1
|
Gao P, Tian H, Ge K, Wang F, Zhao Y, Sun J, Zhang Q. P4HA1 is highly expressed in gastric cancer and promotes proliferation and metastasis of gastric cancer cells. Discov Oncol 2025; 16:575. [PMID: 40253309 PMCID: PMC12009265 DOI: 10.1007/s12672-025-02337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Gastric cancer (GC), a prevalent aggressive form of tumor, imposes a significant burden in terms of morbidity and mortality. Prolyl 4-hydroxylase, alpha polypeptide I (P4HA1), a key enzyme in collagen synthesis, comprises two identical alpha subunits and two beta subunits. Studies on the expression and impact of P4HA1 in GC cells are limited. METHODS The expression and prognosis of P4HA1 in GC were analyzed using bioinformatics. To confirm the P4HA1 level in GC tissues and cells, Western blot (WB) and RT-qPCR experiments were conducted. The signaling pathways related to P4HA1 in GC were examined using the DAVID database. Moreover, the expression of P4HA1 was downregulated by transfecting GC cell lines (HGC-27 and SGC-7901) with siRNA technology. Furthermore, GC proliferation, migration, and invasion were detected via plate cloning, CCK-8, and Transwell assays. The epithelial-mesenchymal transition (EMT) genes (E-cadherin, N-cadherin, Vimentin) and the stemness marker CD44 protein expression in GC cells were detected using WB. The sphere-forming ability of GC cells was analyzed using a sphere-forming assay to determine the effect of P4HA1. RESULTS Bioinformatics and experimental analyses demonstrated that P4HA1 expression was extensively detected in GC tissues and cells, and strongly related to a poor prognosis for GC. In vitro studies demonstrated that P4HA1 suppression hindered the proliferation, migration, and invasion of GC cells and suppressed EMT characteristics. Both sphere-forming and WB assays revealed that the sphere-forming potential of GC cells and the level of CD44 protein decreased after knocking down the expression of P4HA1, indicating that suppression of P4HA1 could inhibit the stemness of GC cells. CONCLUSION The study concluded that P4HA1 has the potential to be expressed substantially in GC tissues and cells and is capable of enhancing the proliferation, metastasis, and stemness of GC.
Collapse
Affiliation(s)
- PeiYao Gao
- Department of Blood Transfusion, Fuyang Women and Children's Hospital, Fuyang, 236000, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - HengJin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, 233030, China
| | - KunPeng Ge
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, 233030, China
| | - FeiFan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - YanMing Zhao
- Department of Clinical Laboratory, the Second People's Hospital of Bengbu, Bengbu, 233000, China
| | - JiWen Sun
- Department of Blood Transfusion, Fuyang Women and Children's Hospital, Fuyang, 236000, China.
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
| |
Collapse
|
2
|
Chen P, Sharma A, Weiher H, Schmidt-Wolf IGH. Biological mechanisms and clinical significance of endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) in human cancer. J Exp Clin Cancer Res 2024; 43:71. [PMID: 38454454 PMCID: PMC10921667 DOI: 10.1186/s13046-024-02990-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
A firm link between endoplasmic reticulum (ER) stress and tumors has been wildly reported. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α), an ER-resident thiol oxidoreductase, is confirmed to be highly upregulated in various cancer types and associated with a significantly worse prognosis. Of importance, under ER stress, the functional interplay of ERO1α/PDI axis plays a pivotal role to orchestrate proper protein folding and other key processes. Multiple lines of evidence propose ERO1α as an attractive potential target for cancer treatment. However, the unavailability of specific inhibitor for ERO1α, its molecular inter-relatedness with closely related paralog ERO1β and the tightly regulated processes with other members of flavoenzyme family of enzymes, raises several concerns about its clinical translation. Herein, we have provided a detailed description of ERO1α in human cancers and its vulnerability towards the aforementioned concerns. Besides, we have discussed a few key considerations that may improve our understanding about ERO1α in tumors.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359, Rheinbach, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany.
| |
Collapse
|
3
|
Wu M, Li R, Qin J, Wang Z, Guo J, Lv F, Wang G, Huang Y. ERO1α promotes the proliferation and inhibits apoptosis of colorectal cancer cells by regulating the PI3K/AKT pathway. J Mol Histol 2023; 54:621-631. [PMID: 37776473 DOI: 10.1007/s10735-023-10149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/22/2023] [Indexed: 10/02/2023]
Abstract
Endoplasmic reticulum oxidoreductin 1α (ERO1α) is an oxidase that exists in the endoplasmic reticulum and plays an important role in regulating oxidized protein folding and tumor malignant progression. However, the specific role and mechanism of ERO1α in the progression of colorectal cancer (CRC) have not yet been fully elucidated. In this study, 280 specimens of CRC tissues and adjacent noncancerous tissues were collected to detect the expression of ERO1α and analyze the clinical significance. ERO1α was stably knocked-down in RKO and HT29 CRC cells to investigate its function and mechanism in vitro and in vivo. We found that ERO1α was remarkably upregulated in CRC tissues and high ERO1α expression is associated with N stage and poor prognosis of CRC patients. ERO1α knockdown in CRC cells significantly inhibited the proliferation and induced apoptosis while inactivating the PI3K/AKT pathway. Rescue assays revealed that AKT activator 740Y-P could reverse the effects on proliferation and apoptosis of ERO1α knockdown in CRC cells. In vivo tumorigenicity assay also confirmed that ERO1α knockdown suppressed tumor growth. Taken together, our findings demonstrated ERO1α promotes the proliferation and inhibits apoptosis of CRC cells by regulating the PI3K/AKT pathway. High expression of ERO1α is associated with poor prognosis in CRC patients, and ERO1α could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Min Wu
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
- Department of Medical Oncology II, The Third People's Hospital of Honghe Prefecture, Gejiu, Honghe, China
| | - Ruixue Li
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Jianyan Qin
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Ziyuan Wang
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Jiasen Guo
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Fenghong Lv
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Guoqin Wang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China.
| | - Youguang Huang
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China.
| |
Collapse
|
4
|
Zhou X, Yang C, Li Y, Chen D, Wang T, Liu T, Yan W, Su Z, Peng B, Ren X. Cordycepin reprogramming lipid metabolism to block metastasis and EMT via ERO1A/mTOR/SREBP1 axis in cholangiocarcinoma. Life Sci 2023:121698. [PMID: 37080351 DOI: 10.1016/j.lfs.2023.121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Cholangiocarcinoma (CCA) with a high malignancy is usually diagnosed as advanced and is prone to metastasis and leads to a poor prognosis. It is reported that cordycepin has anti-tumor effect. However, the molecular targets and mechanisms of cordycepin in inhibiting CCA metastasis remains unclear. In order to evaluate the therapeutic effect of cordycepin on CCA metastasis, experiments were conducted in vivo and in vitro. The results showed that cordycepin inhibited the migration and EMT progression of HuCCT1 and QBC939 cells. Cordycepin has a strong hypolipidemic effects, therefore, we examined its effect on lipid metabolism in CCA. Cordycepin inhibits SREBP1 mediated fatty acid synthesis through the AKT/mTOR signaling pathway. Meanwhile, cordycepin can reduce ERO1A expression in HuCCT1 and QBC939 cells. ERO1A plays a role in malignant tumors. ERO1A promotes migration and lipid metabolism of CCA cells through AKT/mTOR signaling pathway. In addition, cordycepin significantly inhibited the tumor metastasis and the serum levels of TG and T-CHO in mice. Taken together, we demonstrate that cordycepin mediated ERO1A/mTOR/SREBP1 axis inhibits lipid metabolism and metastasis in CCA cells in vitro and in vivo. These data suggest that cordycepin can be used as a novel drug for the clinical treatment of CCA and to improve the prognosis.
