1
|
Raish M, Ahmad A, Khan S, Kalam MA. Molecular insights into anti-Protozoal action of natural compounds against Cryptosporidium parvum: a molecular simulation study. J Biomol Struct Dyn 2025; 43:2042-2058. [PMID: 38088773 DOI: 10.1080/07391102.2023.2293277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2025]
Abstract
The current study used the major target protein lactate dehydrogenase Cryptosporidium parvum to identify potential binders. Our approach was a comprehensive three-step screening of 2,569 natural compounds. First, we used molecular docking techniques, followed by an advanced DeepPurpose ML model for virtual screening. The final step involved meticulous re-docking and detailed interaction analysis. The known inhibitor FX11 was considered as a control that was used for comparative analysis. Our screening process led to the identification of three promising compounds: 5353794, 18475114, and 25229652. These compounds were chosen due to their exceptional ability to form hydrogen bonds and their high binding scores with the protein. Here, all three hits showed H-bonds with the functional residues (Asn122 and Thr231) of protein, while 25229652 also showed H-bond with the catalytic site residue (His177). RMSD behaviour reflected stable and consistent complex formation for all the compounds in their last 30 ns trajectories. Principal component analysis (PCA) and free energy landscape (FEL) showed a high frequency of favourable low free energy states. Using the MM/GBSA calculation, compounds 5353794 (ΔGTOTAL = -34.92 kcal/mol) and 18475114 (ΔGTOTAL = -34.66 kcal/mol) had the highest binding affinity with the protein however, 25229652 (ΔGTOTAL = -22.62 kcal/mol) had ΔGTOTAL comparable to the control FX11. These natural compounds not only show the potential for hindering C. parvum lactate dehydrogenase but also open new avenues in its drug development. Their strong binding properties and stable interactions mark them as the prime candidates for further research and experimental validation as anti-cryptosporidiosis agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Dąbrowska J, Sroka J, Cencek T. Investigating Cryptosporidium spp. Using Genomic, Proteomic and Transcriptomic Techniques: Current Progress and Future Directions. Int J Mol Sci 2023; 24:12867. [PMID: 37629046 PMCID: PMC10454211 DOI: 10.3390/ijms241612867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cryptosporidiosis is a widespread disease caused by the parasitic protozoan Cryptosporidium spp., which infects various vertebrate species, including humans. Once unknown as a gastroenteritis-causing agent, Cryptosporidium spp. is now recognized as a pathogen causing life-threatening disease, especially in immunocompromised individuals such as AIDS patients. Advances in diagnostic methods and increased awareness have led to a significant shift in the perception of Cryptosporidium spp. as a pathogen. Currently, genomic and proteomic studies play a main role in understanding the molecular biology of this complex-life-cycle parasite. Genomics has enabled the identification of numerous genes involved in the parasite's development and interaction with hosts. Proteomics has allowed for the identification of protein interactions, their function, structure, and cellular activity. The combination of these two approaches has significantly contributed to the development of new diagnostic tools, vaccines, and drugs for cryptosporidiosis. This review presents an overview of the significant achievements in Cryptosporidium research by utilizing genomics, proteomics, and transcriptomics approaches.
Collapse
Affiliation(s)
- Joanna Dąbrowska
- Department of Parasitology and Invasive Disease, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland (T.C.)
| | | | | |
Collapse
|
3
|
Li DF, Cui ZH, Wang LY, Zhang KH, Cao LT, Zheng SJ, Zhang LX. Tandem mass tag (TMT)-based proteomic analysis of Cryptosporidium andersoni oocysts before and after excystation. Parasit Vectors 2021; 14:608. [PMID: 34922597 PMCID: PMC8683822 DOI: 10.1186/s13071-021-05113-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Cryptosporidium andersoni initiates infection by releasing sporozoites from oocysts through excystation. However, the proteins involved in excystation are unknown. Determining the proteins that participate in the excystation of C. andersoni oocysts will increase our understanding of the excystation process. Methods Cryptosporidium andersoni oocysts were collected and purified from the feces of naturally infected adult cows. Tandem mass tags (TMT), coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS) proteomic analysis, were used to investigate the proteomic expression profiles of C. andersoni oocysts before and after excystation. Results Proteomic analysis identified a total of 1586 proteins, of which 17 were differentially expressed proteins (DEPs) upon excystation. These included 10 upregulated and seven downregulated proteins. The 17 proteins had multiple biological functions associated with control of gene expression at the level of transcription and biosynthetic and metabolic processes. Quantitative real-time RT-PCR of eight selected genes validated the proteomic data. Conclusions This study provides information on the protein composition of C. andersoni oocysts as well as possible excystation factors. The data may be useful in identifying genes for diagnosis, vaccine development, and immunotherapy for Cryptosporidium. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05113-6.
