1
|
Srisathaporn S, Pientong C, Heawchaiyaphum C, Nukpook T, Aromseree S, Ekalaksananan T. The Oncogenic Role of VWA8-AS1, a Long Non-Coding RNA, in Epstein-Barr Virus-Associated Oral Squamous Cell Carcinoma: An Integrative Transcriptome and Functional Analysis. Int J Mol Sci 2024; 25:12565. [PMID: 39684278 DOI: 10.3390/ijms252312565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Dysregulated long non-coding RNA (lncRNA) expression is linked to various cancers and may be influenced by oncogenic Epstein-Barr virus (EBV) infection, a known and detectable risk factor in oral squamous cell carcinoma (OSCC) patients. However, research on the oncogenic role of EBV-induced lncRNAs in OSCC is limited. To identify lncRNA-associated EBV infection and OSCC carcinogenesis, the differential expression of RNA-seq datasets from paired normal adjacent and OSCC tissues, and microarray data from EBV-negative and EBV-positive SCC25 cells, were identified and selected, respectively, for interaction, functional analysis, and CCK-8 cell proliferation, wound healing, and invasion Transwell assays. In OSCC tissues, 6731 differentially expressed lncRNAs were identified when compared to normal tissues from RNA-seq datasets, with 295 linked to EBV-induced OSCC carcinogenesis from microarray datasets. The EBV-induced lncRNA VWA8-AS1 showed significant upregulation in EBV-positive SCC25 cells and EBV-infected adjacent and OSCC tissue samples. VWA8-AS1 potentially promotes OSCC via the lncRNA-miRNA-mRNA axis or direct protein interactions, affecting various cellular processes. Studies in OSCC cell lines revealed that elevated VWA8-AS1 levels enhanced cell migration and invasion. This study demonstrates VWA8-AS1's contribution to tumor progression and possible interactions with its targets in OSCC, offering insights for future research on functional mechanisms and therapeutic targets in EBV-associated OSCC.
Collapse
Affiliation(s)
- Sawarot Srisathaporn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thawaree Nukpook
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Foley K, Adlowitz DG, Baker C, Rock PJ, Burack R, Fries C. High-throughput sequencing of archival cerebrospinal fluid specimens defines B-lymphoblastic leukemia clonal composition. Pediatr Blood Cancer 2024; 71:e31281. [PMID: 39169521 DOI: 10.1002/pbc.31281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Detailed characterization of the B-lymphoblastic leukemia (B-ALL) cells which invade the central nervous system (CNS) has been limited by practical challenges. To test whether the clonal composition of the cerebrospinal fluid (CSF) reflects the primary B-ALL tissue, we applied immunoglobulin (Ig) high-throughput sequencing (HTS) of archival CSF cytospin preparations from six patients with morphologically defined CNS involvement. We discovered that most CSF clones are detectable at some timepoint in the primary tissue, but that shifting clonal abundance is prevalent across tissue sites between diagnosis and relapse. Ig HTS of CSF cytospins may improve understanding of sanctuary site dissemination in B-ALL.
Collapse
Affiliation(s)
- Karl Foley
- University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Diana G Adlowitz
- Division of Hematology/Oncology, Department of Pediatrics, University of Rochester, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, USA
| | - Cameron Baker
- Department of Biostatistics and Computational Biology, Genomics Research Center, University of Rochester, Rochester, New York, USA
| | - Philip J Rock
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, USA
| | - Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, USA
| | - Carol Fries
- Division of Hematology/Oncology, Department of Pediatrics, University of Rochester, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
3
|
Enlund S, Sinha I, Neofytou C, Amor AR, Papadakis K, Nilsson A, Jiang Q, Hermanson O, Holm F. The CNS microenvironment promotes leukemia cell survival by disrupting tumor suppression and cell cycle regulation in pediatric T-cell acute lymphoblastic leukemia. Exp Cell Res 2024; 437:114015. [PMID: 38561062 DOI: 10.1016/j.yexcr.2024.114015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
A major obstacle in improving survival in pediatric T-cell acute lymphoblastic leukemia is understanding how to predict and treat leukemia relapse in the CNS. Leukemia cells are capable of infiltrating and residing within the CNS, primarily the leptomeninges, where they interact with the microenvironment and remain sheltered from systemic treatment. These cells can survive in the CNS, by hijacking the microenvironment and disrupting normal functions, thus promoting malignant transformation. While the protective effects of the bone marrow niche have been widely studied, the mechanisms behind leukemia infiltration into the CNS and the role of the CNS niche in leukemia cell survival remain unknown. We identified a dysregulated gene expression profile in CNS infiltrated T-ALL and CNS relapse, promoting cell survival, chemoresistance, and disease progression. Furthermore, we discovered that interactions between leukemia cells and human meningeal cells induced epigenetic alterations, such as changes in histone modifications, including H3K36me3 levels. These findings are a step towards understanding the molecular mechanisms promoting leukemia cell survival in the CNS microenvironment. Our results highlight genetic and epigenetic alterations induced by interactions between leukemia cells and the CNS niche, which could potentially be utilized as biomarkers to predict CNS infiltration and CNS relapse.