Collapse
Affiliation(s)
- Xuebing Zhou
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Chunyu Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yuan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Dan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Tong Wang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Tesi Liu
- Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Wendi Yan
- Department of Pathology of Jilin Cancer Hospital, Jilin, china
| | - Zhaoxia Su
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Bosen Peng
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China; Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China.
| |
Collapse
|
5
|
Albassam H, Mehta CH, Nayak UY. Identification of novel small molecule inhibitors for endoplasmic reticulum oxidoreductase 1α (ERO1α) enzyme: structure-based molecular docking and molecular dynamic simulation studies. J Biomol Struct Dyn 2022; 40:13218-13232. [PMID: 34606425 DOI: 10.1080/07391102.2021.1984308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle responsible for the folding of proteins. When protein folding demand exceeds the folding capacity, cells trigger ER stress. ER-oxidoreductase 1α (ERO1α) is an ER stress component that controls oxidative folding protein. Upregulation of ERO1α was reported in distinct types of cancer including breast cancer and colon cancer. It was reported that deletion of ERO1 gene compromised cancer progression and cell proliferation in colon cancer. Thereby, ERO1α inhibition might be a clinically promising anti-cancer therapeutic target. In the present study, we conducted a virtual screening of 6,000 natural-product molecules obtained from Zinc database using a multistep docking approach with a crystal structure of human ERO1α. Our analyses from high throughput virtual screening revealed the top-ranked scores of 3000 molecules with glide scores of less than -4.0 kcal/mol. These molecules were further advanced to standard precision (SP) docking. The top 300 molecules of SP docking with glide scores ≤ -7.5 kcal/mol were chosen to undergo extra precision (XP) docking. Around 40 molecules that have conserved interactions with the binding site of ERO1α were ranked by the XP docking. Based on visual inspection, seven-candidate molecules that have high binding affinity scores and more molecular interactions were shortlisted. The dynamic stability of binding between the candidate molecules and ERO1α was characterized using 100 nanoseconds molecular dynamics simulation method. Two candidates exhibited strong and stable binding complexes with ERO1α. Collectively, these findings suggest that the identified molecules may serve as potential anti-cancer lead molecules subjected to further experimental validation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Xie J, Liao G, Feng Z, Liu B, Li X, Qiu M. ERO1L promotes the proliferation and metastasis of lung adenocarcinoma via the Wnt2/β-catenin signaling pathway. Mol Carcinog 2022; 61:897-909. [PMID: 35785492 DOI: 10.1002/mc.23441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE This study aimed to explore the role and underlying mechanism of action of Endoplasmic reticulum oxidoreductin-1 L (ERO1L) in lung adenocarcinoma (LUAD). MATERIALS AND METHODS The Gene expression profiling interactive analysis database was used to analyze the expression of ERO1L in LUAD cases. The expression of ERO1L and Wnt2 in LUAD tissue was evaluated using immunohistochemistry. We also used western blotting to assess the expression of ERO1L or Wnt2 and the phosphorylation of β-catenin in LUAD cell lines. Plasmid transfection and small interfering RNA were used for overexpression and knockdown of ERO1L in LUAD cells, respectively. The proliferation, invasion and migration of LUAD cells were analyzed using cell viability, Transwell invasion and wound healing assays. The growth of LUAD tumors in animal models was assessed using tumor xenograft experiments. RESULTS This study revealed that elevated ERO1L expression was associated with a poor prognosis in LUAD patients. In addition, ERO1L expression was significantly associated with lymph-node metastasis, TNM stage and tumor size. The expression of Wnt2 was positively associated with ERO1L expression in LUAD tissue samples and cell lines. ERO1L overexpression upregulated the expression of Wnt2 and β-catenin phosphorylation in vitro. Additionally, ERO1L was essential for the ubiquitination of Wnt2. Last, ERO1L promoted the proliferation and metastasis of LUAD via the Wnt2 signaling pathway in vitro and in vivo. CONCLUSION These findings suggest that ERO1L was highly expressed in LUAD tissue, and it promoted the proliferation and metastasis of LUAD by activating the Wnt2/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jinbao Xie
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guoliang Liao
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhi Feng
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bo Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xu Li
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Minglian Qiu
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Chen G, Wang Q, Wang K. MicroRNA-218-5p affects lung adenocarcinoma progression through targeting endoplasmic reticulum oxidoreductase 1 alpha. Bioengineered 2022; 13:10061-10070. [PMID: 35441565 PMCID: PMC9161986 DOI: 10.1080/21655979.2022.2063537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LUAD) severely threatens the health of people owing to its lethality. Nonetheless, the underlying mechanisms on LUAD development remain unclear to a great extent. This work aimed to probe the functions of miR-218-5p in LUAD. MiR-218-5p and endoplasmic reticulum oxidoreductase 1 alpha (ERO1A) were screened as differently downregulated and upregulated RNAs in LUAD, respectively, by bioinformatics analyses. The results of cell functional assays stated that enforced expression of miR-218-5p notably restrained cell viability, invasion, and migration in LUAD. MiR-218-5p may interact with 3’-untranslated region of ERO1A mRNA as analyzed by bioinformatics. Afterward, western blot and dual-luciferase reporter gene analyses were introduced to identify their interaction. ERO1A overexpression reversed the suppressive impacts of miR-218-5p on LUAD cell progression, indicating the implication of miR-218-5p/ERO1A axis in suppressing cancer development. We also observed that this regulatory axis suppressed angiogenesis in LUAD. Taken together, miR-218-5p/ERO1A axis exerted an imperative role in LUAD cell progression, which provides a valuable clue for the development of LUAD therapeutic regimen.
