1
|
Delvenne A, Vandendriessche C, Gobom J, Burgelman M, Dujardin P, De Nolf C, Tijms BM, Teunissen CE, Schindler SE, Verhey F, Ramakers I, Martinez-Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, De Roeck E, Popp J, Peyratout G, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vandenbroucke RE, Vos SJB. Involvement of the choroid plexus in Alzheimer's disease pathophysiology: findings from mouse and human proteomic studies. Fluids Barriers CNS 2024; 21:58. [PMID: 39020361 PMCID: PMC11256635 DOI: 10.1186/s12987-024-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, USA
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zürich, Zurich, Switzerland
| | | | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, UK
- Johnson and Johnson Medical Ltd., Wokingham, UK
| | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- H. Lundbeck A/S, Valby, Denmark
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
3
|
Israelsen IME, Westgate CSJ, Kamp-Jensen C, Jensen RH, Eftekhari S. Effects of caffeine on intracranial pressure and pain perception in freely moving rats. Headache 2023; 63:1220-1231. [PMID: 37796087 DOI: 10.1111/head.14634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE Caffeine, a non-selective adenosine receptor (AR) antagonist, is the most consumed psychostimulant in the world. Caffeine has been suggested to regulate cerebrospinal fluid secretion and is known both to alleviate and to trigger headache; however, its effect on the regulation of intracranial pressure (ICP) is not known. Therefore, we aimed to investigate the effects of caffeine on ICP and nociceptive responses. METHODS Female Sprague-Dawley rats were implanted with a novel telemetric device for continuous ICP recordings, which allowed for continuous recordings in freely moving rats. A single dose of caffeine (30 or 120 mg/kg intraperitoneally) was given. In a second group (non-implanted), the acute effects of 30 mg/kg caffeine on periorbital threshold using Von Frey testing and spontaneous behavior were utilized using an automated behavioral registration platform (Laboratory, Animal, Behavior, Observation, Registration and Analysis System) in a randomized cross-over study. Quantitative polymerase chain reaction and immunofluorescence were used to localize ARs in the choroid plexus. RESULTS A single dose of 30 mg/kg caffeine lowered the ICP by 35% at 165 min after administration (saline: 0.16 ± 0.9 vs caffeine: -1.18 ± 0.9 ΔmmHg, p = 0.0098) and lasted up to 12 h. Administration of 120 mg/kg caffeine showed a faster onset of decrease in ICP within 15 min by 50% (p = 0.0018) and lasted up to 12 h. The periorbital pain thresholds were higher after 1 h (saline: 224.6 ± 15.1 vs caffeine: 289.5 ± 8.7 g, p = 0.005) and lasted up to 5 h. Caffeine-treated rats had increased locomotor activity, speed, and changed grooming behavior. Expression of AR1 was found in the choroid plexus. CONCLUSIONS This study demonstrates that caffeine has a lowering effect on ICP as an acute treatment. Interestingly, caffeine acutely caused an increased response in cephalic thresholds supporting hypoalgesic effects. Future studies investigating the beneficial effects of caffeine for elevated ICP are warranted.
Collapse
Affiliation(s)
- Ida Marchen Egerod Israelsen
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Connar Stanley James Westgate
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Christina Kamp-Jensen
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Rigmor H Jensen
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Department of Neurology, Danish Headache Center, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
4
|
Tang S, Buchman AS, De Jager PL, Bennett DA, Epstein MP, Yang J. Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia. PLoS Genet 2021; 17:e1009482. [PMID: 33798195 PMCID: PMC8046351 DOI: 10.1371/journal.pgen.1009482] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/14/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Transcriptome-wide association studies (TWAS) have been widely used to integrate transcriptomic and genetic data to study complex human diseases. Within a test dataset lacking transcriptomic data, traditional two-stage TWAS methods first impute gene expression by creating a weighted sum that aggregates SNPs with their corresponding cis-eQTL effects on reference transcriptome. Traditional TWAS methods then employ a linear regression model to assess the association between imputed gene expression and test phenotype, thereby assuming the effect of a cis-eQTL SNP on test phenotype is a linear function of the eQTL's estimated effect on reference transcriptome. To increase TWAS robustness to this assumption, we propose a novel Variance-Component TWAS procedure (VC-TWAS) that assumes the effects of cis-eQTL SNPs on phenotype are random (with variance proportional to corresponding reference cis-eQTL effects) rather than fixed. VC-TWAS is applicable to both continuous and dichotomous phenotypes, as well as individual-level and summary-level GWAS data. Using simulated data, we show VC-TWAS is more powerful than traditional TWAS methods based on a two-stage Burden test, especially when eQTL genetic effects on test phenotype are no longer a linear function of their eQTL genetic effects on reference transcriptome. We further applied VC-TWAS to both individual-level (N = ~3.4K) and summary-level (N = ~54K) GWAS data to study Alzheimer's dementia (AD). With the individual-level data, we detected 13 significant risk genes including 6 known GWAS risk genes such as TOMM40 that were missed by traditional TWAS methods. With the summary-level data, we detected 57 significant risk genes considering only cis-SNPs and 71 significant genes considering both cis- and trans- SNPs, which also validated our findings with the individual-level GWAS data. Our VC-TWAS method is implemented in the TIGAR tool for public use.