Collapse
Affiliation(s)
- Dong-Fang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan Province, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Zhao-Hui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan Province, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Lu-Yang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan Province, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Kai-Hui Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan Province, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Le-Tian Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan Province, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Shuang-Jian Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan Province, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Long-Xian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan Province, People's Republic of China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450000, Henan Province, People's Republic of China.
| |
Collapse
|
4
|
Hussein EM, El-Gayar EK, Ismail OA, Mokhtar AB, Al-Abbassy MM. Identification of a Cyclospora cayetanensis Oocyst Antigens and Their Validity in the Detection of Immunogenic Patterns of Cyclosporiasis Patients. Acta Parasitol 2021; 66:416-427. [PMID: 33037958 DOI: 10.1007/s11686-020-00289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The diagnosis of cyclosporiasis is currently based on the microscopic detection of oocysts, which may provide invalid results. The availability of simple, objective immunological screening tests would facilitate epidemiological studies of cyclosporiasis. Therefore, the present study aimed to identify the antigens of Cyclospora cayetanensis oocysts and their validity in serodiagnosis. METHODS According to parasitological and molecular diagnoses, three study groups were specified. Group (G) I included 30 patients with cyclosporiasis, GII included 12 patients with other parasitic infections, and GIII included 16 healthy subjects. SDS-PAGE was used to analyse C. cayetanensis antigens, and the validity of western blotting and enzyme-linked immunosorbent assays (ELISAs) was then assessed amongst the sera of all study groups. RESULTS The C. cayetanensis antigenic profile showed eight characteristic bands with molecular weights ranging from 14 to 175 kDa. Western blot analysis of sera revealed 93.3% (28/30 of GI) and 92.8% (26/28 of GII and III) sensitivity and specificity, respectively, dividing the patients in GI into four subgroups. The most frequent diagnostic bands (71.4% of GI sera) showed weights of 26-28 kDa, followed by 71 kDa (53.6%). ELISA sensitivity was 90% (27/30), and specificity was 78.6%. Validation showed perfect agreement between the PCR and western blot results, and ELISA presented substantial agreement with both the PCR and western blot results. CONCLUSIONS Our findings suggest the existence of high immunogenic diversity in C. cayetanensis and indicate that the 26-28 kDa immunogenic groups may potentially be used as a diagnostic marker of cyclosporiasis. Due to the high validity of ELISA, it might be the test of choice for the routine serodiagnosis of cyclosporiasis.
Collapse
Affiliation(s)
- Eman M Hussein
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Eman K El-Gayar
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ola A Ismail
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Amira B Mokhtar
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Maha M Al-Abbassy
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
5
|
Gathercole R, Tranfield E, Xia D, Perez-Cordon G, Robinson G, Timofte D, Zendri F, Chalmers RM. Analysis of Cryptosporidium spp. from clinical samples by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. J Appl Microbiol 2021; 131:1840-1847. [PMID: 33735496 DOI: 10.1111/jam.15077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/03/2023]
Abstract
AIM To purify Cryptosporidium spp. oocysts from clinical stool samples and evaluate using an up-to-date mass spectrometry protocol producing high-quality reference spectra. METHODS AND RESULTS A refined purification protocol was developed for oocysts from stools, involving salt flotation and potassium bromide density centrifugation. Purified oocysts were prepared for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by formic acid extraction, and the extracts analysed using the Bruker MALDI Biotyper system. Individual spectral markers were identified by their specific mass peaks. Cryptosporidium parvum oocysts (Iowa strain) propagated in vivo, and C. parvum (n = 2) and Cryptosporidium hominis (n = 1) oocysts from clinical stool samples produced distinct spectra that were considered specific to Cryptosporidium spp. with no evidence of contamination. CONCLUSIONS The production of distinct spectra demonstrated the utility of the purification method for oocysts from clinical stool samples and provided reference spectra. SIGNIFICANCE AND IMPACT OF THE STUDY The use of MALDI-TOF MS and other mass spectrometry techniques has been limited previously to C. parvum oocysts propagated in vivo. Appropriate purification of oocysts can achieve sufficient biomass, enabling analysis by MALDI-TOF MS and potentially other mass spectrometry platforms, facilitating peptide and protein discovery and identification of biomarkers from a much wider range of Cryptosporidium spp. from natural infections.
