1
|
Montastruc JL. Thirst and drugs: A study in the World Health Organization's pharmacovigilance database. Br J Clin Pharmacol 2024; 90:1525-1528. [PMID: 38627211 DOI: 10.1111/bcp.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/31/2024] Open
Abstract
Thirst is a complex physiological compensatory mechanism but could also be associated with drugs. This association was poorly investigated previously. Using the WHO global pharmacovigilance database, Vigibase®, disproportionality analyses potential associations between exposure to drugs and thirst reports were performed. All reports of thirst in adults between 01/01/2000 and 31/12/2023 were included. Results are expressed as reporting odds ratio (ROR). Analysis of the 3186 reports of thirst (978 'serious') allowed, first, to confirm the association between thirst and exposure to vasopressin antagonists (tolvaptan), lithium, gliflozins (dapagliflozin, empagliflozin), pregabalin and antimuscarinic drugs (glycopyronium, oxybutynin, tiotropium). Second, new safety signals were described with monoamine reuptake inhibitors (antidepressants: duloxetine, venlafaxine; anti-obesity agent: sibutramine), antipsychotic (olanzapine), glucocorticoid (prednisolone), diuretic (furosemide) drugs as well with ribavirin or sodium oxybate. This study is the first to offer a list of drugs associated with thirst in humans.
Collapse
|
2
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
3
|
Singh T, Sarmiento L, Luan C, Prasad RB, Johansson J, Cataldo LR, Renström E, Soneji S, Cilio C, Artner I. MafA Expression Preserves Immune Homeostasis in Human and Mouse Islets. Genes (Basel) 2018; 9:genes9120644. [PMID: 30567413 PMCID: PMC6315686 DOI: 10.3390/genes9120644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Type 1 (T1D) and type 2 (T2D) diabetes are triggered by a combination of environmental and/or genetic factors. Maf transcription factors regulate pancreatic beta (β)-cell function, and have also been implicated in the regulation of immunomodulatory cytokines like interferon-β (IFNβ1). In this study, we assessed MAFA and MAFB co-expression with pro-inflammatory cytokine signaling genes in RNA-seq data from human pancreatic islets. Interestingly, MAFA expression was strongly negatively correlated with cytokine-induced signaling (such as IFNAR1, DDX58) and T1D susceptibility genes (IFIH1), whereas correlation of these genes with MAFB was weaker. In order to evaluate if the loss of MafA altered the immune status of islets, MafA deficient mouse islets (MafA−/−) were assessed for inherent anti-viral response and susceptibility to enterovirus infection. MafA deficient mouse islets had elevated basal levels of Ifnβ1, Rig1 (DDX58 in humans), and Mda5 (IFIH1) which resulted in reduced virus propagation in response to coxsackievirus B3 (CVB3) infection. Moreover, an acute knockdown of MafA in β-cell lines also enhanced Rig1 and Mda5 protein levels. Our results suggest that precise regulation of MAFA levels is critical for islet cell-specific cytokine production, which is a critical parameter for the inflammatory status of pancreatic islets.
Collapse
Affiliation(s)
- Tania Singh
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | | | - Cheng Luan
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | | | | | | | - Erik Renström
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | - Shamit Soneji
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | - Corrado Cilio
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | - Isabella Artner
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
- Lund University Diabetes Center, 22184, Lund, Sweden.
| |
Collapse
|
4
|
Lombardi A, Tsomos E, Hammerstad SS, Tomer Y. Interferon alpha: The key trigger of type 1 diabetes. J Autoimmun 2018; 94:7-15. [PMID: 30115527 DOI: 10.1016/j.jaut.2018.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
IFNα is a cytokine essential to a vast array of immunologic processes. Its induction early in the innate immune response provides a priming mechanism that orchestrates numerous subsequent pathways in innate and adaptive immunity. Despite its beneficial effects in viral infections IFNα has been reported to be associated with several autoimmune diseases including autoimmune thyroid disease, systemic lupus erythematosus, rheumatoid arthritis, primary biliary cholangitis, and recently emerged as a major cytokine that triggers Type 1 Diabetes. In this review, we dissect the role of IFNα in T1D, focusing on the potential pathophysiological mechanisms involved. Evidence from human and mouse studies indicates that IFNα plays a key role in enhancing islet expression of HLA-I in patients with T1D, thereby increasing autoantigen presentation and beta cell activation of autoreactive cytotoxic CD8 T-lymphocytes. The binding of IFNα to its receptor induces the secretion of chemokines, attracting monocytes, T lymphocytes, and NK cells to the infected tissue triggering autoimmunity in susceptible individuals. Furthermore, IFNα impairs insulin production through the induction of endoplasmic reticulum stress as well as by impairing mitochondrial function. Due to its central role in the early phases of beta cell death, targeting IFNα and its pathways in genetically predisposed individuals may represent a potential novel therapeutic strategy in the very early stages of T1D.
