1
|
Gallo Ruelas M, Queiroz I, Pimentel T, Tavares AH, Defante MLR, Barbosa LM, Eckert I. Effects of seal oil supplementation on lipid profile biomarkers: A systematic review and meta-analysis of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids 2025; 204:102666. [PMID: 39914123 DOI: 10.1016/j.plefa.2025.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Seal oil (SO) supplementation has been purported to have cardiovascular health benefits due to its content of omega-3 fatty acids; however, the clinical evidence base for this intervention has yet to be comprehensively assessed. OBJECTIVE We aimed to evaluate the effects of oral SO supplementation on lipid profile biomarkers. METHODS A systematic search was performed on Pubmed, Embase, Web of Science and Cochrane Library, from inception to August 2024. Only randomized controlled trials (RCTs) assessing the effect of SO on lipid profile biomarkers were included. A random-effects meta-analysis was applied to determine the overall effect estimate. The certainty of evidence (CoE) was evaluated using the GRADE approach. RESULTS Nine RCTs were included in the review after the screening of 242 studies, comprising a total of 626 patients. Supplementation of SO resulted in no statistically significant effects on LDL-C (MD -0.07 mmol/L; 95 % CI [-0.19, 0.05]; CoE: Low) and total cholesterol (MD -0.12 mmol/L; 95 % CI [-0.30, 0.06]; CoE: Very low). There were statistically significant results of modest-to-trivial clinical importance on triglycerides (MD -0.19 mmol/L, 95 % CI [-0.30, -0.08]; CoE: Low) and trivial importance on HDL-C (MD 0.07 mmol/L, 95 % CI [0.003, 0.13]; CoE: Very low). CONCLUSION There is no sufficiently certain evidence to determine the effects of SO on cardiovascular lipid biomarkers. Our analyses may suggest a modest-to-trivial, clinically uncertain beneficial effect on triglyceride levels; and little to no effect on LDL-C. Effect estimates for HDL-C and total cholesterol levels were highly uncertain. Further evidence is required to conclusively determine the effects of oral SO on lipid biomarkers. PROTOCOL REGISTRATION NUMBER CRD42024583739.
Collapse
Affiliation(s)
| | - Ivo Queiroz
- Catholic University of Pernambuco, Medicine Department, Brazil
| | - Túlio Pimentel
- Federal University of Pernambuco, Medicine Department, Brazil
| | | | - Maria L R Defante
- Redentor University Center, Medicine Department, Itaperuna, Rio de Janeiro, Brazil
| | | | - Igor Eckert
- Independent Researcher, Porto Alegre, Brazil
| |
Collapse
|
2
|
Li F, Ning Y, Zhang Y, Huang H, Yuan Q, Wang X, Wei W. Positional distribution of DHA in triacylglycerols: natural sources, synthetic routes, and nutritional properties. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40111396 DOI: 10.1080/10408398.2025.2479071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is a long-chain polyunsaturated fatty acid (PUFA) present in high quantities in the mammalian brain and is a precursor of several metabolites. Clinical trials have demonstrated the benefits of dietary DHA in infants and adults. Triacylglycerols (TAGs) are the most abundant components of many natural oils, and in specific oils (e.g., fish, algal oils, etc.), they represent the main molecular form of dietary DHA. The positional distribution of DHA in the TAG glycerol backbone (sn-2 vs. sn-1/3) varied among different sources. Recent studies have shown that in human breast milk, DHA is mainly esterified at the sn-2 position (∼50% DHA of the total DHA), thus attracting research interest regarding the nutritional properties of sn-2 DHA. In this review, we summarize the different sources of TAG in natural oils with high amounts of DHA, including fish, algae, and marine mammal oils, with a focus on their positional distribution. Methods for analyzing the distribution of fatty acids in TAG of high-PUFA oils are discussed, and the lipase-catalyzed synthetic routes of specific triacylglycerols with sn-2 DHA are summarized. Furthermore, we discuss the recent research progress on the nutritional properties of DHA associated with its positional distribution on TAGs.
