1
|
Nkwelle CE, Stephens U, Liang K, Cassel J, Salvino JM, Montaner LJ, Ndip RN, Esemu SN, Ntie-Kang F, Tietjen I. A high-throughput, microplate reader-based method to monitor in vitro HIV latency reversal in the absence of flow cytometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612557. [PMID: 39314410 PMCID: PMC11418991 DOI: 10.1101/2024.09.11.612557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
J-Lat cells are derivatives of the Jurkat CD4+ T cell line that contain a non-infectious, inducible HIV provirus with a GFP tag. While these cells have substantially advanced our understanding of HIV latency, their use by many laboratories in low and middle-income countries is restricted by limited access to flow cytometry. To overcome this barrier, we describe a modified J-Lat assay using a standard microplate reader that detects HIV-GFP expression following treatment with latency-reversing agents (LRAs). We show that HIV reactivation by control LRAs like prostratin and romidepsin is readily detected with dose dependence and with significant correlation and sensitivity to standard flow cytometry. For example, 10 µM prostratin induced a 20.1 ± 3.3-fold increase in GFP fluorescence in the microplate reader assay, which corresponded to 64.2 ± 5.0% GFP-positive cells detected by flow cytometery. Similarly, 0.3 µM prostratin induced a 1.7 ± 1.2-fold increase compared to 8.7 ± 5.7% GFP-positive cells detected. Using this method, we screen 79 epigenetic modifiers and identify molibresib, quisinostat, and CUDC-101 as novel LRAs. This microplate reader-based method offers accessibility to researchers in resource-limited regions to work with J-Lat cells and more actively participate in global HIV cure research efforts. Highlights J-Lat T-cell lines are important to HIV cure research but require flow cytometryWe describe a method to work with J-Lat cells using a standard microplate readerThis assay can detect control LRAs similar to flow cytometry and discover new LRAsThis assay allows low-resourced laboratories to contribute to HIV cure research.
Collapse
|
2
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
3
|
Elshafae SM, Kohart NA, Breitbach JT, Hildreth BE, Rosol TJ. The Effect of a Histone Deacetylase Inhibitor (AR-42) and Zoledronic Acid on Adult T-Cell Leukemia/Lymphoma Osteolytic Bone Tumors. Cancers (Basel) 2021; 13:cancers13205066. [PMID: 34680215 PMCID: PMC8533796 DOI: 10.3390/cancers13205066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Adult T-cell leukemia (ATL) Leukemia is an aggressive, peripheral blood (T-cell) neoplasm associated with human T-cell leukemia virus type 1 (HTLV-1) infection. Recent studies have implicated dysregulated histone deacetylases in ATL pathogenesis. ATL modulates the bone microenvironment of patients and activates osteoclasts (bone resorbing cells) that cause severe bone loss. The objective of this study was to assess the individual and dual effects of AR-42 (HDACi) and zoledronic acid (Zol) on the growth of ATL cells in vitro and in vivo. AR-42 and Zol reduced the viability of ATL cells in vitro. Additionally, Zol and Zol/AR-42 decreased ATL tumor growth and halted osteolysis in bone tumor xenografts in immunodeficient mice in vivo. Our study suggests that dual targeting of ATL cells (using HDACi) and bone osteoclasts (using bisphosphonates) may be exploited as a valuable approach to reduce bone tumor burden and improve the life quality of ATL patients. Abstract Adult T-cell leukemia/lymphoma (ATL) is an intractable disease affecting nearly 4% of Human T-cell Leukemia Virus Type 1 (HTLV-1) carriers. Acute ATL has a unique interaction with bone characterized by aggressive bone invasion, osteolytic metastasis, and hypercalcemia. We hypothesized that dual tumor and bone-targeted therapies would decrease tumor burden in bone, the incidence of metastasis, and ATL-associated osteolysis. Our goal was to evaluate dual targeting of both ATL bone tumors and the bone microenvironment using an anti-tumor HDACi (AR-42) and an osteoclast inhibitor (zoledronic acid, Zol), alone and in combination. Our results showed that AR-42, Zol, and AR-42/Zol significantly decreased the viability of multiple ATL cancer cell lines in vitro. Zol and AR-42/Zol decreased tumor growth in vivo. Zol ± AR-42 significantly decreased ATL-associated bone resorption and promoted new bone formation. AR-42-treated ATL cells had increased mRNA levels of PTHrP, ENPP2 (autotaxin) and MIP-1α, and TAX viral gene expression. AR-42 alone had no significant effect on tumor growth or osteolysis in mice. These findings indicate that Zol adjuvant therapy has the potential to reduce growth of ATL in bone and its associated osteolysis.