Collapse
Affiliation(s)
- Angela Lombardi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Effie Tsomos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara S Hammerstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Aker, Oslo, Norway; Department of Pediatrics, Oslo University Hospital, Ulleval, Oslo, Norway
| | - Yaron Tomer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Newby BN, Mathews CE. Type I Interferon Is a Catastrophic Feature of the Diabetic Islet Microenvironment. Front Endocrinol (Lausanne) 2017; 8:232. [PMID: 28959234 PMCID: PMC5604085 DOI: 10.3389/fendo.2017.00232] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
A detailed understanding of the molecular pathways and cellular interactions that result in islet beta cell (β cell) destruction is essential for the development and implementation of effective therapies for prevention or reversal of type 1 diabetes (T1D). However, events that define the pathogenesis of human T1D have remained elusive. This gap in our knowledge results from the complex interaction between genetics, the immune system, and environmental factors that precipitate T1D in humans. A link between genetics, the immune system, and environmental factors are type 1 interferons (T1-IFNs). These cytokines are well known for inducing antiviral factors that limit infection by regulating innate and adaptive immune responses. Further, several T1D genetic risk loci are within genes that link innate and adaptive immune cell responses to T1-IFN. An additional clue that links T1-IFN to T1D is that these cytokines are a known constituent of the autoinflammatory milieu within the pancreas of patients with T1D. The presence of IFNα/β is correlated with characteristic MHC class I (MHC-I) hyperexpression found in the islets of patients with T1D, suggesting that T1-IFNs modulate the cross-talk between autoreactive cytotoxic CD8+ T lymphocytes and insulin-producing pancreatic β cells. Here, we review the evidence supporting the diabetogenic potential of T1-IFN in the islet microenvironment.
Collapse
Affiliation(s)
- Brittney N. Newby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Clayton E. Mathews,
| |
Collapse
|
6
|
Bedsaul JR, Zaritsky LA, Zoon KC. Type I Interferon-Mediated Induction of Antiviral Genes and Proteins Fails to Protect Cells from the Cytopathic Effects of Sendai Virus Infection. J Interferon Cytokine Res 2016; 36:652-665. [PMID: 27508859 DOI: 10.1089/jir.2016.0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sendai virus (SeV), a murine paramyxovirus, has been used to study the induction of type I interferon (IFN) subtypes in robust quantities. Few studies have measured whether the IFN that SeV induces actually fulfills its intended purpose of interfering with virus-mediated effects in the cells in which it is produced. We determined the effects of IFN on SeV-mediated cytopathic effects (CPE) and the ability of IFN to protect against virus infection. SeV-induced biologically active IFN resulted in Jak/STAT activation and the production of a number of interferon-stimulated genes (ISGs). However, these responses did not inhibit SeV replication or CPE. This observation was not due to SeV effects on canonical IFN signaling. Furthermore, pretreating cells with type I IFN and establishing an antiviral state before infection did not mediate SeV effects. Therefore, the induction of canonical IFN signaling pathways and ISGs does not always confer protection against the IFN-inducing virus. Because type I IFNs are approved to treat various infections, our findings suggest that typical markers of IFN activity may not be indicative of a protective antiviral response and should not be used alone to determine whether an antiviral state against a particular virus is achieved.
Collapse
Affiliation(s)
- Jacquelyn R Bedsaul
- Cytokine Biology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Luna A Zaritsky
- Cytokine Biology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Kathryn C Zoon
- Cytokine Biology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
7
|
Zornitzki T, Malnick S, Lysyy L, Knobler H. Interferon therapy in hepatitis C leading to chronic type 1 diabetes. World J Gastroenterol 2015; 21:233-239. [PMID: 25574096 PMCID: PMC4284340 DOI: 10.3748/wjg.v21.i1.233] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To review the prevalence, clinical data and course of interferon- associated type 1 diabetes in chronic hepatitis C virus (HCV) infection. METHODS Search of all interferon (INF)-related type 1 diabetes mellitus (T1DM) cases published in the English literature from 1992 to December 2013 according to the key words: chronic hepatitis C infection, diabetes mellitus type 1, insulin dependent diabetes mellitus, and interferon treatment. We found 107 cases and analyzed their clinical and laboratory data and long-term follow-up. Due to the predominance of cases described in Japanese literature, we analyzed separately cases of Caucasian and Japanese origin. In addition we describe a representative case with HCV who developed INF-related T1DM. RESULTS Our data show that INF treatment increases the risk of developing T1DM by 10-18 fold compared with the corresponding general population and the median age of onset was 43 years (range: 24-66 years) in Caucasians and 52 years (range: 45-63 years) in Japanese. Most patients developed T1DM during INF treatment, after a median time-period of 4.2 and 5.7 mo in Caucasian and Japanese groups, respectively. The clinical course was characterized by a fulminant course with abrupt severe hyperglycemia or ketoacidosis, a high titer of anti-islet autoantibodies and almost all patients (105/107) permanently required insulin therapy with a follow-up of up to 4 years. A substantial number of patients had evidence for other autoimmune disorders mainly thyroid diseases (25% and 31% in Caucasian and Japanese groups, respectively). CONCLUSION INF-associated T1DM in HCV has a fulminant course, often associated with other autoimmune diseases, and results almost inevitably in permanent insulin therapy requirement.