Collapse
Affiliation(s)
- Gang Chen
- Internal Medicine-oncology, The First People's Hospital Of Jiashan, Jiaxing, China
| | - Qihao Wang
- Department of Clinical Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Kunyu Wang
- Surgery, Taizhou First People's HospitalDepartment of Cardio-Thoracic, Taizhou, China
| |
Collapse
|
8
|
Huang D, Li C. circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis. Oncol Lett 2021; 22:795. [PMID: 34584570 PMCID: PMC8461755 DOI: 10.3892/ol.2021.13056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circ) have been reported to serve crucial roles in the regulation of cancer occurrence and development. The present study aimed to investigate the role of circ-acetyl-CoA carboxylase α (ACACA) in the progression of cervical cancer (CC). The expression levels of circ-ACACA in several CC cell lines were first determined using reverse transcription-quantitative PCR. circ-ACACA expression was subsequently knocked down to evaluate its effects on the viability, proliferation, apoptosis, invasion and migration of CC cells using MTT, colony formation, TUNEL, transwell and wound healing assays, respectively. 13C-labeling of intracellular metabolites and analysis of glucose consumption and lactate production were performed to determine the levels of glycolysis. In addition, the expression levels of endoplasmic reticulum oxidoreductase 1α (ERO1α; ERO1A) and glycolysis-related proteins were analyzed using western blotting. The binding interactions among circ-ACACA, microRNA (miR)-582-5p and ERO1A were validated using dual-luciferase reporter assays. Subsequently, rescue experiments were performed to determine the potential underlying mechanism by which circ-ACACA affected CC cell functions. The results revealed that circ-ACACA expression was significantly upregulated in CC cells and silencing of circ-ACACA significantly reduced the proliferation, invasion and migration, and promoted the apoptosis of CC cells. Knockdown of circ-ACACA markedly inhibited glycolysis in CC cells. However, the effects of silencing of circ-ACACA on CC cells were reversed following transfection with the miR-582-5p inhibitor or pcDNA3.1-ERO1A overexpression plasmid. In conclusion, to the best of our knowledge, the present study was the first to investigate the role of circ-ACACA in CC progression. The results suggested that circ-ACACA may promote CC tumorigenesis and glycolysis by targeting the miR-582-5p/ERO1A signaling axis. Therefore, circ-ACACA may be a promising biomarker for CC diagnosis and treatment.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Gynecology and Obstetrics, Inner Mongolia Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Cuimei Li
- Department of Gynecology and Obstetrics, Xi'An Fifth Hospital, Xi'An, Shaanxi 710000, P.R. China
| |
Collapse
|
9
|
Akshatha C, Bhat S, Sindhu R, Shashank D, Rose Sommano S, Tapingkae W, Cheewangkoon R, Prasad SK. Current therapeutic options for gastric adenocarcinoma. Saudi J Biol Sci 2021; 28:5371-5378. [PMID: 34466117 PMCID: PMC8381031 DOI: 10.1016/j.sjbs.2021.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer inflicts significant health issues globally despite its declining incidence. The disease is known to be diagnosed at its advanced stages also corresponding with a poor prognosis for patients. The integral therapeutic choices to cure advanced gastric cancer have progressed swiftly in modern days. The preface of molecularly targeted therapeutic techniques would potentiate the personalized approach depending on patient-specific and tumor-specific features, exasperating the advantages of chemotherapy. Here we have reviewed the modern therapeutics such as immune therapy, chemotherapy, m-RNA based therapeutics, alongside evaluating the influence of age, sex and comorbidities-like factors on the occurrence of gastric cancer. Gastric cancer therapy consolidated target agents comprising inhibitors of programmed death-1(PD-1), human epidermal growth factor receptor 2 (HER2), mRNA, and epidermal growth factor receptor (EPGF). A combination of trastuzumab to platinum-mediated chemotherapy evolved has a typical front-line therapy in advanced gastric cancer. An attempt has been made to epitomize the contemporary-modern research on targeted therapy for advanced gastric cancer.
Collapse
Affiliation(s)
- C.R. Akshatha
- Department of Zoology, Central University of Kerala, Kasargod, Kerala, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| | - R. Sindhu
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| | - Dharini Shashank
- Department of Burns, Plastic and Maxillofacial Surgery, VMMC and Safdarjung Hospital, New Delhi, India
| | - Sarana Rose Sommano
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchadawan Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Corresponding authors at: Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Thailand (R. Cheewangkoon).
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
- Corresponding authors at: Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Thailand (R. Cheewangkoon).
| |
Collapse
|
10
|
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies. The high mortality rate of PC largely results from delayed diagnosis and early metastasis. Therefore, identifying novel treatment targets for patients with PC is urgently required to improve survival rates. A major barrier to successful treatment of PC is the presence of a hypoxic tumor microenvironment, which is associated with poor prognosis, treatment resistance, increased invasion and metastasis. Recent studies have identified a number of novel molecules and pathways in PC cells that promote cancer cells progression under hypoxic conditions, which may provide new therapy strategies to inhibit the development and metastasis of PC. This review summarizes the latest research of hypoxia in PC and provides an overview of how the current therapies have the capacity to overcome hypoxia and improve PC patient treatment. These findings will eventually provide guidance for future PC management and clinical trials and hopefully improve the survival of patients with PC.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
11
|
ERO1L promotes IL6/sIL6R signaling and regulates MUC16 expression to promote CA125 secretion and the metastasis of lung cancer cells. Cell Death Dis 2020; 11:853. [PMID: 33056994 PMCID: PMC7560734 DOI: 10.1038/s41419-020-03067-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
The abnormal secretion of CA125, a classic tumor marker, is usually related to a poor prognosis in various tumors. Thus, this study aimed to explore the potential mechanisms that promote CA125 secretion in lung cancer. By querying the database, the gene endoplasmic reticulum oxidoreductase 1L (ERO1L) was identified and chosen as the research subject. The antibody chips were used to screen the lung cancer cell supernatant and found that the most obvious secreted protein was CA125. ERO1L was found to promote the secretion of IL6R by affecting the formation of disulfide bonds. IL6R bound to IL6 and triggered the activation of the NF-κB signaling pathway. Then, NF-κB bound to the promoter of MUC16, resulting in overexpression of MUC16. The extracellular segment of MUC16 was cleaved to form CA125, while the C terminus of MUC16 promoted the EMT phenotype and the release of IL6, forming a positive feedback pathway. In conclusion, ERO1L might affect the secretion of CA125 through the IL6 signaling pathway and form a positive feedback loop to further promote the development of lung cancer. This might expand the application scope of CA125 in lung cancer.
