1
|
Morawska-Kozłowska M, Pitas M, Zhalniarovich Y. Mesenchymal Stem Cells in Veterinary Medicine-Still Untapped Potential. Animals (Basel) 2025; 15:1175. [PMID: 40282009 PMCID: PMC12024326 DOI: 10.3390/ani15081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold significant therapeutic potential in veterinary medicine due to their regenerative and immunomodulatory properties. This review examines the clinical applications of MSCs across multiple animal species, including equine, canine, feline, and bovine medicine. MSC therapies have demonstrated promising outcomes in treating musculoskeletal disorders, osteoarthritis, inflammatory diseases, and tissue injuries, particularly in horses and dogs. In cats, MSCs show potential for managing chronic kidney disease, inflammatory bowel disease, and asthma, while in bovine medicine, they offer alternative treatment approaches for mastitis and orthopedic injuries. Despite these advancements, challenges such as treatment standardization, cell sourcing, and potential adverse effects, including tumorigenicity, remain under investigation. The emerging field of MSC-based veterinary medicine highlights its capacity to enhance healing, reduce inflammation, and improve clinical outcomes. However, further research is necessary to optimize treatment protocols and address safety concerns, ensuring the widespread adoption of MSC therapies in veterinary practice.
Collapse
Affiliation(s)
- Magdalena Morawska-Kozłowska
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mateusz Pitas
- Veterinary Polyclinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Yauheni Zhalniarovich
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
2
|
Farag A, Hendawy H, Emam MH, Hasegawa M, Mandour AS, Tanaka R. Stem Cell Therapies in Canine Cardiology: Comparative Efficacy, Emerging Trends, and Clinical Integration. Biomolecules 2025; 15:371. [PMID: 40149907 PMCID: PMC11940628 DOI: 10.3390/biom15030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in dogs, with limited options available for reversing myocardial damage. Stem cell therapies have shown significant potential for cardiac repair, owing to their immunomodulatory, antifibrotic, and regenerative properties. This review evaluates the therapeutic applications of mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue, and Wharton's jelly with a focus on their role in canine cardiology and their immunoregulatory properties. Preclinical studies have highlighted their efficacy in enhancing cardiac function, reducing fibrosis, and promoting angiogenesis. Various delivery methods, including intracoronary and intramyocardial injections, are assessed for their safety and efficacy. Challenges such as low cell retention, differentiation efficiency, and variability in therapeutic responses are also discussed. Emerging strategies, including genetic modifications and combination therapies, aim to enhance the efficacy of MSCs. Additionally, advances in delivery systems and regulatory frameworks are reviewed to support clinical translation. This comprehensive evaluation underscores the potential of stem cell therapies to revolutionize canine cardiovascular disease management while identifying critical areas for future research and clinical integration.
Collapse
Affiliation(s)
- Ahmed Farag
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud H. Emam
- Animal Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mizuki Hasegawa
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Enciso N, Enciso-Benavides J, Sandoval J, Enciso J. In Situ Treatment of Refractory Perianal Fistulas in Dogs with Low-Dose Allogeneic Adipose-Derived Mesenchymal Stem Cells. Animals (Basel) 2024; 14:3300. [PMID: 39595352 PMCID: PMC11591124 DOI: 10.3390/ani14223300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Stem cell therapy in dogs has increased considerably in recent years; however, there are few publications on the treatment of perianal fistulas (PF) in this species. The aim of this open-label clinical trial was to demonstrate the efficacy and safety of a new protocol for the in situ administration of low-dose adipose-derived allogeneic stem cells (ASCs) for the treatment of refractory spontaneous perianal fistula. The methodology consisted of applying one to three doses of 5 × 106 cryopreserved allogeneic ASCs to each fistula. The study was performed in 14 dogs regardless of sex, breed, or age, with a clinical diagnosis of refractory PF. Cells diluted in phosphate-buffered saline were applied to five sites of the PF in an amount of 1 × 106 per application site. Efficacy was determined by the complete closure of the fistula, which was observed in 100% of the cases studied one month after therapy, with a subsequent follow-up of 12 to 48 months after therapy. Furthermore, safety was demonstrated by the absence of local or systemic adverse effects. In conclusion, the protocol used in this work demonstrates the efficacy without adverse effects of the in situ application of low doses of allogeneic ASCs, providing a simple, non-invasive, long-lasting and low-cost therapeutic option.