Collapse
Affiliation(s)
- R Gathercole
- School of Biomedical, Nutritional and Sport Sciences, School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - E Tranfield
- Bruker Microbiology & Diagnostics, Bruker, Coventry, UK
| | - D Xia
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - G Perez-Cordon
- Cryptosporidium Reference Unit, Public Health Wales Microbiology and Health Protection, Singleton Hospital, Swansea, Wales, UK.,Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | - G Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology and Health Protection, Singleton Hospital, Swansea, Wales, UK.,Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | - D Timofte
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, University of Liverpool, Cheshire, UK
| | - F Zendri
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, University of Liverpool, Cheshire, UK
| | - R M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology and Health Protection, Singleton Hospital, Swansea, Wales, UK.,Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| |
Collapse
|
6
|
Li K, Nader SM, Zhang X, Ray BC, Kim CY, Das A, Witola WH. Novel lactate dehydrogenase inhibitors with in vivo efficacy against Cryptosporidium parvum. PLoS Pathog 2019; 15:e1007953. [PMID: 31356619 PMCID: PMC6687188 DOI: 10.1371/journal.ppat.1007953] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/08/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
Cryptosporidium parvum is a highly prevalent zoonotic and anthroponotic protozoan parasite that causes a diarrheal syndrome in children and neonatal livestock, culminating in growth retardation and mortalities. Despite the high prevalence of C. parvum, there are no fully effective and safe drugs for treating infections, and there is no vaccine. We have previously reported that the bacterial-like C. parvum lactate dehydrogenase (CpLDH) enzyme is essential for survival, virulence and growth of C. parvum in vitro and in vivo. In the present study, we screened compound libraries and identified inhibitors against the enzymatic activity of recombinant CpLDH protein in vitro. We tested the inhibitors for anti-Cryptosporidium effect using in vitro infection assays of HCT-8 cells monolayers and identified compounds NSC158011 and NSC10447 that inhibited the proliferation of intracellular C. parvum in vitro, with IC50 values of 14.88 and 72.65 μM, respectively. At doses tolerable in mice, we found that both NSC158011 and NSC10447 consistently significantly reduced the shedding of C. parvum oocysts in infected immunocompromised mice’s feces, and prevented intestinal villous atrophy as well as mucosal erosion due to C. parvum. Together, our findings have unveiled promising anti-Cryptosporidium drug candidates that can be explored further for the development of the much needed novel therapeutic agents against C. parvum infections. Cryptosporidium parvum is a protozoan parasite that can cause a life-threatening gastrointestinal disease in children and in immunocompromised adults. The only approved drug for treatment of Cryptosporidium infections in humans is nitazoxanide, but it is not effective in immunocompromised individuals or in children with malnutrition. C. parvum possesses a unique lactate dehydrogenase (CpLDH) enzyme that it uses for generating metabolic energy (ATP) via the glycolytic pathway to fuel its growth and proliferation in the host. We have identified novel inhibitors for the enzymatic activity of CpLDH. Further, we have demonstrated that two of the CpLDH inhibitors effectively block the growth, proliferation and pathogenicity of C. parvum at tolerable doses in immunocompromised mice. Together, our findings have unveiled novel CpLDH inhibitors that can be explored for the development of efficacious therapeutic drugs against C. parvum infections.
Collapse
Affiliation(s)
- Kun Li
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sara M. Nader
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xuejin Zhang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Benjamin C. Ray
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Chi Yong Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Aditi Das
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - William H. Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lippuner C, Ramakrishnan C, Basso WU, Schmid MW, Okoniewski M, Smith NC, Hässig M, Deplazes P, Hehl AB. RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites. Int J Parasitol 2018; 48:413-422. [DOI: 10.1016/j.ijpara.2017.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
|
8
|
Zhang X, Kim CY, Worthen T, Witola WH. Morpholino-mediated in vivo silencing of Cryptosporidium parvum lactate dehydrogenase decreases oocyst shedding and infectivity. Int J Parasitol 2018. [PMID: 29530646 PMCID: PMC6018611 DOI: 10.1016/j.ijpara.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An in vivo morpholino-based approach for targeted gene knockdown of genes in Cryptosporidium parvum was developed. Cryptosporidium parvum lactate dehydrogenase, and sporozoite 60K were knocked down sustainably in infected mice. Cryptosporidium parvum lactate dehydrogenase knockdown significantly decreased oocyst shedding and infectivity.