Collapse
|
12
|
Shi X, Wu J, Liu Y, Jiang Y, Zhi C, Li J. ERO1L promotes NSCLC development by modulating cell cycle-related molecules. Cell Biol Int 2020; 44:2473-2484. [PMID: 32841447 PMCID: PMC7692932 DOI: 10.1002/cbin.11454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022]
Abstract
Lung cancer is the leading cause of cancer‐related death worldwide. Previous studies revealed that endoplasmic reticulum oxidoreductase 1 alpha (ERO1L) played critical roles in the malignant behaviors of several cancer types, but its role in non‐small cell lung cancer (NSCLC) remained unclear. In this study, we identified 26 upregulated and 102 downregulated genes in NSCLC using bioinformatics analyses, and these genes were enriched in the biological processes of the cell cycle. ERO1L was remarkably upregulated in NSCLC and overexpression of ERO1L was associated with poor prognosis of NSCLC. ERO1L deficiency markedly suppressed NSCLC cell proliferation, colony formation, migration, and invasion. ERO1L depletion caused a dramatically decreased expression of cell cycle‐related factors in NSCLC cells. Collectively, our data validated that ERO1L could function as a tumor promoter in NSCLC, indicating the potential of targeting ERO1L for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiujuan Shi
- Tongji University School of Medicine, Shanghai, China
| | - Jiawen Wu
- Tongji University School of Medicine, Shanghai, China
| | - Yi Liu
- Tongji University School of Medicine, Shanghai, China
| | - Yuxiong Jiang
- Tongji University School of Medicine, Shanghai, China
| | | | - Jue Li
- Tongji University School of Medicine, Shanghai, China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of The Ministry of Education of China, Tongji University School of Medicine, Shanghai, China.,Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Zhang J, Yang J, Lin C, Liu W, Huo Y, Yang M, Jiang SH, Sun Y, Hua R. Endoplasmic Reticulum stress-dependent expression of ERO1L promotes aerobic glycolysis in Pancreatic Cancer. Am J Cancer Res 2020; 10:8400-8414. [PMID: 32724477 PMCID: PMC7381747 DOI: 10.7150/thno.45124] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Endoplasmic reticulum oxidoreductase 1 alpha (ERO1L) is an endoplasmic reticulum (ER) luminal glycoprotein that has a role in the formation of disulfide bonds of secreted proteins and membrane proteins. Emerging data identify ERO1L as a tumor promoter in a wide spectrum of human malignancies. However, its molecular basis of oncogenic activities remains largely unknown. Methods: Pan-cancer analysis was performed to determine the expression profile and prognostic value of ERO1L in human cancers. The mechanism by which ERO1L promotes tumor growth and glycolysis in pancreatic ductal adenocarcinoma (PDAC) was investigated by cell biological, molecular, and biochemical approaches. Results: ERO1L was highly expressed in PDAC and its precursor pancreatic intraepithelial neoplasia and acts as an independent prognostic factor for patient survival. Hypoxia and ER stress contributed to the overexpression pattern of ERO1L in PDAC. ERO1L knockdown or pharmacological inhibition with EN460 suppressed PDAC cell proliferation in vitro and slowed tumor growth in vivo. Ectopic expression of wild type ERO1L but not its inactive mutant form EROL-C394A promoted tumor growth. Bioinformatics analyses and functional analyses confirmed a regulatory role of ERO1L on the Warburg effect. Notably, inhibition of tumor glycolysis partially abrogated the growth-promoting activity of ERO1L. Mechanistically, ERO1L-mediated ROS generation was essential for its oncogenic activities. In clinical samples, ERO1L expression was correlated with the maximum standard uptake value (SUVmax) in PDAC patients who received 18F-FDG PET/CT imaging preoperatively. Analysis of TCGA cohort revealed a specific glycolysis gene expression signature that is highly correlated with unfolded protein response-related gene signature. Conclusion: Our findings uncover a key function for ERO1L in Warburg metabolism and indicate that targeting this pathway may offer alternative therapeutic strategies for PDAC.
Collapse
|
14
|
Tao Q, Zhu W, Zhao X, Li M, Shu Y, Wang D, Li X. Perineural Invasion and Postoperative Adjuvant Chemotherapy Efficacy in Patients With Gastric Cancer. Front Oncol 2020; 10:530. [PMID: 32373527 PMCID: PMC7186485 DOI: 10.3389/fonc.2020.00530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose: There is currently a lack of validated predictors for adjuvant chemotherapy efficacy in patients with gastric cancer (GC). Perineural invasion (PNI) is the process of neoplastic invasion of the nerves, accompanied by tumor microenvironment (TME) changes. TME can determine treatment outcome while the impact of PNI on chemotherapy efficacy remains unknown in GC. We investigated the association between PNI and the efficacy of postoperative adjuvant chemotherapy in patients with resected GC. Methods: Patients who underwent radical resection of stage IB-III GC with or without fluoropyrimidine (FU)-based adjuvant chemotherapy were retrospectively selected from two separate patient cohorts. PNI was confirmed with S100 immunohistochemistry (IHC). Tumor hypoxia and activity of selected pathways were quantified by mRNA-based signature scoring based on publicly available data. A hypoxia biomarker, ERO1A, and a FU resistance biomarker, thymidylate synthase (TS), were assessed by IHC, respectively. Results: Two cohorts included 223 and 599 patients, respectively. Adjuvant chemotherapy significantly improved overall survival (OS) and disease-free survival (DFS) in PNI-positive but not in PNI-negative patients, which was not impacted by stages. Multivariate models showed that adjuvant chemotherapy was an independent predictor for OS and DFS in PNI-positive patients in both cohorts. For TME, PNI-negative tumors were more hypoxic than were PNI-positive tumors, and displayed relative up-regulation of signaling along the pathways that are important in FU metabolism or resistance. Expressions of ERO1A and TS significantly decreased in PNI-positive compared to PNI-negative tumors. Conclusions: PNI might help predict adjuvant chemotherapy benefit in patients with resected GC. Validation in prospective studies is required. Novel treatment strategies need to be developed in PNI-negative patients.
Collapse
Affiliation(s)
- Qing Tao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Zhu
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaohui Zhao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongqian Shu
- Department of Medical Oncology, Jiangsu Province Hospital, Nanjing, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Shergalis AG, Hu S, Bankhead A, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther 2020; 210:107525. [PMID: 32201313 DOI: 10.1016/j.pharmthera.2020.107525] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.
Collapse
Affiliation(s)
- Andrea G Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States
| | - Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States.
| |
Collapse
|
16
|
Song Z, Pearce MC, Jiang Y, Yang L, Goodall C, Miranda CL, Milovancev M, Bracha S, Kolluri SK, Maier CS. Delineation of hypoxia-induced proteome shifts in osteosarcoma cells with different metastatic propensities. Sci Rep 2020; 10:727. [PMID: 31959767 PMCID: PMC6971036 DOI: 10.1038/s41598-019-56878-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone cancer in children and young adults. Solid tumors are characterized by intratumoral hypoxia, and hypoxic cells are associated with the transformation to aggressive phenotype and metastasis. The proteome needed to support an aggressive osteosarcoma cell phenotype remains largely undefined. To link metastatic propensity to a hypoxia-induced proteotype, we compared the protein profiles of two isogenic canine OS cell lines, POS (low metastatic) and HMPOS (highly metastatic), under normoxia and hypoxia. Label-free shotgun proteomics was applied to comprehensively characterize the hypoxia-responsive proteome profiles in the OS cell phenotypes. Hypothesis-driven parallel reaction monitoring was used to validate the differential proteins observed in the shotgun data and to monitor proteins of which we expected to exhibit hypoxia responsiveness, but which were absent in the label-free shotgun data. We established a "distance" score (|zHMPOS - zPOS|), and "sensitivity" score (|zHypoxia - zNormoxia) to quantitatively evaluate the proteome shifts exhibited by OS cells in response to hypoxia. Evaluation of the sensitivity scores for the proteome shifts observed and principal component analysis of the hypoxia-responsive proteins indicated that both cell types acquire a proteome that supports a Warburg phenotype with enhanced cell migration and proliferation characteristics. Cell migration and glucose uptake assays combined with protein function inhibitor studies provided further support that hypoxia-driven adaption of pathways associated with glycolytic metabolism, collagen biosynthesis and remodeling, redox regulation and immunomodulatory proteins typify a proteotype associated with an aggressive cancer cell phenotype. Our findings further suggest that proteins involved in collagen remodeling and immune editing may warrant further evaluation as potential targets for anti-metastatic treatment strategies in osteosarcoma.
