1
|
Admasu TD, Yu JS. Harnessing Immune Rejuvenation: Advances in Overcoming T Cell Senescence and Exhaustion in Cancer Immunotherapy. Aging Cell 2025; 24:e70055. [PMID: 40178455 PMCID: PMC12073907 DOI: 10.1111/acel.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with T cell-based strategies at the forefront of this revolution. However, the durability of these responses is frequently undermined by two intertwined phenomena: T cell exhaustion and senescence. While exhaustion is driven by chronic antigen exposure in the immunosuppressive tumor microenvironment, leading to a reversible state of diminished functionality, senescence reflects a more permanent, age- or stress-induced arrest in cellular proliferation and effector capacity. Together, these processes represent formidable barriers to sustained anti-tumor immunity. In this review, we dissect the molecular underpinnings of T cell exhaustion and senescence, revealing how these dysfunctions synergistically contribute to immune evasion and resistance across a range of solid tumors. We explore cutting-edge therapeutic approaches aimed at rewiring the exhausted and senescent T cell phenotypes. These include advances in immune checkpoint blockade, the engineering of "armored" CAR-T cells, senolytic therapies that selectively eliminate senescent cells, and novel interventions that reinvigorate the immune system's capacity for tumor eradication. By spotlighting emerging strategies that target both exhaustion and senescence, we provide a forward-looking perspective on the potential to harness immune rejuvenation. This comprehensive review outlines the next frontier in cancer immunotherapy: unlocking durable responses by overcoming the immune system's intrinsic aging and exhaustion, ultimately paving the way for transformative therapeutic breakthroughs.
Collapse
Affiliation(s)
| | - John S. Yu
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Kairos PharmaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Marr B, Jo D, Jang M, Lee SH. Cytokines in Focus: IL-2 and IL-15 in NK Adoptive Cell Cancer Immunotherapy. Immune Netw 2025; 25:e17. [PMID: 40342841 PMCID: PMC12056295 DOI: 10.4110/in.2025.25.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025] Open
Abstract
NK cell adoptive cell therapy (ACT) has emerged as a promising strategy for cancer immunotherapy, offering advantages in scalability, accessibility, efficacy, and safety. Ex vivo activation and expansion protocols, incorporating feeder cells and cytokine cocktails, have enabled the production of highly functional NK cells in clinically relevant quantities. Advances in NK cell engineering, including CRISPR-mediated gene editing and chimeric Ag receptor technologies, have further enhanced cytotoxicity, persistence, and tumor targeting. Cytokine support post-adoptive transfer, particularly with IL-2 and IL-15, remains critical for promoting NK cell survival, proliferation, and anti-tumor activity despite persistent challenges such as regulatory T cell expansion and cytokine-related toxicities. This review explores the evolving roles of IL-2 and IL-15 in NK cell-based ACT, evaluating their potential and limitations, and highlights strategies to optimize these cytokines for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Bryan Marr
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Donghyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine and Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Kim C, Han M, Kim G, Son W, Kim J, Gil M, Rhee YH, Sim NS, Kim CG, Kim HR. Preclinical investigation of anti-tumor efficacy of allogeneic natural killer cells combined with cetuximab for head and neck squamous cell carcinoma. Cancer Immunol Immunother 2025; 74:144. [PMID: 40063100 PMCID: PMC11893940 DOI: 10.1007/s00262-025-03959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a significant therapeutic challenge because of the limited effectiveness of current treatments including immunotherapy and chemotherapy. This study investigated the potential of a novel combination therapy using allogeneic natural killer (NK) cells and cetuximab, an anti-epidermal growth factor receptor monoclonal antibody, to enhance anti-tumor efficacy in HNSCC. Allogeneic NK cells were tested against HNSCC cells in vitro and NOG (NOD/Shi-scid/IL-2Rγ null) xenograft mouse models for cytotoxicity. In vitro assays demonstrated enhanced cytotoxicity against HNSCC cells when NK cells were combined with cetuximab, a phenomenon attributed to antibody-dependent cellular cytotoxicity. In vivo, the combination therapy exhibited a significant anti-tumor effect compared to either monotherapy, with high NK cell infiltration and cytotoxic activity in the tumor microenvironment. Tumor infiltration by NK cells was confirmed using flow cytometry and immunohistochemistry, highlighting the increased presence of NK cells (CD3- CD56+). These findings suggest that combination allogeneic NK cells and cetuximab could be a potential therapeutic modality for HNSCC and provide a foundation for future clinical trials to improve patient outcomes.