Collapse
Affiliation(s)
- Feng Li
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Yiren Zhang
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huidong Huang
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Qingbin Yuan
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Parrish CC. Production, Transport, Fate and Effects of Lipids in the Marine Environment. Mar Drugs 2025; 23:52. [PMID: 39997176 PMCID: PMC11857299 DOI: 10.3390/md23020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Lipids form energy storage depots, cellular barriers and signaling molecules. They are generated and metabolized by enzymes under the influence of biotic and abiotic factors, and some-the long-chain polyunsaturated ω3 and ω6 fatty acids and cholesterol-are essential for optimal health in marine organisms. In addition, lipids have direct and indirect roles in the control of buoyancy in marine fauna ranging from copepods to whales. Phytoplankton account for about half of the planet's carbon fixation, and about half of that carbon goes into lipids. Lipids are an important component of the ocean's ability to sequester carbon away from the atmosphere through sinking and especially after transfer to zooplankton. Phytoplankton are the main suppliers of ω3 polyunsaturated fatty acids (PUFAs) in the marine environment. They also supply cholesterol and many phytosterols to ocean ecosystems; however, genomics is indicating that members of the Cnidaria, Rotifera, Annelida, and Mollusca phyla also have the endogenous capacity for the de novo synthesis of ω3 PUFAs as well as phytosterols. It has been predicted that ω3 long-chain PUFAs will decrease in marine organisms with climate change, with implications for human consumption and for carbon sequestration; however, the responses of ω3 PUFA supply to future conditions are likely to be quite diverse.
Collapse
|
4
|
Jónsdóttir LR, Haraldsson GG. Synthesis of Enantiostructured Triacylglycerols Possessing a Saturated Fatty Acid, a Polyunsaturated Fatty Acid and an Active Drug Intended as Novel Prodrugs. Molecules 2024; 29:5745. [PMID: 39683902 DOI: 10.3390/molecules29235745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
This report describes the asymmetric synthesis of a focused library of enantiopure structured triacylglycerols (TAGs) comprised of a single saturated fatty acid (C6, C8, C10, C12, C14 or C16), a pure bioactive n-3 polyunsaturated fatty acid (EPA or DHA) and a potent drug (ibuprofen or naproxen) intended as a novel type of prodrug. One of the terminal sn-1 or sn-3 positions of the glycerol backbone is occupied with a saturated fatty, the remaining one with a PUFA, and the drug entity is present in the sn-2 position. This was accomplished by a six-step chemoenzymatic approach starting from enantiopure (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. All combinations, a total of 48 such prodrug TAGs, were prepared, isolated and fully characterized, along with 60 acylglycerol intermediates, obtained in very high to excellent yields.
Collapse
Affiliation(s)
- Lena Rós Jónsdóttir
- Science Institute, Chemistry Department, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Gudmundur G Haraldsson
- Science Institute, Chemistry Department, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
5
|
Ali Z, Al-Ghouti MA, Abou-Saleh H, Rahman MM. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar Drugs 2024; 22:446. [PMID: 39452854 PMCID: PMC11509197 DOI: 10.3390/md22100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
Collapse
Affiliation(s)
- Zayana Ali
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad Ahmed Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
6
|
Huang W, Zeng Z, Lang Y, Xiang X, Qi G, Lu G, Yang X. Cannabis Seed Oil Alleviates Experimental Atherosclerosis by Ameliorating Vascular Inflammation in Apolipoprotein-E-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9102-9110. [PMID: 34037390 DOI: 10.1021/acs.jafc.0c07251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent decades, epidemiological, clinical, and experimental studies have demonstrated that a diet with antioxidant or anti-inflammatory function plays a central role in the prevention of atherosclerosis (AS). The purpose of this study was to explore the effects of Cannabis seed oil (CO) administration on in vitro antioxidant capacity as well as blood lipid profiles, lipid peroxidation, inflammatory response, and endothelial cell integrity. Female ApoE-/- mice were fed a high-cholesterol diet and administrated with CO or phosphate-buffered saline (PBS) and seal oil by gavage for 8 weeks. The results show that CO administration reduced the levels of serum triglycerides and low-density lipoprotein cholesterol at week 6. Additionally, a decrease in serum tumor necrosis factor α and nitric oxide was also observed. Moreover, results from CD31 staining and scanning electron microscopy revealed that CO treatment alleviated the endothelial cell damage and lipid deposition induced by a high-cholesterol diet. The ratio of lesion area to the total aorta area was 19.57% for the CO group, which was lower than the PBS control group (24.67%). Collectively, CO exerted anti-atherosclerotic effects by modulating serum lipid profiles and inflammatory responses and improving endothelial cell integrity and arterial lipid deposition. The results provide a promising preventive strategy for the early progression of AS.
