven by a 6-kb human PSA promoter/enhancer was crossed with the B6.129-Cdh1tm2Kem/J mouse to generate bigenic PSA-CreERT2/Cdh1-/- mice. Deletion of E-cadherin was induced by transient administration of tamoxifen when mice reached sexual maturity (7 weeks of age). At 21 to 23 weeks of age, the prostate, bladder, and prostatic urethra were examined histologically, and bladder function was assessed using void spot assays and cystometry. Mice with Cdh1 deletion had increased prostatic inflammation, prostatic epithelial hyperplasia, and stromal changes at 21 to 23 weeks of age, as well as changes in bladder voiding function compared with age-matched controls. Thus, loss of E-cadherin in the murine prostate could result in prostatic defects that are characteristic of BPH and LUTS, suggesting that E-cadherin downregulation could be a driving force in human BPH development and progression.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Correspondence: Zhou Wang, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G40, Pittsburgh, PA 15232, USA. ; or Laura E. Pascal, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G34, Pittsburgh, PA 15232, USA.
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeyu Wu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhenyu Yang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Correspondence: Zhou Wang, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G40, Pittsburgh, PA 15232, USA. ; or Laura E. Pascal, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G34, Pittsburgh, PA 15232, USA.
| |
Collapse
|
9
|
Sengel-Turk CT, Alcigir ME, Ekim O, Bakar-Ates F, Hascicek C. Clinicopathological and immunohistochemical evaluation of lonidamine-entrapped lipid-polymer hybrid nanoparticles in treatment of benign prostatic hyperplasia: An experimental rat model. Eur J Pharm Biopharm 2020; 157:211-220. [PMID: 33129926 DOI: 10.1016/j.ejpb.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a progressive proliferative disease, the incidence of which is constantly increasing due to aging of population. In this research, a hexokinase-II enzyme inhibiting agent, lonidamine - the use of which is limited in BPH treatment due to high hepatic toxicity observed after three months of treatment - was selected as an active agent, based on its mechanism of action in treating BPH. The aim of this study was to evaluate in vivo therapeutic efficacy and hepatic toxicity of lipid-polymer hybrid nanoparticles of lonidamine in a rat BPH model created in rat prostates. After local injections of hybrid nanoparticles of lonidamine were administered to the rat prostates, hyperplasic structures of prostates were evaluated in terms of prostatic index values, immunohistochemical evaluations, and histopathological findings. Liver blood enzyme values were also determined to specify hepatic toxicity. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) reaction and histopathological methods to determine intravital degenerative destruction in liver. Through this study, lonidamine-loaded hybrid nanoparticles were found to reduce the hepatic toxicity and increase therapeutic efficiency of lonidamine. Therefore, lonidamine-entrapped hybrid nanoparticles may provide a promising, and very safe, drug delivery strategy in the treatment of BPH.
Collapse
Affiliation(s)
- Ceyda Tuba Sengel-Turk
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey.
| | - Mehmet Eray Alcigir
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, Kirikkale, Turkey
| | - Okan Ekim
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, Ankara, Turkey
| | - Filiz Bakar-Ates
- Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| | - Canan Hascicek
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| |
Collapse
|
10
|
Bonollo F, Thalmann GN, Kruithof-de Julio M, Karkampouna S. The Role of Cancer-Associated Fibroblasts in Prostate Cancer Tumorigenesis. Cancers (Basel) 2020; 12:E1887. [PMID: 32668821 PMCID: PMC7409163 DOI: 10.3390/cancers12071887] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor-stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.