Collapse
|
8
|
Hammerstad SS, Grock SF, Lee HJ, Hasham A, Sundaram N, Tomer Y. Diabetes and Hepatitis C: A Two-Way Association. Front Endocrinol (Lausanne) 2015; 6:134. [PMID: 26441826 PMCID: PMC4568414 DOI: 10.3389/fendo.2015.00134] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Diabetes and hepatitis C infection are both prevalent diseases worldwide, and are associated with increased morbidity and mortality. Most studies, but not all, have shown that patients with chronic hepatitis C are more prone to develop type 2 diabetes (T2D) compared to healthy controls, as well as when compared to patients with other liver diseases, including hepatitis B. Furthermore, epidemiological studies have revealed that patients with T2D may also be at higher risk for worse outcomes of their hepatitis C infection, including reduced rate of sustained virological response, progression to fibrosis and cirrhosis, and higher risk for development of hepatocellular carcinoma. Moreover, hepatitis C infection and mainly its treatment, interferon α, can trigger the development of type 1 diabetes. In this review, we discuss the existing data on this two-way association between diabetes and hepatitis C infection with emphasis on possible mechanisms. It remains to be determined whether the new curative therapies for chronic hepatitis C will improve outcomes in diabetic hepatitis C patients, and conversely whether treatment with Metformin will reduce complications from hepatitis C virus infection. We propose an algorithm for diabetes screening and follow-up in hepatitis C patients.
Collapse
Affiliation(s)
- Sara Salehi Hammerstad
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Oslo University Hospital Ullevål, Oslo, Norway
| | - Shira Frankel Grock
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanna J. Lee
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alia Hasham
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Sundaram
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yaron Tomer
- Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
- *Correspondence: Yaron Tomer, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, Box 1055, One Gustave L. Levy Place, New York, NY 10029, USA,
| |
Collapse
|
9
|
Antonelli A, Ferrari SM, Giuggioli D, Di Domenicantonio A, Ruffilli I, Corrado A, Fabiani S, Marchi S, Ferri C, Ferrannini E, Fallahi P. Hepatitis C virus infection and type 1 and type 2 diabetes mellitus. World J Diabetes 2014; 5:586-600. [PMID: 25317237 PMCID: PMC4138583 DOI: 10.4239/wjd.v5.i5.586] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/10/2014] [Accepted: 07/12/2014] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection and diabetes mellitus are two major public health problems that cause devastating health and financial burdens worldwide. Diabetes can be classified into two major types: type 1 diabetes mellitus (T1DM) and T2DM. T2DM is a common endocrine disorder that encompasses multifactorial mechanisms, and T1DM is an immunologically mediated disease. Many epidemiological studies have shown an association between T2DM and chronic hepatitis C (CHC) infection. The processes through which CHC is associated with T2DM seem to involve direct viral effects, insulin resistance, proinflammatory cytokines, chemokines, and other immune-mediated mechanisms. Few data have been reported on the association of CHC and T1DM and reports on the potential association between T1DM and acute HCV infection are even rarer. A small number of studies indicate that interferon-α therapy can stimulate pancreatic autoimmunity and in certain cases lead to the development of T1DM. Diabetes and CHC have important interactions. Diabetic CHC patients have an increased risk of developing cirrhosis and hepatocellular carcinoma compared with non-diabetic CHC subjects. However, clinical trials on HCV-positive patients have reported improvements in glucose metabolism after antiviral treatment. Further studies are needed to improve prevention policies and to foster adequate and cost-effective programmes for the surveillance and treatment of diabetic CHC patients.
Collapse
|
10
|
Spagnuolo I, Patti A, Sebastiani G, Nigi L, Dotta F. The case for virus-induced type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2013; 20:292-8. [PMID: 23743646 DOI: 10.1097/med.0b013e328362a7d7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) results from the immune-mediated destruction of pancreatic insulin-producing cells because of the interaction among genetic susceptibility, the immune system and environmental factor(s). A possible role of viral infections in T1D pathogenesis has been hypothesized for some time; however, only in the most recent years, studies performed at the molecular and cellular level are starting to shed light on this issue. RECENT FINDINGS Studies in animal models and in man have shown that viruses can indeed infect pancreatic beta-cells, inducing islet inflammation and functional damage. In addition, recent in-situ investigations performed on pancreatic tissue samples have provided evidence that in addition to adaptive immune response, innate immunity is involved in T1D pathogenesis and the whole pancreas (not only its endocrine portion) is infiltrated by immune-mediated phenomena. SUMMARY The established role of inflammation in the insulitic process and the increasing evidence in support of the contribution of viral infections to a proinflammatory islet scenario are strongly suggestive that viruses may indeed contribute to beta-cell damage and dysfunction, thus setting the stage for the design of antiviral strategies (e.g. vaccines and antiviral drugs) aimed at protecting the beta-cells.
Collapse
Affiliation(s)
- Isabella Spagnuolo
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Toscana Life Science Park, Siena, Italy
| | | | | | | | | |
Collapse
|