Collapse
Affiliation(s)
- Said M. Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia 13736, Egypt
| | - Nicole A. Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Justin T. Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Blake E. Hildreth
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Thomas J. Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2405
| |
Collapse
|
4
|
Divsalar DN, Simoben CV, Schonhofer C, Richard K, Sippl W, Ntie-Kang F, Tietjen I. Novel Histone Deacetylase Inhibitors and HIV-1 Latency-Reversing Agents Identified by Large-Scale Virtual Screening. Front Pharmacol 2020; 11:905. [PMID: 32625097 PMCID: PMC7311767 DOI: 10.3389/fphar.2020.00905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Current antiretroviral therapies used for HIV management do not target latent viral reservoirs in humans. The experimental “shock-and-kill” therapeutic approach involves use of latency-reversal agents (LRAs) that reactivate HIV expression in reservoir-containing cells, followed by infected cell elimination through viral or host immune cytopathic effects. Several LRAs that function as histone deacetylase (HDAC) inhibitors are reported to reverse HIV latency in cells and in clinical trials; however, none to date have consistently reduced viral reservoirs in humans, prompting a need to identify new LRAs. Toward this goal, we describe here a virtual screening (VS) approach which uses 14 reported HDAC inhibitors to probe PubChem and identifies 60 LRA candidates. We then show that four screening “hits” including (S)-N-Hydroxy-4-(3-methyl-2-phenylbutanamido)benzamide (compound 15), N-(4-Aminophenyl)heptanamide (16), N-[4-(Heptanoylamino)phenyl]heptanamide (17), and 4-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N-(2-hydroxyethyl)butanamide (18) inhibit HDAC activity and/or reverse HIV latency in vitro. This study demonstrates and supports that VS-based approaches can readily identify novel HDAC inhibitors and LRAs, which in turn may help toward inhibitor design and chemical optimization efforts for improved HIV shock-and-kill-based efforts.
Collapse
Affiliation(s)
- Donya Naz Divsalar
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Conrad Veranso Simoben
- Department of Chemistry, University of Buea, Buea, Cameroon.,Instutite of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Cole Schonhofer
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Khumoekae Richard
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Wolfgang Sippl
- Instutite of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fidele Ntie-Kang
- Department of Chemistry, University of Buea, Buea, Cameroon.,Instutite of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
5
|
Curreli F, Ahmed S, Victor SMB, Debnath AK. Identification of Combinations of Protein Kinase C Activators and Histone Deacetylase Inhibitors That Potently Reactivate Latent HIV. Viruses 2020; 12:v12060609. [PMID: 32503121 PMCID: PMC7354613 DOI: 10.3390/v12060609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Combination antiretroviral therapy (cART) is successful in maintaining undetectable levels of HIV in the blood; however, the persistence of latent HIV reservoirs has become the major barrier for a HIV cure. Substantial efforts are underway in finding the best latency-reversing agents (LRAs) to purge the latent viruses from the reservoirs. We hypothesize that identifying the right combination of LRAs will be the key to accomplishing that goal. In this study, we evaluated the effect of combinations of three protein kinase C activators (prostratin, (-)-indolactam V, and TPPB) with four histone deacetylase inhibitors (AR-42, PCI-24781, givinostat, and belinostat) on reversing HIV latency in different cell lines including in a primary CD4+ T-cell model. Combinations including indolactam and TPPB with AR-42 and PCI produced a strong synergistic effect in reactivating latent virus as indicated by higher p24 production and envelope gp120 expression. Furthermore, treatment with TPPB and indolactam greatly downregulated the cellular receptor CD4. Indolactam/AR-42 combination emerged from this study as the best combination that showed a strong synergistic effect in reactivating latent virus. Although AR-42 alone did not downregulate CD4 expression, indolactam/AR-42 showed the most efficient downregulation. Our results suggest that indolactam/AR-42 is the most effective combination, showing a strong synergistic effect in reversing HIV latency combined with the most efficient CD4 downregulation.
Collapse
|
6
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
7
|
Chandra PK, Gerlach SL, Wu C, Khurana N, Swientoniewski LT, Abdel-Mageed AB, Li J, Braun SE, Mondal D. Mesenchymal stem cells are attracted to latent HIV-1-infected cells and enable virus reactivation via a non-canonical PI3K-NFκB signaling pathway. Sci Rep 2018; 8:14702. [PMID: 30279437 PMCID: PMC6168583 DOI: 10.1038/s41598-018-32657-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Persistence of latent HIV-1 in macrophages (MACs) and T-helper lymphocytes (THLs) remain a major therapeutic challenge. Currently available latency reversing agents (LRAs) are not very effective in vivo. Therefore, understanding of physiologic mechanisms that dictate HIV-1 latency/reactivation in reservoirs is clearly needed. Mesenchymal stromal/stem cells (MSCs) regulate the function of immune cells; however, their role in regulating virus production from latently-infected MACs & THLs is not known. We documented that exposure to MSCs or their conditioned media (MSC-CM) rapidly increased HIV-1 p24 production from the latently-infected U1 (MAC) & ACH2 (THL) cell lines. Exposure to MSCs also increased HIV-1 long terminal repeat (LTR) directed gene expression in the MAC and THL reporter lines, U937-VRX and J-Lat (9.2), respectively. MSCs exposed to CM from U1 cells (U1-CM) showed enhanced migratory ability towards latently-infected cells and retained their latency-reactivation potential. Molecular studies showed that MSC-mediated latency-reactivation was dependent upon both the phosphatidyl inositol-3-kinase (PI3K) and nuclear factor-κB (NFκB) signaling pathways. The pre-clinically tested inhibitors of PI3K (PX-866) and NFκB (CDDO-Me) suppressed MSC-mediated HIV-1 reactivation. Furthermore, coexposure to MSC-CM enhanced the latency-reactivation efficacy of the approved LRAs, vorinostat and panobinostat. Our findings on MSC-mediated latency-reactivation may provide novel strategies against persistent HIV-1 reservoirs.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samantha L Gerlach
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chengxiang Wu
- Tulane National Primate Research Center, Covington, LA, USA
| | - Namrata Khurana
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jian Li
- Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Stephen E Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|