Collapse
Affiliation(s)
- Nathaly Enciso
- Grupo Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| | - Javier Enciso-Benavides
- Clínica Veterinaria Enciso, Lima 15039, Peru;
- School of Veterinary Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Juan Sandoval
- Facultad de Medicina Veterinaria, Universidad San Luis Gonzaga de Ica, Ica 11770, Peru
| | - Javier Enciso
- Grupo Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| |
Collapse
|
4
|
Jeung SY, An JH, Kim SS, Youn HY. Safety of Gonadal Tissue-Derived Mesenchymal Stem Cell Therapy in Geriatric Dogs with Chronic Disease. Animals (Basel) 2024; 14:2134. [PMID: 39061596 PMCID: PMC11273526 DOI: 10.3390/ani14142134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Ensuring the safety of mesenchymal stem cell (MSC) therapy is a fundamental requirement in clinical practice. This study aimed to assess the safety of using gonadal tissue-derived MSCs (n = 10) compared to the commonly utilized adipose tissue-derived MSCs (n = 9) in geriatric dogs with chronic diseases. All participants received allogeneic MSC therapy, and no allergic reactions due to allogeneic cell immunogenicity were noted. Both groups showed no adverse changes in physical exams or hematological parameters before and after therapy. Importantly, there were no instances of tumor formation or growth post-treatment in either group. The findings demonstrated that dogs treated with gonadal tissue-derived MSCs experienced no clinical adverse effects. However, clinical adverse effects were reported in one case of adipose tissue-derived MSC therapy. Despite limitations in monitoring beyond one year and constraints due to a small and diverse patient group, this pioneering study validates the safe use of gonadal tissue-derived MSCs in aged companion animals. It underscores the potential of utilizing tissues from neutering procedures to advance regenerative medicine and expand cell banks and therapy options for companion animals.
Collapse
Affiliation(s)
- So-Young Jeung
- VIP Animal Medical Center, Seoul 02830, Republic of Korea; (S.-Y.J.); (S.-S.K.)
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Emergency and Critical Care, Department of Veterinary Clinical Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Republic of Korea;
| | - Sung-Soo Kim
- VIP Animal Medical Center, Seoul 02830, Republic of Korea; (S.-Y.J.); (S.-S.K.)
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Jeung S, Kim S, Ah J, Seo S, Jan U, Lee H, Lee JI. Exploring the Tumor-Associated Risk of Mesenchymal Stem Cell Therapy in Veterinary Medicine. Animals (Basel) 2024; 14:994. [PMID: 38612233 PMCID: PMC11010833 DOI: 10.3390/ani14070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Mesenchymal stem cell (MSC) therapy has been actively applied in veterinary regenerative medicine to treat various canine and feline diseases. With increasing emphasis on safe cell-based therapies, evaluations of their tumorigenic potential are in great demand. However, a direct confirmation of whether tumors originate from stem cells or host cells is not easily achievable. Additionally, previous studies evaluating injections of high doses of MSCs into nude mice did not demonstrate tumor formation. Recent research focused on optimizing MSC-based therapies for veterinary patients, such as MSC-derived extracellular vesicles in treating different diseases. This progress also signifies a broader shift towards personalized veterinary medicine, where treatments can be tailored to individual pets based on their unique genetic profiles. These findings related to different treatments using MSCs emphasize their future potential for veterinary clinical applications. In summary, because of lower tumor-associated risk of MSCs as compared to embryonic and induced pluripotent stem cells, MSCs are considered a suitable source for treating various canine and feline diseases.
Collapse
Affiliation(s)
- Soyoung Jeung
- VIP Animal Medical Center, 73, Dongsomun-ro, Seongbuk-gu, Seoul 02830, Republic of Korea; (S.J.); (S.K.); (J.A.); (S.S.)
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungsoo Kim
- VIP Animal Medical Center, 73, Dongsomun-ro, Seongbuk-gu, Seoul 02830, Republic of Korea; (S.J.); (S.K.); (J.A.); (S.S.)