Collapse
Affiliation(s)
- Sabina Enlund
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Indranil Sinha
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Christina Neofytou
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Amanda Ramilo Amor
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Konstantinos Papadakis
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anna Nilsson
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Frida Holm
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
4
|
Tanaka Y, Urayama KY, Mori M, Arakawa Y, Hasegawa D, Noguchi Y, Yanagimachi M, Keino D, Ota S, Akahane K, Inukai T, Hangai M, Kawaguchi T, Takagi M, Koh K, Matsuda F, Manabe A. Prominence of NUDT15 genetic variation associated with 6-mercaptopurine tolerance in a genome-wide association study of Japanese children with acute lymphoblastic leukaemia. Br J Haematol 2022; 199:260-269. [PMID: 35961941 DOI: 10.1111/bjh.18405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
Inherited genetic variation is associated with 6-mercaptopurine (6-MP) dose reduction and frequent toxicities induced by 6-MP. However, the tolerable dose for 6-MP is not fully predicted by the known variation in NUDT15 and TPMT among Asian children with acute lymphoblastic leukaemia (ALL). We performed a genome-wide association study (GWAS) related to 6-MP dose among Japanese children with ALL. This GWAS comprised 224 patients previously enrolled in Tokyo Children's Cancer Study Group clinical studies with replication attempted in 55 patients. Genome-wide single nucleotide polymorphism (SNP) genotypes were evaluated for association with average 6-MP dose during the initial 168 days of maintenance therapy. Possible associations were observed across five gene-coding regions, among which only variants at 13q14.2 were significant and replicated genome-wide (rs116855232, NUDT15, β = -10.99, p = 3.7 × 10-13 ). Notable findings were observed for variants in AFF3 (rs75364948, p = 2.05 × 10-6 ) and CHST11 (rs1148407, p = 2.09 × 10-6 ), but were not replicated possibly due to small numbers. A previously reported candidate SNP in MTHFR was associated with higher average 6-MP dose (rs1801133, p = 0.045), and FOLH1 (rs12574928) was associated in an evaluation of candidate regions (padjust = 0.013). This study provides strong evidence that rs116855232 in NUDT15 is the genetic factor predominantly associated with 6-MP tolerable dose in children in Japan.
Collapse
Affiliation(s)
- Yoichi Tanaka
- Division of Medical Safety Sciences, National Institute of Health Sciences, Kanagawa, Japan
| | - Kevin Y Urayama
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan.,Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Makiko Mori
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Yuki Arakawa
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Yasushi Noguchi
- Department of Pediatrics, Japanese Red Cross Narita Hospital, Chiba, Japan
| | - Masakatsu Yanagimachi
- Department of Hematology/Oncology, Children's Cancer Center, Kanagawa Children's Medical Center, Kanagawa, Japan.,Department of Pediatrics, Yokohama City University Hospital, Kanagawa, Japan
| | - Dai Keino
- Department of Hematology/Oncology, Children's Cancer Center, Kanagawa Children's Medical Center, Kanagawa, Japan.,Department of Pediatrics, St. Marianna University, Kanagawa, Japan
| | - Setsuo Ota
- Department of Pediatrics, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Koshi Akahane
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan
| | - Mayumi Hangai
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | | | - Masatoshi Takagi
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | | | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
5
|
Alblooshi H, Al Safar H, El Kashef A, Al Ghaferi H, Shawky M, Hulse GK, Tay GK. Stratified analyses of genome wide association study data reveal haplotypes for a candidate gene on chromosome 2 (KIAA1211L) is associated with opioid use in patients of Arabian descent. BMC Psychiatry 2020; 20:41. [PMID: 32005204 PMCID: PMC6995052 DOI: 10.1186/s12888-019-2425-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Genome Wide Association Studies (GWAS) have been conducted to identify genes and pathways involved in development of opioid use disorder. This study extends the first GWAS of substance use disorder (SUD) patients from the United Arab Emirates (UAE) by stratifying the study group based on opioid use, which is the most common substance of use