Collapse
Affiliation(s)
- Zifeng Song
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Martin C Pearce
- Department of Environmental & Molecular Toxicology, Oregon State University, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Oregon, USA
| | - Liping Yang
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Cheri Goodall
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | | | - Milan Milovancev
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | - Shay Bracha
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | - Siva K Kolluri
- Department of Environmental & Molecular Toxicology, Oregon State University, Oregon, USA
- Linus Pauling Institute, Oregon State University, Oregon, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Oregon, USA.
- Linus Pauling Institute, Oregon State University, Oregon, USA.
| |
Collapse
|
17
|
Li L, Yin X, Meng H, Hu J, Yu Z, Xu J. Increased Progastrin-Releasing Peptide Expression is Associated with Progression in Gastric Cancer Patients. Yonsei Med J 2020; 61:15-19. [PMID: 31887795 PMCID: PMC6938777 DOI: 10.3349/ymj.2020.61.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The purpose of this study was to assess the diagnostic and prognostic value of serum progastrin-releasing peptide (ProGRP) in patients with gastric cancer (GC). MATERIALS AND METHODS A total of 150 patients with GC (89 males and 61 females) were recruited, including those with stage I (n=28), stage II (n=33), stage III (n=50), and stage IV (n=39) disease; 50 healthy controls and 66 patients with benign gastric diseases were also enrolled. Levels of serum ProGRP, carcinoembryonic antigen (CEA), and carbohydrate antigen 72-4 (CA72-4) were measured in all subjects. RESULTS Serum ProGRP levels were significantly higher in GC patients than in controls (p<0.001), and ProGRP was significantly correlated with tumor size, tumor node metastasis stage, differentiation, invasion depth, and lymph node metastasis (p< 0.005). ProGRP levels were significantly decreased after chemotherapy (p<0.001). Receiver operating characteristic curves revealed a sensitivity and specificity for serum ProGRP in GC of 85.9% and 81.2%, respectively. ProGRP levels were positively correlated with CA72-4 and CEA (r=0.792 and 0.688, p<0.05, respectively). Combined detection of ProGRP, CEA, and CA72-4 showed the best diagnostic power for GC. CONCLUSION ProGRP may be useful as a potential biomarker for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Li Li
- Department of Clinical Laboratory, Binhai County People's Hospital, Jiangsu, China.
| | - Xiaodong Yin
- Department of Medical Oncology, Binhai County People's Hospital, Jiangsu, China
| | - Hai Meng
- Department of Gastroenterology, Binhai County People's Hospital, Jiangsu, China
| | - Juanyu Hu
- Department of Clinical Laboratory, Binhai County Second Hospital, Jiangsu, China
| | - Zhengqing Yu
- Department of Clinical Laboratory, Binhai County People's Hospital, Jiangsu, China
| | - Jianyong Xu
- Department of Clinical Laboratory, Binhai County People's Hospital, Jiangsu, China
| |
Collapse
|
18
|
Li X, Li Y, Jiang C, Chen L, Gan N. MicroRNA-144-3p Inhibits Tumorigenesis of Oral Squamous Cell Carcinoma by downregulating ERO1L. J Cancer 2020; 11:759-768. [PMID: 31942199 PMCID: PMC6959053 DOI: 10.7150/jca.33267] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/07/2019] [Indexed: 02/02/2023] Open
Abstract
An increasing number of studies indicate that miR-144-3p is dysregulated in numerous cancers, but its role in oral squamous cell carcinoma (OSCC) remains largely unknown. Herein we demonstrated that miR-144-3p expression was significantly downregulated in OSCC tissues and cell lines. Moreover, the low level of miR-144-3p expression was associated with the clinical characteristics of OSCC patients. Furthermore, ectopic expression of miR-144-3p inhibited the proliferation, migration, and invasion of OSCC cells in vitro, and blunted the tumorigenic ability of OSCC cells in vivo. Additionally, the levels of miR-144-3p were negatively correlated with the expression status of endoplasmic reticulum oxidoreduction-1-like (ERO1L) in OSCC cell lines. Subsequently, we identified that ERO1L was a direct target of miR-144-3p. Intriguingly, we found that miR-144-3p downregulation of ERO1L inhibited the activity of signal transducer and activator of transcription 3 (STAT3) in OSCC cells. Therefore, miR-144-3p suppresses tumorigenesis by targeting ERO1L/STAT3 signaling pathway in OSCC. miR-144-3p may a candidate target for OSCC treatment.
Collapse
Affiliation(s)
- Xian Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yong Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chao Jiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liang Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ning Gan
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
19
|
Sicari D, Igbaria A, Chevet E. Control of Protein Homeostasis in the Early Secretory Pathway: Current Status and Challenges. Cells 2019; 8:E1347. [PMID: 31671908 PMCID: PMC6912474 DOI: 10.3390/cells8111347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
: Discrimination between properly folded proteins and those that do not reach this state is necessary for cells to achieve functionality. Eukaryotic cells have evolved several mechanisms to ensure secretory protein quality control, which allows efficiency and fidelity in protein production. Among the actors involved in such process, both endoplasmic reticulum (ER) and the Golgi complex play prominent roles in protein synthesis, biogenesis and secretion. ER and Golgi functions ensure that only properly folded proteins are allowed to flow through the secretory pathway while improperly folded proteins have to be eliminated to not impinge on cellular functions. Thus, complex quality control and degradation machineries are crucial to prevent the toxic accumulation of improperly folded proteins. However, in some instances, improperly folded proteins can escape the quality control systems thereby contributing to several human diseases. Herein, we summarize how the early secretory pathways copes with the accumulation of improperly folded proteins, and how insufficient handling can cause the development of several human diseases. Finally, we detail the genetic and pharmacologic approaches that could be used as potential therapeutic tools to treat these diseases.