Collapse
Affiliation(s)
- Shizhen Tang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Michael P. Epstein
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
6
|
Chen W, Xia X, Song N, Wang Y, Zhu H, Deng W, Kong Q, Pan X, Qin C. Cross-Species Analysis of Gene Expression and Function in Prefrontal Cortex, Hippocampus and Striatum. PLoS One 2016; 11:e0164295. [PMID: 27716781 PMCID: PMC5055290 DOI: 10.1371/journal.pone.0164295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mouse has been extensively used as a tool for investigating the onset and development of human neurological disorders. As a first step to construct a transgenic mouse model of human brain lesions, it is of fundamental importance to clarify the similarity and divergence of genetic background between non-diseased human and mouse brain tissues. Methods We systematically compared, based on large scale integrated microarray data, the transcriptomes of three anatomically distinct brain regions; prefrontal cortex (PFC), hippocampus (HIP) and striatum (STR), across human and mouse. The widely used DAVID web server was used to decipher the biological functions of the highly expressed genes that were identified using a previously reported approach. Venn analysis was used to depict the overlapping ratios of the notably enriched biological process (BP) terms (one-tailed Fisher’s exact test and Benjamini correction; adjusted p < 0.01) between two brain tissues. GOSemSim, an R package, was selected to perform GO semantic similarity analysis. Next, we adjusted signal intensities of orthologous genes by the total signals in all samples within species, and used one minus Pearson’s correlation coefficient to assess the expression distance. Hierarchical clustering and principal component analysis (PCA) were selected for expression pattern analysis. Lineage specific expressed orthologous genes were identified by comparison of the most extreme sub-datasets across species and further verified using reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR). Results We found that the number of the significantly enriched BP terms of the highly expressed genes in human brain regions is larger than that in mouse corresponding brain regions. The mainly involved BP terms in human brain tissues associated with protein-membrane targeting and selenium metabolism are species-specific. The overlapping ratios of all the significantly enriched BP terms between any two brain tissues across species are lower than that within species, but the pairwise semantic similarities are very high between any two brain tissues from either human or mouse. Hierarchical clustering analysis shows the biological functions of the highly expressed genes in brain tissues are more consistent within species than interspecies; whereas it shows the expression patterns of orthologous genes are evidently conserved between human and mouse equivalent brain tissues. In addition, we identified four orthologous genes (COX5B, WIF1, SLC4A10 and PLA2G7) that are species-specific, which have been widely studied and confirmed to be closely linked with neuro- physiological and pathological functions. Conclusion Our study highlights the similarities and divergences in gene function and expression between human and mouse corresponding brain regions, including PFC, HIP and STR.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
| | - Xiayu Xia
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
| | - Nan Song
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
| | - Ying Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
| | - Hua Zhu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
| | - Wei Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
| | - Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
| | - Xianmin Pan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
- Ministry of Education, The Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P.R. China
- * E-mail:
| |
Collapse
|
8
|
González-Marrero I, Giménez-Llort L, Johanson CE, Carmona-Calero EM, Castañeyra-Ruiz L, Brito-Armas JM, Castañeyra-Perdomo A, Castro-Fuentes R. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer's disease. Front Cell Neurosci 2015; 9:17. [PMID: 25705176 PMCID: PMC4319477 DOI: 10.3389/fncel.2015.00017] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/12/2015] [Indexed: 01/10/2023] Open
Abstract
Compromised secretory function of choroid plexus (CP) and defective cerebrospinal fluid (CSF) production, along with accumulation of beta-amyloid (Aβ) peptides at the blood-CSF barrier (BCSFB), contribute to complications of Alzheimer’s disease (AD). The AD triple transgenic mouse model (3xTg-AD) at 16 month-old mimics critical hallmarks of the human disease: β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) with a temporal- and regional- specific profile. Currently, little is known about transport and metabolic responses by CP to the disrupted homeostasis of CNS Aβ in AD. This study analyzed the effects of highly-expressed AD-linked human transgenes (APP, PS1 and tau) on lateral ventricle CP function. Confocal imaging and immunohistochemistry revealed an increase only of Aβ42 isoform in epithelial cytosol and in stroma surrounding choroidal capillaries; this buildup may reflect insufficient clearance transport from CSF to blood. Still, there was increased expression, presumably compensatory, of the choroidal Aβ transporters: the low density lipoprotein receptor-related protein 1 (LRP1) and the receptor for advanced glycation end product (RAGE). A thickening of the epithelial basal membrane and greater collagen-IV deposition occurred around capillaries in CP, probably curtailing solute exchanges. Moreover, there was attenuated expression of epithelial aquaporin-1 and transthyretin (TTR) protein compared to Non-Tg mice. Collectively these findings indicate CP dysfunction hypothetically linked to increasing Aβ burden resulting in less efficient ion transport, concurrently with reduced production of CSF (less sink action on brain Aβ) and diminished secretion of TTR (less neuroprotection against cortical Aβ toxicity). The putative effects of a disabled CP-CSF system on CNS functions are discussed in the context of AD.
Collapse
Affiliation(s)
| | - Lydia Giménez-Llort
- Institute of Neurosciences and Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona Barcelona, Spain
| | - Conrad E Johanson
- Department of Neurosurgery, Alpert Medical School at Brown University Providence, Rhode Island, USA
| | | | | | | | | | - Rafael Castro-Fuentes
- Department of Physiology, School of Medicine, University of La Laguna Tenerife, Spain
| |
Collapse
|