in this cohort. METHODS The GWAS cohort consisted of 512 (262 case, 250 controls) male participants from the UAE. The samples were genotyped using the Illumina Omni5 Exome system. Data was stratified according to opioid use using PLINK. Haplotype analysis was conducted using Haploview 4.2. RESULTS Two main associations were identified in this study. Firstly, two SNPs on chromosome 7 were associated with opioid use disorder, rs118129027 (p-value = 1.23 × 10 - 8) and rs74477937 (p-value = 1.48 × 10 - 8). This has been reported in Alblooshi et al. (Am J Med Genet B Neuropsychiatr Genet 180(1):68-79, 2019). Secondly, haplotypes on chromosome 2 which mapped to the KIAA1211L locus were identified in association with opioid use. Five SNPs in high linkage disequilibrium (LD) (rs2280142, rs6542837, rs12712037, rs10175560, rs11900524) were arranged into haplotypes. Two haplotypes GAGCG and AGTTA were associated with opioid use disorders (p-value 3.26 × 10- 8 and 7.16 × 10- 7, respectively). CONCLUSION This is the first GWAS to identify candidate genes associated with opioid use disorder in participants from the UAE. The lack of other genetic data of Arabian descent opioid use patients has hindered replication of the findings. Nevertheless, the outcomes implicate new pathways in opioid use disorder that requires further research to assess the role of the identified genes in the development of opioid use disorder.
Collapse
Affiliation(s)
- Hiba Alblooshi
- 0000 0004 1936 7910grid.1012.2Division of Psychiatry, the University of Western Australia, Crawley, Western Australia Australia ,0000 0004 1936 7910grid.1012.2School of Human Science, The University of Western Australia, Crawley, Western Australia Australia ,0000 0001 2193 6666grid.43519.3aCollege of Medicine and Health Science, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Habiba Al Safar
- 0000 0004 1762 9729grid.440568.bCenter of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates ,0000 0004 1762 9729grid.440568.bDepartment of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed El Kashef
- National Rehabilitation Center, Abu Dhabi, United Arab Emirates
| | | | - Mansour Shawky
- National Rehabilitation Center, Abu Dhabi, United Arab Emirates
| | - Gary K. Hulse
- 0000 0004 1936 7910grid.1012.2Division of Psychiatry, the University of Western Australia, Crawley, Western Australia Australia ,0000 0004 0389 4302grid.1038.aSchool of Health and Medical Science, Edith Cowan University, Joondalup, Western Australia Australia
| | - Guan K. Tay
- 0000 0004 1936 7910grid.1012.2Division of Psychiatry, the University of Western Australia, Crawley, Western Australia Australia ,0000 0004 1762 9729grid.440568.bCenter of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates ,0000 0004 1762 9729grid.440568.bDepartment of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates ,0000 0004 0389 4302grid.1038.aSchool of Health and Medical Science, Edith Cowan University, Joondalup, Western Australia Australia
| |
Collapse
|
6
|
Erb U, Schwerk C, Schroten H, Karremann M. Review of functional in vitro models of the blood-cerebrospinal fluid barrier in leukaemia research. J Neurosci Methods 2019; 329:108478. [PMID: 31669338 DOI: 10.1016/j.jneumeth.2019.108478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 11/15/2022]
Abstract
Acute lymphoblastic leukaemia represents the most common paediatric malignancy. Although survival rates approach up to 90% in children, investigation of leukaemic infiltration into the central nervous system (CNS) is essential due to the presence of ongoing fatal complications. Recent in vitro studies mostly employed models of the blood-brain barrier (BBB), as endothelial cells of the microvasculature represent the largest surface between the blood stream and the brain parenchyma. However, crossing the blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus (CP) has been shown to be a general capability of leukaemic blasts. Hence, in vitro models of the BCSFB to study leukaemic transmigration may be of major importance to understand the development of CNS leukaemia. This review will summarise available in vitro models of the BCSFB employed to study the cellular interactions with leukaemic blasts during cancer cell transmigration into the brain compartment across primary or immortal/immortalised BCSFB cells. It will also provide an outlook on prospective improvements in BCSFB in vitro models by developing barrier-on-a-chip models and brain organoids.