Cryptosporidium is a highly prevalent protozoan parasite that is the second leading cause of childhood morbidity and mortality due to diarrhoea in developing countries, and causes a serious diarrheal syndrome in calves, lambs and goat kids worldwide. Development of fully effective drugs against Cryptosporidium has mainly been hindered by the lack of genetic tools for functional characterization and validation of potential molecular drug targets in the parasite. Herein, we report the development of a morpholino-based in vivo approach for Cryptosporidium parvum gene knockdown to facilitate determination of the physiological roles of the parasite’s genes in a murine model. We show that, when administered intraperitoneally at non-toxic doses, morpholinos targeting C. parvum lactate dehydrogenase (CpLDH) and sporozoite 60K protein (Cp15/60) were able to specifically and sustainably down-regulate the expression of CpLDH and Cp15/60 proteins, respectively, in C. parvum-infected interferon-γ knockout mice. Over a period of 6 days of daily administration of target morpholinos, CpLDH and Cp15/60 proteins were down-regulated by 20- to 50-fold, and 10- to 20-fold, respectively. Knockdown of CpLDH resulted in approximately 80% reduction in oocyst load in the feces of mice, and approximately 70% decrease in infectivity of the sporozoites excysted from the shed oocysts. Cp15/60 knockdown did not affect oocyst shedding nor infectivity but, nevertheless, provided a proof-of-principle for the resilience of the morpholino-mediated C. parvum gene knockdown system in vivo. Together, our findings provide a genetic tool for deciphering the physiological roles of C. parvum genes in vivo, and validate CpLDH as an essential gene for the growth and viability of C. parvum in vivo.
Collapse
Affiliation(s)
- Xuejin Zhang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, USA
| | - Chi Yong Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, USA
| | - Tori Worthen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, USA
| | - William H Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
9
|
Singh P, Mirdha BR, Srinivasan A, Rukmangadachar LA, Singh S, Sharma P, Hariprasad G, Gururao H, Luthra K. Identification of invasion proteins of Cryptosporidium parvum. World J Microbiol Biotechnol 2016; 31:1923-34. [PMID: 26492887 DOI: 10.1007/s11274-015-1936-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/27/2015] [Indexed: 11/27/2022]
Abstract
Host cell interactions and invasion by Cryptosporidium is a complex process mediated by zoites ligand-host cell receptors. Knowledge of proteins involved in this process will enable entry level inhibitors to be tried as therapeutic agents. In the present study, invasion proteins of Cryptosporidium parvum were studied in vitro. Cryptosporidium sporozoites membrane proteins were isolated and Cy5 dye labelled. They were then allowed to interact with the intact host cells. The interacting proteins were identified using 2-dimensional gel electrophoresis followed by mass spectrometry analysis. Sixty-one proteins were identified including twenty-seven previously reported invasion proteins. The newly identified proteins such as serine/threonine protein kinase, PI4 kinase, Hsp105 and coiled coil may have their roles in the parasitic invasion process. Thus, a new approach was used in the study to identify the probable proteins involved in invasion and/or host-parasite interactions. The advantage of this method is that it takes only a months' time instead of decades to identify these proteins involved in invasion process.
Collapse
|
10
|
Arévalo-Herrera M, Lopez-Perez M, Dotsey E, Jain A, Rubiano K, Felgner PL, Davies DH, Herrera S. Antibody Profiling in Naïve and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites. PLoS Negl Trop Dis 2016; 10:e0004563. [PMID: 27014875 PMCID: PMC4807786 DOI: 10.1371/journal.pntd.0004563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acquisition of malaria immunity in low transmission areas usually occurs after relatively few exposures to the parasite. A recent Plasmodium vivax experimental challenge trial in malaria naïve and semi-immune volunteers from Colombia showed that all naïve individuals developed malaria symptoms, whereas semi-immune subjects were asymptomatic or displayed attenuated symptoms. Sera from these individuals were analyzed by protein microarray to identify antibodies associated with clinical protection. METHODOLOGY/PRINCIPAL FINDINGS Serum samples from naïve (n = 7) and semi-immune (n = 9) volunteers exposed to P. vivax sporozoite-infected mosquito bites were probed against a custom protein microarray displaying 515 P. vivax antigens. The array revealed higher serological responses in semi-immune individuals before the challenge, although malaria naïve individuals also had pre-existing antibodies, which were higher in Colombians than US adults (control group). In both experimental groups the response to the P. vivax challenge peaked at day 45 and returned to near baseline at day 145. Additional analysis indicated that semi-immune volunteers without fever displayed a lower response to the challenge, but recognized new antigens afterwards. CONCLUSION Clinical protection against experimental challenge in volunteers with previous P. vivax exposure was associated with elevated pre-existing antibodies, an attenuated serological response to the challenge and reactivity to new antigens.
Collapse
Affiliation(s)
- Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Mary Lopez-Perez
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| | - Emmanuel Dotsey
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Aarti Jain
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Kelly Rubiano
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
| | - Philip L. Felgner
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - D. Huw Davies
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| |
Collapse
|
11
|
Abstract
SUMMARYCryptosporidiumhost cell interaction remains fairly obscure compared with other apicomplexans such asPlasmodiumorToxoplasma. The reason for this is probably the inability of this parasite to complete its life cyclein vitroand the lack of a system to genetically modifyCryptosporidium. However, there is a substantial set of data about the molecules involved in attachment and invasion and about the host cell pathways involved in actin arrangement that are altered by the parasite. Here we summarize the recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics.
Collapse
|