Collapse
Affiliation(s)
- Francesco Bonollo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
| | - George N. Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
| |
Collapse
|
11
|
Wu S, Huang D, Su X, Yan H, Wu J, Sun Z. Oral exposure to low-dose bisphenol A induces hyperplasia of dorsolateral prostate and upregulates EGFR expression in adult Sprague-Dawley rats. Toxicol Ind Health 2020; 35:647-659. [PMID: 31771501 DOI: 10.1177/0748233719885565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate is sensitive to endocrine hormone level, and the synergetic effect of estrogen and androgen is critical in prostate growth. The change of signal pathways caused by the imbalance of estrogen and androgen might function in the occurrence of prostate diseases. As a well-known endocrine disruptor compound, bisphenol A (BPA) can disturb the normal function of endocrine hormone and affect prostate development. This study aims to investigate effects of BPA on the dorsolateral prostate (DLP) and the related gene expression of the tissue in adult Sprague-Dawley (SD) rats and to explore the mechanism for the effect of low-dose BPA on DLP hyperplasia. Three-month-old male SD rats were treated with BPA (10.0, 30.0, or 90.0 µg (kg.day)-1, gavage) or vehicle (gavage) for 4 weeks. BPA significantly increased the DLP weight, the DLP organ coefficient, and the prostate epithelium height (p < 0.01) of rats dose-dependently. Microarray analysis and quantitative real-time polymerase chain reaction showed that BPA significantly upregulated the transcriptional levels of some genes, including pituitary tumor transforming gene 1, epidermal growth factor, Sh3kbp1, and Pcna. Furthermore, the expression of PCNA (p < 0.01), androgen receptor (p < 0.01), and EGF receptor (EGFR) (p < 0.001) in DLP was increased significantly by BPA treatment, and the expression of estrogen receptor alpha was also upregulated. The findings evidenced that low-dose BPA could induce DLP hyperplasia in adult rats, and the upregulated EGF/EGFR pathway that was responsive to estrogen and androgen might play an essential role in the DLP hyperplasia induced by low-dose BPA.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Pharmacy School of Fudan University, Shanghai, China.,National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Dongyan Huang
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Xin Su
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China
| | - Han Yan
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Jianhui Wu
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Zuyue Sun
- National Evaluatinon Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chen B, Cao D, Chen Z, Huang Y, Lin T, Ai J, Liu L, Wei Q. Estrogen regulates the proliferation and inflammatory expression of primary stromal cell in benign prostatic hyperplasia. Transl Androl Urol 2020; 9:322-331. [PMID: 32420138 PMCID: PMC7214965 DOI: 10.21037/tau.2020.02.08] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background To investigate the expression of estrogen receptor (ER) in prostate tissues of benign prostatic hyperplasia (BPH) individuals, and the effects of estrogen regulating the proliferation and inflammatory expressions of primary prostate stromal cells in BPH. Methods A total of 44 human BPH prostate tissues were collected to explore the expression of ER by immunohistochemistry (IHC). Cell proliferation, mRNA and protein expressions were analyzed in primary prostate stromal cells treated with estrogen or estrogen plus fulvestrant through cell count kit-8 (CCK-8) assay, quantitative real-time polymerase chain reaction (qPCR), IHC and western blot, respectively. Results Firstly, ERβ was positive, and ERα was negative in the transition zone of prostate among all the 44 individuals with BPH. Secondly, the effects could be partially inhibited by fulvestrant, of estrogen promoting the proliferation of primary prostate stromal cells cultured in dulbecco’s modified eagle medium (DMEM) supplemented with 2% fetal bovine serum (FBS). Thirdly, estrogen up-regulates the mRNA levels of C-C chemokine receptor type 3 (CCR3), CD40 ligand (CD 40L), C-X-C motif chemokine ligand 9 (CXCL9) and interleukin 10 (IL10), and down-regulates the mRNA levels of C-C chemokine receptor type 4 (CCR4) and interleukin 17C (IL17C). Then, the protein expressions of CCR3, CCR4, CD40L, IL10 and IL17C are positive, and CXCL9 is negative in the third-generation primary prostate stromal cells. Finally, the effects could be partially inhibited by fulvestrant, of estrogen up-regulating the protein levels of CD40L and IL10. Conclusions The expressions of ER in human BPH prostate tissues are zone-dependent. Estrogen promoting the proliferation of primary prostate stromal cells cultured in DMEM supplemented with 2% FBS. The expressions of CCR3, CCR4, CD 40L, IL17C, CXCL9 and IL10 are regulated by estrogen in primary prostate stromal cells.