Collapse
Affiliation(s)
- Daria Sicari
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Aeid Igbaria
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Eric Chevet
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| |
Collapse
|
20
|
Gupta N, Park JE, Tse W, Low JK, Kon OL, McCarthy N, Sze SK. ERO1α promotes hypoxic tumor progression and is associated with poor prognosis in pancreatic cancer. Oncotarget 2019; 10:5970-5982. [PMID: 31666928 PMCID: PMC6800261 DOI: 10.18632/oncotarget.27235] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is a leading cause of mortality worldwide due to the difficulty of detecting early-stage disease and our poor understanding of the mediators that drive progression of hypoxic solid tumors. We therefore used a heavy isotope 'pulse/trace' proteomic approach to determine how hypoxia (Hx) alters pancreatic tumor expression of proteins that confer treatment resistance, promote metastasis, and suppress host immunity. Using this method, we identified that hypoxia stress stimulates pancreatic cancer cells to rapidly translate proteins that enhance metastasis (NOTCH2, NCS1, CD151, NUSAP1), treatment resistance (ABCB6), immune suppression (NFIL3, WDR4), angiogenesis (ANGPT4, ERO1α, FOS), alter cell metabolic activity (HK2, ENO2), and mediate growth-promoting cytokine responses (CLK3, ANGPTL4). Database mining confirmed that elevated gene expression of these hypoxia-induced mediators is significantly associated with poor patient survival in various stages of pancreatic cancer. Among these proteins, the oxidoreductase enzyme ERO1α was highly sensitive to induction by hypoxia stress across a range of different pancreatic cancer cell lines and was associated with particularly poor prognosis in human patients. Consistent with these data, genetic deletion of ERO1α substantially reduced growth rates and colony formation by pancreatic cancer cells when assessed in a series of functional assays in vitro. Accordingly, when transferred into a mouse xenograft model, ERO1α-deficient tumor cells exhibited severe growth restriction and negligible disease progression in vivo. Together, these data indicate that ERO1α is potential prognostic biomarker and novel drug target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Nikhil Gupta
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Wilford Tse
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jee Keem Low
- Department of Surgery, Tan Tock Seng Hospital, Singapore
| | - Oi Lian Kon
- National Cancer Centre Singapore, Division of Medical Sciences, Singapore
| | - Neil McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
21
|
ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6175804. [PMID: 31467634 PMCID: PMC6701375 DOI: 10.1155/2019/6175804] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are by-products of normal cell activity. They are produced in many cellular compartments and play a major role in signaling pathways. Overproduction of ROS is associated with the development of various human diseases (including cancer, cardiovascular, neurodegenerative, and metabolic disorders), inflammation, and aging. Tumors continuously generate ROS at increased levels that have a dual role in their development. Oxidative stress can promote tumor initiation, progression, and resistance to therapy through DNA damage, leading to the accumulation of mutations and genome instability, as well as reprogramming cell metabolism and signaling. On the contrary, elevated ROS levels can induce tumor cell death. This review covers the current data on the mechanisms of ROS generation and existing antioxidant systems balancing the redox state in mammalian cells that can also be related to tumors.
Collapse
|
22
|
Yan W, Wang X, Liu T, Chen L, Han L, Xu J, Jin G, Harada K, Lin Z, Ren X. Expression of endoplasmic reticulum oxidoreductase 1-α in cholangiocarcinoma tissues and its effects on the proliferation and migration of cholangiocarcinoma cells. Cancer Manag Res 2019; 11:6727-6739. [PMID: 31410063 PMCID: PMC6650092 DOI: 10.2147/cmar.s188746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract Endoplasmic reticulum oxidoreductase 1-α (ERO1A) is a kind of hypoxia-induced endoplasmic reticulum oxidase that regulates translation and folding of oxidized proteins. This study aimed to explore the clinicopathological significance of ERO1A and the effect on the biological behavior of cholangiocarcinoma (CCA) cells. Methods Immunohistochemical staining was used to detect the expression of ERO1A, carcinoembryonic antigen (CEA), and carbohydrate antigen 19–9 (CA19-9) in cholangiocarcinoma. Immunofluorescence staining was performed to detect the subcellular localization of ERO1A in CCA cells. The expression of ERO1A in CAA cells after depletion or overexpression was verified by Western blot assay. Then, the effect of ERO1A on proliferation in CCA cells was verified by MTT assay and colony formation assay. Wound healing assays and migration assays were performed to detect the effect of ERO1A on cell migration ability. Finally, we explored the role of ERO1A in EMT and Akt/mTOR signaling pathway. Results In this study, our data demonstrated that ERO1A, CEA, and CA19-9 were expressed in cholangiocarcinoma tissues, and the positive rates were 95%, 95%, and 55%, respectively. The high expression of ERO1A is associated with clinical stage and pathological stage of CCA. In vitro data indicate that deletion of ERO1A can inhibit the proliferation and migration of CCA cells and vice versa. In addition, ERO1A has been shown to be closely related to EMT and Akt/mTOR pathways. Conclusion In summary, we found that high expression of ERO1A is associated with poor prognosis in patients, and ERO1A can promote the proliferation and migration of CCA cells. In conclusion, ERO1A can be used as an independent biomarker for predicting the prognosis of CCA.
Collapse
Affiliation(s)
- Wendi Yan
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Xue Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Tesi Liu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Liyan Chen
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, People's Republic of China
| | - Longzhe Han
- Department of Yanbian University Affiliated Hospital, Yanji 133002, People's Republic of China
| | - Jing Xu
- Department of Shanxi Medical University Medical College, Taiyuan 030001, People's Republic of China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University College of Medicine, Yanji 133002, People's Republic of China
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Xiangshan Ren
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, People's Republic of China
| |
Collapse
|
23
|
Larson ED, Magno JPM, Steritz MJ, Llanes EGDV, Cardwell J, Pedro M, Roberts TB, Einarsdottir E, Rosanes RAQ, Greenlee C, Santos RAP, Yousaf A, Streubel SO, Santos ATR, Ruiz AG, Lagrana-Villagracia SM, Ray D, Yarza TKL, Scholes MA, Anderson CB, Acharya A, Gubbels SP, Bamshad MJ, Cass SP, Lee NR, Shaikh RS, Nickerson DA, Mohlke KL, Prager JD, Cruz TLG, Yoon PJ, Abes GT, Schwartz DA, Chan AL, Wine TM, Cutiongco-de la Paz EM, Friedman N, Kechris K, Kere J, Leal SM, Yang IV, Patel JA, Tantoco MLC, Riazuddin S, Chan KH, Mattila PS, Reyes-Quintos MRT, Ahmed ZM, Jenkins HA, Chonmaitree T, Hafrén L, Chiong CM, Santos-Cortez RLP. A2ML1 and otitis media: novel variants, differential expression, and relevant pathways. Hum Mutat 2019; 40:1156-1171. [PMID: 31009165 DOI: 10.1002/humu.23769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jose Pedrito M Magno
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines
| | - Matthew J Steritz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Erasmo Gonzalo D V Llanes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Jonathan Cardwell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Melquiadesa Pedro
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Tori Bootpetch Roberts
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Rose Anne Q Rosanes
- Department of Community Dentistry, College of Dentistry, University of the Philippines Manila, Manila, Philippines
| | - Christopher Greenlee
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Ayesha Yousaf
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sven-Olrik Streubel
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Amanda G Ruiz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Sheryl Mae Lagrana-Villagracia
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Dylan Ray
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Talitha Karisse L Yarza
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Melissa A Scholes
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stephen P Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc. and Department of Anthropology, Sociology and History, University of San Carlos, Cebu, Philippines
| | - Rehan S Shaikh
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Jeremy D Prager
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Teresa Luisa G Cruz