Collapse
Affiliation(s)
- Ulrike Erb
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Karremann
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Youlden DR, Gupta S, Frazier AL, Moore AS, Baade PD, Valery PC, Green AC, Aitken JF. Stage at diagnosis for children with blood cancers in Australia: Application of the Toronto Paediatric Cancer Stage Guidelines in a population-based national childhood cancer registry. Pediatr Blood Cancer 2019; 66:e27683. [PMID: 30803139 DOI: 10.1002/pbc.27683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 11/26/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Information on stage at diagnosis for childhood blood cancers is essential for surveillance but is not available on a population basis in most countries. Our aim was to apply the internationally endorsed Toronto Paediatric Cancer Stage Guidelines to children (<15 years) with acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), Hodgkin lymphoma (HL), or non-Hodgkin lymphoma (NHL) and to assess differences in survival by stage at diagnosis. PROCEDURE Stage was defined by extent of involvement of the central nervous system (CNS) for ALL and AML and using the Ann Arbor and St Jude-Murphy systems for HL and NHL, respectively. The study cohort was drawn from the population-based Australian Childhood Cancer Registry, consisting of children diagnosed with one of these four blood cancers between 2006 and 2014 with follow-up to 2015. Five-year observed survival was estimated from the Kaplan-Meier method. RESULTS Stage was assigned to 2201 of 2351 eligible patients (94%), ranging from 85% for AML to 95% for ALL, HL, and NHL. Survival following ALL varied from 94% (95% CI = 93%-95%) for CNS1 disease to 89% (95% CI = 79%-94%) for CNS2 (P = 0.07), whereas for AML there was essentially no difference in survival between CNS- (77%) and CNS+ disease (78%; P = 0.94). Nearly all children with HL survived for five years. There was a trend (P = 0.04) toward worsening survival with higher stage for NHL. CONCLUSIONS These results provide the first population-wide picture of the distribution and outcomes for childhood blood cancers in Australia by extent of disease at diagnosis and provide a baseline for future comparisons.
Collapse
Affiliation(s)
- Danny R Youlden
- Cancer Council Queensland, Brisbane, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Sumit Gupta
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Canada.,Faculty of Medicine, University of Toronto, Toronto, Canada
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Andrew S Moore
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Oncology Services Group, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia.,UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter D Baade
- Cancer Council Queensland, Brisbane, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patricia C Valery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Adèle C Green
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,CRUK Manchester Institute and Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, United Kingdom
| | - Joanne F Aitken
- Cancer Council Queensland, Brisbane, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Institute for Resilient Regions, University of Southern Queensland, Brisbane, Queensland, Australia.,School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Kinjyo I, Bragin D, Grattan R, Winter SS, Wilson BS. Leukemia-derived exosomes and cytokines pave the way for entry into the brain. J Leukoc Biol 2019; 105:741-753. [PMID: 30702754 DOI: 10.1002/jlb.3a0218-054r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022] Open
Abstract
Infiltration of acute lymphoblastic leukemia (ALL) blasts into the CNS remains as a major clinical problem, with high risk for chemotherapy-resistant relapse and treatment-related morbidity. Despite the common inclusion of CNS prophylaxis treatments in therapy regimens, there are significant gaps in understanding the mechanisms that mediate leukemia cell entry into the CNS as well as roles for resident cells in the brain. In this study, we employ a xenograft model of human B cell precursor (BCP)-ALL in immunocompromised mice. This model system recapitulates key pathological characteristics of leptomeningeal involvement seen in patients and provides insights into rare cases that involve parenchymal invasion. We examine the infiltration of engrafted leukemia blasts into brains of recipient mice and provide evidence that the interaction between blasts and brain resident cells causes aberrant activation of host cells in the brain microenvironment. BCP-ALL blasts also release multiple cytokines and exosomes containing IL-15 that bind and are internalized by astrocytes and brain vessel endothelial cells. Leukemic invasion is linked to production of VEGF-AA by astrocytes and disruption of the blood-brain-barrier (BBB) integrity. Knockdown of either IL-15 or IL-15Rα in the NALM6 cell line decreases CNS infiltration in engrafted mice. These results provide important insights into the multiple mechanisms by which lymphoblasts modulate the brain microenvironment to breach the BBB for metastatic invasion.