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaegon Ah
- VIP Animal Medical Center, 73, Dongsomun-ro, Seongbuk-gu, Seoul 02830, Republic of Korea; (S.J.); (S.K.); (J.A.); (S.S.)
| | - Sanghyuk Seo
- VIP Animal Medical Center, 73, Dongsomun-ro, Seongbuk-gu, Seoul 02830, Republic of Korea; (S.J.); (S.K.); (J.A.); (S.S.)
| | - Umair Jan
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea;
| | - Hyejin Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Jeong Ik Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea;
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
6
|
Wang Y, Alexander M, Scott T, Cox DCT, Wellington A, Chan MKS, Wong MBF, Adalsteinsson O, Lakey JRT. Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals. Animals (Basel) 2023; 13:2457. [PMID: 37570266 PMCID: PMC10417747 DOI: 10.3390/ani13152457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Stem cell therapy is an attractive treatment for diseases in companion animals that cannot be treated by conventional veterinary medicine practices. The unique properties of stem cells, particularly the ability to differentiate into specific cell types, makes them a focal point in regenerative medicine treatments. Stem cell transplantation, especially using mesenchymal stem cells, has been proposed as a means to treat a wide range of injuries and ailments, resulting in tissue regeneration or repair. This review aims to summarize the veterinary use of stem cells for treating age-related and joint diseases, which are common conditions in pets. While additional research is necessary and certain limitations exist, the potential of stem cell therapy for companion animals is immense.
Collapse
Affiliation(s)
- Yanmin Wang
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA
| | - Todd Scott
- Crestwood Veterinary Clinic, Edmonton, AB T5P 1J9, Canada
| | - Desiree C. T. Cox
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
- Graduate Faculty, School of Graduate Studies, Rutgers University, New Brunswick, NJ 07013, USA
| | | | - Mike K. S. Chan
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
| | | | - Orn Adalsteinsson
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
| | - Jonathan R. T. Lakey
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Herrera D, Lodoso-Torrecilla I, Ginebra MP, Rappe K, Franch J. Osteogenic differentiation of adipose-derived canine mesenchymal stem cells seeded in porous calcium-phosphate scaffolds. Front Vet Sci 2023; 10:1149413. [PMID: 37332740 PMCID: PMC10272761 DOI: 10.3389/fvets.2023.1149413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Engineered bone graft substitutes are a promising alternative and supplement to autologous bone grafts as treatments for bone healing impairment. Advances in human medicine extend an invitation to pursue these biomimetic strategies in animal patients, substantiated by the theory that specialized scaffolds, multipotent cells, and biological cues may be combined into a bioactive implant intended for the enhancement of tissue regeneration. Methods This proof-of-concept study was designed to evaluate and validate the feasibility of beta-tricalcium phosphate foam scaffolds seeded with canine mesenchymal stem cells derived from adipose tissue. Cell-inoculated samples and sham controls were cultured statically for 72 hours in complete growth medium to evaluate seeding capacity, while a subset of loaded scaffolds was further induced with osteogenic culture medium for 21 days. Produced implants were characterized and validated with a combination of immunofluorescence and reflection confocal microscopy, scanning electron microscopy, and polymerase chain reaction to confirm osteogenic differentiation in tridimensional-induced samples. Results After 72 hours of culture, all inoculated scaffolds presented widespread yet heterogeneous surface seeding, distinctively congregating stem cells around pore openings. Furthermore, at 21 days of osteogenic culture conditions, robust osteoblastic differentiation of the seeded cells was confirmed by the change of cell morphology and evident deposition of extra-cellular matrix, accompanied by mineralization and scaffold remodeling; furthermore, all induced cell-loaded implants lost specific stemness immunophenotype expression and simultaneously upregulated genomic expression of osteogenic genes Osterix and Ostecalcin. Conclusions β-TCP bio-ceramic foam scaffolds proved to be suitable carriers and hosts of canine adipose-derived MSCs, promoting not only surface attachment and proliferation, but also demonstrating strong in-vitro osteogenic potential. Although this research provides satisfactory in-vitro validation for the conceptualization and feasibility of a canine bio-active bone implant, further testing such as patient safety, large-scale reproducibility, and quality assessment are needed for regulatory compliance in future commercial clinical applications.