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Patricia J Yoon
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Generoso T Abes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Abner L Chan
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Todd M Wine
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Eva Maria Cutiongco-de la Paz
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Norman Friedman
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Katerina Kechris
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, Colorado
| | - Juha Kere
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Janak A Patel
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Ma Leah C Tantoco
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Saima Riazuddin
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenny H Chan
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Petri S Mattila
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Rina T Reyes-Quintos
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Herman A Jenkins
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Tasnee Chonmaitree
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Charlotte M Chiong
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Center for Children's Surgery, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
24
|
Shi R, Yang H, Lin X, Cao Y, Zhang C, Fan Z, Hou B. Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions. Stem Cell Res Ther 2019; 10:89. [PMID: 30867055 PMCID: PMC6417198 DOI: 10.1186/s13287-019-1192-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human dental pulp stem cell (DPSC)-mediated regenerative endodontics is a promising therapy for damaged teeth; however, the hypoxic environment in root canals can affect tissue regeneration. In this study, we investigate the characteristics and possible regulatory mechanisms of DPSC function under hypoxic conditions. METHODS Human DPSCs were cultured under normoxia (20% O2) and hypoxia (3% O2). DPSC proliferation and osteo/odontogenic differentiation potential were assessed by Cell Counting Kit-8 (CCK8) assay, carboxyfluorescein succinimidyl ester (CFSE) assay, alkaline phosphatase (ALP) activity, Alizarin red staining, real-time RT-PCR assays, and western blot analysis. Microarray and bioinformatic analyses were performed to investigate the differences in the mRNA, lncRNA, and miRNA expression profiles of DPSCs. RESULTS DPSCs exhibited a more powerful proliferation ability and lower osteo/odontogenic differentiation potential in hypoxic conditions. A total of 60 mRNAs (25 upregulated and 35 downregulated), 47 lncRNAs (20 upregulated and 27 downregulated), and 14 miRNAs (7 upregulated and 7 downregulated) in DPSCs were differentially expressed in the hypoxia group compared with the normoxia group. Bioinformatic analysis identified that 7 mRNAs (GRPR, ERO1L, ANPEP, EPHX1, PGD, ANGPT1, and NQO1) and 5 lncRNAs (AF085958, AX750575, uc002czn.2, RP3-413H6.2, and six-twelve leukemia (STL)) may be associated with DPSCs during hypoxia according to CNC network analysis, while 28 mRNAs (including GYS1, PRKACB, and NQO1) and 13 miRNAs (including hsa-miR-3916 and hsa-miR-192-5p) may be involved according to miRNA target gene network analysis. The depletion of one candidate lncRNA, STL, inhibited the osteo/odontogenic differentiation potentials of DPSCs. CONCLUSIONS Our results revealed that hypoxia could enhance the proliferation ability and impair the osteo/odontogenic differentiation potential of DPSCs in vitro. Furthermore, our results identified candidate coding and noncoding RNAs that could be potential targets for improving DPSC function in regenerative endodontics and lead to a better understanding of the mechanisms of hypoxia's effects on DPSCs.
Collapse
Affiliation(s)
- Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao Lin
- Department of Implant Dentistry, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| | - Benxiang Hou
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Endoplasmic reticulum proteostasis control and gastric cancer. Cancer Lett 2019; 449:263-271. [PMID: 30776479 DOI: 10.1016/j.canlet.2019.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the primary organelle responsible for the synthesis, modification, folding and secretion of proteins, especially in specialized secretory cells. It also contributes to the maintenance of cellular functions, such as Ca2+ storage, lipogenesis, gluconeogenesis, and organelle biogenesis. Cellular stress conditions, such as glucose deprivation, hypoxia and disturbance of Ca2+ homeostasis, may increase the risk of protein misfolding and perturb proteostasis. This activates ER stress and triggers the unfolded protein response (UPR), leading to either the restoration of homeostasis or cell death. ER stress and UPR have been shown to play crucial roles in the pathogenesis, progression and treatment response of various cancers. In gastric cancer (GC), one of the most aggressive cancer types, critical functions of ER stress signaling have also started to emerge. Herein, we summarize the current knowledge linking ER stress and UPR to GC; we also discuss the possible nodes of therapeutic intervention and propose directions of future research.
Collapse
|
26
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
27
|
Kim KM, An AR, Park HS, Jang KY, Moon WS, Kang MJ, Lee YC, Ku JH, Chung MJ. Combined expression of protein disulfide isomerase and endoplasmic reticulum oxidoreductin 1-α is a poor prognostic marker for non-small cell lung cancer. Oncol Lett 2018; 16:5753-5760. [PMID: 30344729 PMCID: PMC6176373 DOI: 10.3892/ol.2018.9339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Protein disulfide isomerase (PDI) is one of the most abundant proteins in the endoplasmic reticulum (ER) and is known as a primary ER resident target of cigarette smoke-induced oxidation. PDI dysfunction triggers unfolded protein response and ER stress. Endoplasmic reticulum oxidoreductin 1-α (ERO1A) is a major regulator of PDI, and recent evidence implicates PDI and ERO1A as tumor prognostic factors. However, the associated role of PDI and ERO1A and their prognostic impact in non-small cell lung cancers (NSCLCs) remains unknown. The present study investigated the expression of PDI and ERO1A using immunohistochemistry and examined its association with smoking status and their prognostic impact in 198 NSCLCs. PDI and ERO1A expression were observed in 71.2 and 69.2% of NSCLCs, respectively, and their expressions were significantly associated with each other (P<0.001). Individual PDI (P=0.001) and ERO1A (P=0.005) expression were significantly associated with shorter overall survival (OS) in univariate analysis. PDI expression was significantly associated with never smoking (P=0.003). PDI expression (P<0.001) and the co-expression of PDI and ERO1A (P<0.001) were independent poor prognostic factors for OS in patients with NSCLC in multivariate analysis. Individual expression and co-expression of PDI and ERO1A may be used as novel prognostic indicators of NSCLC outcome.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences of Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Ae Ri An
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences of Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences of Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences of Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences of Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Myoung Jae Kang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences of Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Yong Chul Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Ja Hong Ku
- Department of Thoracic and Cardiovascular Surgery, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences of Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
28
|
Smirnova OA, Bartosch B, Zakirova NF, Kochetkov SN, Ivanov AV. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int J Mol Sci 2018; 19:1219. [PMID: 29673197 PMCID: PMC5979612 DOI: 10.3390/ijms19041219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H₂O₂ production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), Lyon 69003, France.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| |
Collapse
|
29
|
Sakatani T, Maemura K, Hiyama N, Amano Y, Watanabe K, Kage H, Fukayama M, Nakajima J, Yatomi Y, Nagase T, Takai D. High expression of IRE1 in lung adenocarcinoma is associated with a lower rate of recurrence. Jpn J Clin Oncol 2017; 47:543-550. [PMID: 28334878 PMCID: PMC5448064 DOI: 10.1093/jjco/hyx031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/10/2017] [Indexed: 01/03/2023] Open
Abstract