Collapse
Affiliation(s)
- Ichiko Kinjyo
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Denis Bragin
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, USA
| | - Rachel Grattan
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Stuart S Winter
- Blood Diseases and Cancer Program, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA.,Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
9
|
Shi P, Sun J, He B, Song H, Li Z, Kong W, Wang J, Wang J, Xue H. Profiles of differentially expressed circRNAs in esophageal and breast cancer. Cancer Manag Res 2018; 10:2207-2221. [PMID: 30087579 PMCID: PMC6061203 DOI: 10.2147/cmar.s167863] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction Circular RNAs (circRNAs) function as efficient microRNA sponges with gene-regulatory potential and are promising cancer biomarkers. In this study, we used the Arraystar Human circRNA Array to construct a genome-wide circRNA profile of esophageal squamous cell cancer (ESCC) and breast cancer (BC). Patients and methods Expression levels between cancer lesions and adjacent normal-appearing tissues were compared. We observed 469 upregulated circRNAs and 275 downregulated circRNAs in ESCC. Hsa_circRNA_103670 was upregulated 20.3-fold, while hsa_circRNA_030162 was downregulated 12.1-fold. For BC, 715 circRNAs were upregulated, and 440 circRNAs were downregulated. Hsa_circRNA_005230 was upregulated 12.2-fold, while hsa_circRNA_406225 was downregulated 12.4-fold. Results When we set the criteria as fold change in expression ≥2 between cancer and adjacent normal-appearing tissue with a P-value <0.01, there were 22 common circRNAs (11 upregulated and 11 downregulated) in relation to both ESCC and BC. Gene ontology and the Kyoto encyclopedia of genes and genomes analyses showed that these circRNAs were involved in the tumorigenesis of human cancers. Conclusion Our study revealed that circRNAs are promising candidates as valuable biomarkers for ESCC and BC, although relevant research is still in its infancy and the functional role of specific circRNAs in tumorigenesis is just starting to be elucidated.
Collapse
Affiliation(s)
- Peiyi Shi
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China,
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, Yancheng, People's Republic of China
| | - Biyu He
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China,
| | - Huan Song
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China,
| | - Zhongqi Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China,
| | - Weimin Kong
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, Yancheng, People's Republic of China
| | - Jianping Wang
- Department of Thoracic Surgery, People's Hospital of Yangzhong, Yangzhong, People's Republic of China,
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China,
| | - Hengchuan Xue
- Department of Thoracic Surgery, People's Hospital of Yangzhong, Yangzhong, People's Republic of China,
| |
Collapse
|
10
|
Alsadeq A, Schewe DM. Acute lymphoblastic leukemia of the central nervous system: on the role of PBX1. Haematologica 2018; 102:611-613. [PMID: 28364057 DOI: 10.3324/haematol.2017.165142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ameera Alsadeq
- Institute of Immunology, University Medical Center Ulm, Germany
| | - Denis M Schewe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
11
|
Gossai NP, Gordon PM. The Role of the Central Nervous System Microenvironment in Pediatric Acute Lymphoblastic Leukemia. Front Pediatr 2017; 5:90. [PMID: 28491865 PMCID: PMC5405081 DOI: 10.3389/fped.2017.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. While survival rates for ALL have improved, central nervous system (CNS) relapse remains a significant cause of treatment failure and treatment-related morbidity. Accordingly, there is a need to identify more efficacious and less toxic CNS-directed leukemia therapies. Extensive research has demonstrated a critical role of the bone marrow (BM) microenvironment in leukemia development, maintenance, and chemoresistance. Moreover, therapies to disrupt mechanisms of BM microenvironment-mediated leukemia survival and chemoresistance represent new, promising approaches to cancer therapy. However, in direct contrast to the extensive knowledge of the BM microenvironment, the unique attributes of the CNS microenvironment that serve to make it a leukemia reservoir are not yet elucidated. Recent work has begun to define both the mechanisms by which leukemia cells migrate into the CNS and how components of the CNS influence leukemia biology to enhance survival, chemoresistance, and ultimately relapse. In addition to providing new insight into CNS relapse and leukemia biology, this area of investigation will potentially identify targetable mechanisms of leukemia chemoresistance and self-renewal unique to the CNS environment that will enhance both the durability and quality of the cure for ALL patients.
Collapse
Affiliation(s)
- Nathan P Gossai
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Peter M Gordon
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN, USA.,University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|