Collapse
Affiliation(s)
- Bo Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dehong Cao
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianhai Lin
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,Institution of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
14
|
Bakuchiol suppresses oestrogen/testosterone-induced Benign Prostatic Hyperplasia development through up-regulation of epithelial estrogen receptor β and down-regulation of stromal aromatase. Toxicol Appl Pharmacol 2019; 381:114637. [PMID: 31238046 DOI: 10.1016/j.taap.2019.114637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023]
Abstract
Estrogens and androgens play critical roles during benign prostatic hyperplasia (BPH) development. Estrogen receptors (ERs), androgen receptor (AR) and aromatase, the key conversion enzyme of androgen to estrogen, are thought to be the effective targets for BPH treatment. Bakuchiol (Ba)-containing herb Psoralea corylifolia has been long-termed used for BPH patients in traditional Chinese medicine while the role and regulatory mechanism of Ba involved remain unclear. Human prostatic cell lines WPMY-1 and BPH-1 and oestrodial/testosterone-induced BPH rats were used as the in vitro and in vivo models. Ba significantly inhibited the proliferation of WPMY-1 and BPH-1 cells. In E2/T-induced BPH model, Ba treatment also significantly inhibited the enlargement of prostate, decreased PI values, reduced the thickness of periglanular smooth muscle layer, and down-regulated the expressions of PCNA and smooth muscle cell marker α-SMA, all of which were highly induced in BPH rats. Moreover, the basal and PGE2-induced expressions of aromatase were reduced in Ba-stimulated WPMY-1 cells, while the expression of ERβ was highly increased in Ba-stimulated BPH-1 cells, both of which are consistent with the findings in Ba group in vivo. Ba induced ERE activity in BPH-1 cells as E2 did; however, silence of ERβ not ERα, blocked Ba-induced ERE activity while E2 still exhibited the significant ERE activity, indicating the regulation of estrogen signaling by Ba is particularly via ERβ. In conclusion, by down-regulation of stromal aromatase and up-regulation of epithelial ERβ, Ba contributes to the balance of estrogen and androgen signaling and further inhibits BPH development.
Collapse
|
15
|
Yadav S, Kowolik CM, Lin M, Zuro D, Hui SK, Riggs AD, Horne DA. SMC1A is associated with radioresistance in prostate cancer and acts by regulating epithelial-mesenchymal transition and cancer stem-like properties. Mol Carcinog 2018; 58:113-125. [PMID: 30242889 DOI: 10.1002/mc.22913] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed cancers and a pressing health challenge in men worldwide. Radiation therapy (RT) is widely considered a standard therapy for advanced as well as localized prostate cancer. Although this primary therapy is associated with high cancer control rates, up to one-third of patients undergoing radiation therapy becomes radio-resistant and/or has tumor-relapse/recurrence. Therefore, focus on new molecular targets and pathways is essential to develop novel radio-sensitizing agents for the effective and safe treatment of prostate cancer. Here, we describe functional studies that were performed to investigate the role of structural maintenance of chromosome-1 (SMC1A) in radioresistance of metastatic prostate cancer cells. Short hairpin RNA (shRNA) was used to suppress SMC1A in metastatic castration-resistant prostate cancer cells, DU145 and PC3. Clonogenic survival assays, Western blot, RT-PCR, and γ-H2AX staining were used to assess the effect of SMC1A knockdown on radiation sensitivity of these prostate cancer cells. We demonstrate that SMC1A is overexpressed in human prostate tumors compared to the normal adjacent tissue. SMC1A knockdown limits the clonogenic potential, epithelial-mesenchymal transition (EMT), and cancer stem-like cell (CSC) properties of DU145 and PC3 cells and enhanced efficacy of RT in these cells. Targeted inhibition of SMC1A not only plays a critical role in overcoming radio-resistance in prostate cancer cells, but also suppresses self-renewal and the tumor-propagating potential of x-irradiated cancer cells. We propose that SMC1A could be a potential molecular target for the development of novel radio-sensitizing therapeutic agents for management of radio-resistant metastatic prostate cancer.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Translational Research and Cellular Therapeutics, City of Hope National Medical Center, Duarte, California.,Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Claudia M Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Min Lin
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Darren Zuro
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California
| | - Susanta K Hui
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California
| | - David A Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
16
|
Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer 2018; 25:R331-R349. [PMID: 29618577 DOI: 10.1530/erc-18-0042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/03/2023]
Abstract
Androgen receptor (AR) signaling is vital for the normal development of the prostate and is critically involved in prostate cancer (PCa). AR is not only found in epithelial prostate cells but is also expressed in various cells in the PCa-associated stroma, which constitute the tumor microenvironment (TME). In the TME, AR is expressed in fibroblasts, macrophages, lymphocytes and neutrophils. AR expression in the TME was shown to be decreased in higher-grade and metastatic PCa, suggesting that stromal AR plays a protective role against PCa progression. With that, the functionality of AR in stromal cells appears to deviate from the receptor's classical function as described in PCa cells. However, the biological action of AR in these cells and its effect on cancer progression remains to be fully understood. Here, we systematically review the pathological, genomic and biological literature on AR actions in various subsets of prostate stromal cells and aim to better understand the consequences of AR signaling in the TME in relation to PCa development and progression.
Collapse
Affiliation(s)
- B Cioni
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W Zwart
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode InstituteThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A M Bergman
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Medical OncologyThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|