Objective Recent reports have shown that endoplasmic reticulum stress is associated with cancer. However, the impacts of endoplasmic reticulum stress on the prognosis of lung cancer are unknown. Therefore, in this study, we sought to reveal the relationship between the expression of endoplasmic reticulum stress-related genes (endoplasmic reticulum oxidoreductase 1L, protein kinase RNA-like endoplasmic reticulum kinase, activating transcription factor 6 and inositol-requiring kinase 1) and the outcome of lung adenocarcinoma. Methods One hundred and twenty-six patients with surgically resected lung adenocarcinomas were subjected to an endoplasmic reticulum stress-related mRNA expression analysis using quantitative RT-PCR. The following parameters were analyzed for all the study patients: age, sex, disease stage, smoking status, lymph node invasion (ly), vascular invasion (v) and EGFR mutation status. We assigned patients to either a high-expression group or a low-expression group according to the expression levels of endoplasmic reticulum stress-related genes. Results High expressions of endoplasmic reticulum stress-related genes were observed in patients with lower stages of lung adenocarcinoma and minimal vascular invasion. A Kaplan–Meier analysis showed significant differences in recurrence-free survival and overall survival between high-expression group and low-expression group. High inositol-requiring kinase 1 expression was an independent predictor of recurrence-free survival among patients with lung adenocarcinoma (hazard ratio, 0.396; 95% confidence interval, 0.188–0.834; P = 0.015). Conclusions Inositol-requiring kinase 1 may be a useful biomarker to predict recurrence in surgically resected lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Toshio Sakatani
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Keita Maemura
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Noriko Hiyama
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo
| | - Yosuke Amano
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Kousuke Watanabe
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Hidenori Kage
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Masashi Fukayama
- Department of Pathology, The University of Tokyo Hospital, Tokyo
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo
| | - Yutaka Yatomi
- Department of Laboratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Daiya Takai
- Department of Laboratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
30
|
Novikova SE, Kurbatov LK, Zavialova MG, Zgoda VG, Archakov AI. [Omics technologies in diagnostics of lung adenocarcinoma]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:181-210. [PMID: 28781253 DOI: 10.18097/pbmc20176303181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date lung adenocarcinoma (LAC) is the most common type of lung cancer. Numerous studies on LAC biology resulted in identification of crucial mutations in protooncogenes and activating neoplastic transformation pathways. Therapeutic approaches that significantly increase the survival rate of patients with LAC of different etiology have been developed and introduced into clinical practice. However, the main problem in the treatment of LAC is early diagnosis, taking into account both factors and mechanisms responsible in tumor initiation and progression. Identification of a wide biomarker repertoire with high specificity and reliability of detection appears to be a solution to this problem. In this context, proteins with differential expression in normal and pathological condition, suitable for detection in biological fluids are the most promising biomarkers. In this review we have analyzed literature data on studies aimed at search of LAC biomarkers. The major attention has been paid to protein biomarkers as the most promising and convenient subject of clinical diagnosis. The review also summarizes existing knowledge on posttranslational modifications, splice variants, isoforms, as well as model systems and transcriptome changes in LAC.
Collapse
Affiliation(s)
- S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
31
|
Zhou B, Wang G, Gao S, Chen Y, Jin C, Wang Z, Yang Y, Ma Z, Zhang W, Feng X. Expression of ERO1L in gastric cancer and its association with patient prognosis. Exp Ther Med 2017; 14:2298-2302. [PMID: 28962158 PMCID: PMC5609088 DOI: 10.3892/etm.2017.4782] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to assess the expression of endoplasmic reticulum oxidoreductin-1-like (ERO1L) in gastric cancer and determine its association with patient prognosis. A total of 105 patients with gastric cancer undergoing radical gastrectomy were selected for the current study. Gastric cancer tissues (the observation group) and normal gastric tissue adjacent to the carcinoma (the control group) were resected from patients. Levels of ERO1L mRNA and protein in tumor tissues and adjacent tissues were detected using reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. Patients were divided into two groups: A positive group and negative group, according to the expression of ERO1. The expression of ERO1L in gastric cancer and its association with patient prognosis was analyzed. Levels of ERO1 mRNA and protein in gastric cancer were significantly higher than those of adjacent tissues (P<0.05). Immunohistochemical analysis demonstrated that there were 22 patients exhibiting negative expression of ERO1L and 83 patients exhibiting positive expression of ERO1L. The cumulative recurrence rates over 3 years in patients with positive expression of ERO1L were significantly higher than in patients with negative expression of ERO1L (P<0.05); the cumulative survival rates over 3 years in patients with positive expression of ERO1L were significantly lower than those of patients with negative expression of ERO1L (P<0.05). Thus, the current study determined that ERO1L was highly expressed in gastric cancer tissue. The high expression of ERO1L was associated with adverse prognoses in patients with gastric cancer. ERO1L may therefore be a therapeutic target for the prevention of gastric cancer.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Gongping Wang
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shegan Gao
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ye Chen
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Canhui Jin
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zengfang Wang
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yantong Yang
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhikun Ma
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wei Zhang
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaoshan Feng
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
32
|
Li H, Wang X, Fang Y, Huo Z, Lu X, Zhan X, Deng X, Peng C, Shen B. Integrated expression profiles analysis reveals novel predictive biomarker in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:52571-52583. [PMID: 28881752 PMCID: PMC5581051 DOI: 10.18632/oncotarget.16732] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal human malignant tumor, with a dismal 5-year survival rate of less than 5%. The lack of specific symptoms at early tumor stages and the paucity of biomarkers contribute to the poor diagnosis of pancreatic ductal adenocarcinoma. To improve prognosis, a screening biomarker for early diagnosis of pancreatic cancer is in urgent need. We searched the databases of expression profiling by array on GEO, aiming at comparing gene expression profile of matched pairs of pancreatic tumor and adjacent non-tumor tissues, and we screen out 4 suitable series of gene expression microarray data (“GSE15471”, “GSE18670”, “GSE28735” and “GSE58561”). After carefully analyzing, 13 DEGs (MYOF, SLC6A6, S100P, HK2, IFI44L, OSBPL3, IGF2BP3, PDK4, IL1R2, ERO1A, EGLN3, PLAC8 and ACSL5) are significantly differentially expressed in four microarray databases in common. After analyzing mRNA expression data and clinical follow-up survey provided in the TCGA database and clinicopathological data of 137 pancreatic ductal adenocarcinoma patients, we carefully demonstrated that three of these differentially expressed genes (ERO1A, OSBPL3 and IFI44L) are correlated with poor prognosis of pancreatic ductal adenocarcinoma patients. In addition, we revealed that cell–matrix adhesion and extracellular matrix were top significantly regulated pathways in pancreatic ductal adenocarcinoma and depicted two protein-protein interactions networks of extracellular matrix related Genes which are dysregulated according to 4 gene expression microarray data mentioned above (“GSE15471”, “GSE18670”, “GSE28735” and “GSE58561”), hoping to shed light on the etiology of PDAC and mechanisms of drug resistance in PDAC in this study.
Collapse
Affiliation(s)
- Hongzhe Li
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xinjing Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yuan Fang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhen Huo
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiongxiong Lu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xi Zhan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaxin Deng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chenghong Peng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Baiyong Shen
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|