Collapse
Affiliation(s)
- David Herrera
- Bone Regeneration Research Group, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Irene Lodoso-Torrecilla
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Katrin Rappe
- Bone Regeneration Research Group, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi Franch
- Bone Regeneration Research Group, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Punzón E, Salgüero R, Totusaus X, Mesa-Sánchez C, Badiella L, García-Castillo M, Pradera A. Equine umbilical cord mesenchymal stem cells demonstrate safety and efficacy in the treatment of canine osteoarthritis: a randomized placebo-controlled trial. J Am Vet Med Assoc 2022; 260:1947-1955. [PMID: 36198051 DOI: 10.2460/javma.22.06.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To demonstrate the efficacy and safety of mesenchymal stem cells (MSCs) for xenogeneic use with intra-articular administration in dogs with osteoarthritis. ANIMALS 80 client-owned dogs with naturally occurring osteoarthritis in elbow or hip. PROCEDURES A multicentric, double-blinded, parallel, randomized and placebo-controlled clinical trial was performed. After intra-articular injection of equine umbilical cord MSCs, dogs were reexamined at weeks 4, 8, and 12 using a force platform (gait analysis), orthopedic assessment, and validated owner questionnaire. Eighteen months after treatment, a long-term follow-up was done. RESULTS Best results were obtained 8 weeks after treatment, where 63% of the patients showed an improvement in the gait analysis. Also 8 weeks after treatment, 77% of the dogs improved in the orthopedic examination; 65% of the owners considered that the treatment improved their pet's quality of life 8 weeks after treatment. The long-term follow-up revealed that 59% of the owners observed a duration of effect longer than 6 months after a single intra-articular injection of equine umbilical cord MSCs. No systemic or permanent adverse events were detected at any time point. CLINICAL RELEVANCE Results of this study demonstrated the safety and efficacy of intra-articular administration of xenogeneic MSCs for the treatment of canine osteoarthritis.
Collapse
Affiliation(s)
| | - Raquel Salgüero
- 2Departament de Diagnóstico por Imágenes, Hospital Veterinario Veterios, Madrid, Spain.,4VetOracle Teleradiology, Diss, UK
| | | | | | - Llorenç Badiella
- 6Servei d'Estadística Aplicada, Universitat Autònoma de Barcelona, Cerdanyola, Spain.,7Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | | | | |
Collapse
|
9
|
Sharun K, Jambagi K, Kumar R, Gugjoo MB, Pawde AM, Tuli HS, Dhama K, Amarpal. Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. Vet Q 2022; 42:151-166. [PMID: 35841195 PMCID: PMC9364732 DOI: 10.1080/01652176.2022.2102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Adipose tissue-derived stromal vascular fraction (AdSVF) comprises a heterogeneous cell population, including the multipotent mesenchymal stem cells, hematopoietic stem cells, immune cells, endothelial cells, fibroblasts, and pericytes. As such, multipotent adipose tissue-derived mesenchymal stem cells (AdMSCs), are one of the important components of AdSVF. Commonly used techniques to harvest AdSVF involve enzymatic or non-enzymatic methods. The enzymatic method is considered to be the gold standard technique due to its higher yield. The cellular components of AdSVF can be resuspended in normal saline, platelet-rich plasma, or phosphate-buffered saline to produce a ready-to-use solution. Freshly isolated AdSVF has exhibited promising osteogenic and vasculogenic capacity. AdSVF has already been proven to possess therapeutic potential for osteoarthritis management. It is also an attractive therapeutic option for enhancing wound healing. In addition, the combined use of AdSVF and platelet-rich plasma has an additive stimulatory effect in accelerating wound healing and can be considered an alternative to AdMSC treatment. It is also widely used for managing various orthopaedic conditions in clinical settings and has the potential for regenerating bone, cartilage, and tendons. Autologous AdSVF cells are used along with bone substitutes and other biological factors as an alternative to conventional bone grafting techniques owing to their promising osteogenic and vasculogenic capacity. It can also be used for treating osteonecrosis, meniscus tear, chondromalacia, and tendon injuries in veterinary practice. It has several advantages over in vitro expanded AdMSC, including precluding the need for culturing, reduced risk of cell contamination, and cost-effectiveness, making it ideal for clinical use.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Kaveri Jambagi
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir-190006, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| |
Collapse
|
10
|