Collapse
Affiliation(s)
- Wenjing Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, People's Republic of China
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhujun Zeng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yan Lang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Gan Lu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
7
|
|
8
|
Wang T, Xue C, Zhang T, Wang Y. The improvements of functional ingredients from marine foods in lipid metabolism. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Yang ZH, Emma-Okon B, Remaley AT. Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: a mini review. Lipids Health Dis 2016; 15:201. [PMID: 27876051 PMCID: PMC5120510 DOI: 10.1186/s12944-016-0366-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/09/2016] [Indexed: 01/29/2023] Open
Abstract
Regular fish/fish oil consumption is widely recommended for protection against cardiovascular diseases (CVD). Fish and other marine life are rich sources of the cardioprotective long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (C20:5 n-3; EPA) and docosahexaenoic acid (C22:6 n-3; DHA). The lipid content and fatty acid profile of fish, however, vary greatly among different fish species. In addition to n-3 PUFA, certain fish, such as saury, pollock, and herring, also contain high levels of long-chain monounsaturated fatty acids (LCMUFA), with aliphatic tails longer than 18 C atoms (i.e., C20:1 and C22:1 isomers). Compared with well-studied n-3 PUFA, limited information, however, is available on the health benefits of marine-derived LCMUFA, particularly in regard to CVD. Our objective in this review is to summarize the current knowledge and provide perspective on the potential therapeutic value of dietary LCMUFA-rich marine oil for improving CVD risk factors. We will also review the possible mechanisms of LCMUFA action on target tissues. Finally, we describe the epidemiologic data and small-scaled clinical studies that have been done on marine oils enriched in LCMUFA. Although there are still many unanswered questions about LCMUFA, this appears to be promising new area of research that may lead to new insights into the health benefits of a different component of fish oils besides n-3 PUFA.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA.,Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, 32-3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan
| | - Beatrice Emma-Okon
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892-1666, USA.
| |
Collapse
|
10
|
Gudmundsdottir AV, Hansen KA, Magnusson CD, Haraldsson GG. Synthesis of reversed structured triacylglycerols possessing EPA and DHA at their terminal positions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Wang C, Luo F, Zhou Y, Du X, Shi J, Zhao X, Xu Y, Zhu Y, Hong W, Zhang J. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats. Exp Cell Res 2015; 345:125-33. [PMID: 25849092 DOI: 10.1016/j.yexcr.2015.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 12/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression of androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Fei Luo
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Ying Zhou
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoling Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Magnusson CD, Gudmundsdottir AV, Hansen KA, Haraldsson GG. Synthesis of enantiopure reversed structured ether lipids of the 1-O-alkyl-sn-2,3-diacylglycerol type. Mar Drugs 2015; 13:173-201. [PMID: 25574735 PMCID: PMC4306931 DOI: 10.3390/md13010173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/17/2014] [Indexed: 11/27/2022] Open
Abstract
This report describes the synthesis of reversed structured 1-O-alkyl-2,3-diacyl-sn-glycerols (DAGEs) possessing a pure saturated even number fatty acid (C6:0-C16:0) at the sn-2 position along with a pure EPA or DHA located at the terminal sn-3 position of the glycerol backbone of chimyl, batyl and selachyl alcohols. These adducts were synthesized by a highly efficient two-step chemoenzymatic process involving an immobilized Candida antarctica lipase to introduce pure EPA and DHA activated as oxime esters exclusively to the sn-3 terminal position of enantiopure chimyl, batyl and selachyl alcohols in excellent yields. The saturated fatty acids were subsequently incorporated to the remaining sn-2 position of the resulting 3-monoacylglyceryl ethers (3-MAGEs) using EDAC coupling agent in the presence of DMAP in very high to excellent yields (85%-98%). No losses of enantiomeric composition were observed during these processes. The multiple utilities of the resulting focused library of reversed structured DAGEs are discussed including how such compounds may possibly be utilized within the pharmaceutical area.
Collapse
Affiliation(s)
- Carlos D Magnusson
- Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | - Kai-Anders Hansen
- Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
| | | |
Collapse
|
13
|
Differential effects of triacylglycerol positional isomers containing n-3 series highly unsaturated fatty acids on lipid metabolism in C57BL/6J mice. J Nutr Biochem 2015; 26:57-63. [DOI: 10.1016/j.jnutbio.2014.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/14/2014] [Accepted: 09/10/2014] [Indexed: 11/21/2022]
|
14
|
High-fat diets rich in ω-3 or ω-6 polyunsaturated fatty acids have distinct effects on lipid profiles and lipid peroxidation in mice selected for either high body weight or leanness. Nutrition 2013; 29:765-71. [DOI: 10.1016/j.nut.2012.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/26/2022]
|