Isidori M, Corbee RJ, Trabalza-Marinucci M. Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Vet Sci 2022; 9:vetsci9020037. [PMID: 35202290 PMCID: PMC8878421 DOI: 10.3390/vetsci9020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammatory enteropathy (CIE) refers to a heterogeneous group of idiopathic diseases of the dog characterised by persistent gastrointestinal (GI) clinical signs. If conventional dietary treatment alone would be unsuccessful, management of CIE is traditionally attained by the use of pharmaceuticals, such as antibiotics and immunosuppressive drugs. While being rather effective, however, these drugs are endowed with side effects, which may impact negatively on the animal’s quality of life. Therefore, novel, safe and effective therapies for CIE are highly sought after. As gut microbiota imbalances are often associated with GI disorders, a compelling rationale exists for the use of nonpharmacological methods of microbial manipulation in CIE, such as faecal microbiota transplantation and administration of pre-, pro-, syn- and postbiotics. In addition to providing direct health benefits to the host via a gentle modulation of the intestinal microbiota composition and function, these treatments may also possess immunomodulatory and epithelial barrier-enhancing actions. Likewise, intestinal barrier integrity, along with mucosal inflammation, are deemed to be two chief therapeutic targets of mesenchymal stem cells and selected vegetable-derived bioactive compounds. Although pioneering studies have revealed encouraging findings regarding the use of novel treatment agents in CIE, a larger body of research is needed to address fully their mode of action, efficacy and safety.
Collapse
Affiliation(s)
- Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence:
| | - Ronald Jan Corbee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Yalelaan 108, 3584 CM Utrecht, The Netherlands;
| | | |
Collapse
|
11
|
Seo MG, Park S, Han S, Kim AY, Lee EJ, Jeong KS, Hong IH. Long-term treatment of allogeneic adipose-derived stem cells in a dog with rheumatoid arthritis. J Vet Sci 2022; 23:e61. [PMID: 35920125 PMCID: PMC9346526 DOI: 10.4142/jvs.22069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Min-Gyeong Seo
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Seil Park
- Cardiovascular Product Evaluation Center, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Seonyoung Han
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Ah-Young Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Eun-Joo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Kyu-Shik Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Il-Hwa Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
12
|
Graves SS, Storb R. Evolution of haematopoietic cell transplantation for canine blood disorders and a platform for solid organ transplantation. Vet Med Sci 2021; 7:2156-2171. [PMID: 34390541 PMCID: PMC8604109 DOI: 10.1002/vms3.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pre-clinical haematopoietic cell transplantation (HCT) studies in canines have proven to be invaluable for establishing HCT as a highly successful clinical option for the treatment of malignant and non-malignant haematological diseases in humans. Additionally, studies in canines have shown that immune tolerance, established following HCT, enabled transplantation of solid organs without the need of lifelong immunosuppression. This progress has been possible due to multiple biological similarities between dog and mankind. In this review, the hurdles that were overcome and the methods that were developed in the dog HCT model which made HCT clinically possible are examined. The results of these studies justify the question whether HCT can be used in the veterinary clinical practice for more wide-spread successful treatment of canine haematologic and non-haematologic disorders and whether it is prudent to do so.
Collapse
Affiliation(s)
- Scott S Graves
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rainer Storb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
13
|
The One Medicine concept: its emergence from history as a systematic approach to re-integrate human and veterinary medicine. Emerg Top Life Sci 2021; 5:643-654. [PMID: 34355760 PMCID: PMC8718270 DOI: 10.1042/etls20200353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic has resulted in the global recognition for greater inter-disciplinary and multi-disciplinary working, and the need for systematic approaches which recognise the interconnectedness and interactions between human, animal and environmental health. The notion of such a One Team/One science approach is perhaps best exemplified by the One Health concept, a systematic approach which is rapidly entering into the mainstream. However, the concept of One Health, as we presently know it, originated from One Medicine, a notion which is much older and which emerged to promote collaboration between the human and veterinary medicine professions and the allied health/scientific disciplines. Whilst One Medicine is perhaps better known by the veterinary community, some misconceptions of what One Medicine is have arisen. Therefore, this review introduces this emerging concept and how it can help to address overlapping (communicable and non-communicable disease) health challenges faced by both human and veterinary medicine.
Collapse
|