Collapse
MESH Headings
- Cetuximab/pharmacology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Animals
- Humans
- Head and Neck Neoplasms/therapy
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/pathology
- Mice
- Xenograft Model Antitumor Assays
- Carcinoma, Squamous Cell/therapy
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Squamous Cell Carcinoma of Head and Neck
- Cell Line, Tumor
- Mice, Inbred NOD
- Mice, SCID
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Combined Modality Therapy
- Immunotherapy, Adoptive/methods
Collapse
Affiliation(s)
- Chaeyeon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Mina Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gamin Kim
- Department of Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonrak Son
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeongah Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minchan Gil
- NKMAX Co., Ltd., Seongnam, Republic of Korea
| | | | - Nam Suk Sim
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Abodunrin F, Olson DJ, Emehinola O, Bestvina CM. Adopting tomorrow's therapies today: a perspective review of adoptive cell therapy in lung cancer. Ther Adv Med Oncol 2025; 17:17588359251320280. [PMID: 40012708 PMCID: PMC11863254 DOI: 10.1177/17588359251320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Lung cancer is the leading cause of all cancer-related deaths in the United States and remains a global health challenge. While targeted therapy has revolutionized the treatment landscape of nonsmall cell lung cancer, many patients lack actionable mutations. Immunotherapy, particularly immune checkpoint inhibitors (ICIs), have significantly impacted outcomes in lung cancer in the last decade. Some patients, however, never respond or become refractory to ICIs. Newer therapies aimed at augmenting the immune system and enhancing antitumor effects are currently being explored. Adoptive cell therapy (ACT) employs T cells isolated from either tumors or peripheral blood and often engineers them to effect antitumor immune response. Chimeric antigen receptor T (CAR-T) cell therapy, engineered T cell receptor therapy, and tumor-infiltrating lymphocytes are examples of adoptive cellular therapies. CAR-T cell therapy has been successful in the treatment of hematological malignancies with several CAR products gaining approval in the treatment of refractory blood cancers. The success of ACTs in hematological cancers has fueled research into the role of these therapies in solid cancers including lung cancer. Many trials have had early promising results, with many clinical trials currently enrolling. There are many limitations to the efficacy of ACTs, as well as risks and benefits with the individual subtypes of ACT. With growing knowledge about tumor antigens and more advanced cell engineering, there is potential for ACT to result in durable responses in immunologically "cold" tumors. Here, we review the major subtypes of ACTs, evidence supporting their use in lung cancer, challenges, and future perspectives in ACTs. Additionally, we include T cell engagers and mRNA vaccine studies and potential combinatorial strategies in lung cancer.
Collapse
Affiliation(s)
- Faith Abodunrin
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago Medicine, Chicago, IL, USA
| | - Daniel J Olson
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago Medicine, Chicago, IL, USA
| | - Oluwatosin Emehinola
- Department of Internal Medicine, New York Medical College at Saint Michael’s Medical Center, Newark, NJ, USA
| | - Christine M Bestvina
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Zúñiga CH, Acosta BI, Menchaca R, Amescua CA, Hong S, Hui L, Gil M, Rhee YH, Yoon S, Kim M, Chang PY, Kim YM, Song PY, Betito K. Treatment of Alzheimer's Disease subjects with expanded non-genetically modified autologous natural killer cells (SNK01): a phase I study. Alzheimers Res Ther 2025; 17:40. [PMID: 39939891 PMCID: PMC11817217 DOI: 10.1186/s13195-025-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The importance of natural killer (NK) cells of the innate immune system in neurodegenerative disease has largely been overlooked despite studies demonstrating their ability to reduce neuroinflammation (thought to be mediated by the elimination of activated T cells, degradation of protein aggregates and secretion of anti-inflammatory cytokines). SNK01 is an autologous non-genetically modified NK cell product showing increased activity in vitro. We hypothesized that SNK01 can be safely infused to reduce neuroinflammation in Alzheimer's Disease (AD) patients. METHODS SNK01 was produced and characterized for its ability to eliminate activated T cells, degrade protein aggregates and secrete anti-inflammatory cytokines. In this phase 1 study, SNK01 was administered intravenously every three weeks for a total of 4 treatments using a 3 + 3 dose escalation design (1, 2 and 4 × 109 cells) in subjects with either mild, moderate, or severe AD (median CDR-SB 10.0). Cognitive assessments and cerebrospinal fluid biomarkers associated with protein aggregation, neurodegeneration and neuroinflammation including amyloid-β42 and 42/40, α-synuclein, total Tau, pTau217 and pTau181, neurofilament light, GFAP and YKL-40 analyses were performed at baseline, at 1 and 12 weeks after the last dose. The primary endpoint was safety; secondary endpoints included changes in cognitive assessments and biomarker levels. RESULTS In preclinical in vitro studies, SNK01 were able to uptake and degrade the protein aggregates of amyloid-β and α-synuclein, produce anti-inflammatory cytokines and eliminate activated T cells. In the phase 1 clinical study, eleven subjects were enrolled (10 evaluable). No drug-related adverse events were observed. Despite 70% of subjects being treated at relatively low doses of SNK01 (1 and 2 × 109 cells), 50-70% of all enrolled subjects had stable/improved CDR-SB, ADAS-Cog and/or MMSE scores and 90% had stable/improved ADCOMS at one-week after the last dose. SNK01 also appeared to have beneficial effects on protein aggregate levels and neuroinflammatory biomarkers in the cerebrospinal fluid, with decreases in pTau181 and GFAP appearing to be dose-dependent. CONCLUSIONS SNK01 was well tolerated and appeared to have clinical activity in AD while also having beneficial effects on cerebrospinal fluid protein and neuroinflammatory biomarker levels. A larger trial with a higher dosing/duration has been initiated in the USA in 2023. TRIAL REGISTRATION www. CLINICALTRIALS gov NCT04678453, date of registration: 2020-12-22.
Collapse
Affiliation(s)
| | - Blanca Isaura Acosta
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Rufino Menchaca
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Cesar A Amescua
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Sean Hong
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Lucia Hui
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Minchan Gil
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Yong-Hee Rhee
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Sangwook Yoon
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Minji Kim
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Paul Y Chang
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Yong Man Kim
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Paul Y Song
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Katia Betito
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA.
| |
Collapse
|
6
|
Erickson SM, Manning BM, Kumar A, Patel MR. Engineered Cellular Therapies for the Treatment of Thoracic Cancers. Cancers (Basel) 2024; 17:35. [PMID: 39796666 PMCID: PMC11718842 DOI: 10.3390/cancers17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses. In this review, we discuss the prospect of chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, T cell receptor-engineered (TCR-T) cells, and tumor-infiltrating lymphocytes (TILs) as treatments for thoracic malignancies. CAR-T cells and TILs have proven successful in several hematologic cancers and advanced melanoma, respectively, but outside of melanoma, results have thus far been unsuccessful in most other solid tumors. NK cells and TCR-T cells are additional cell therapy platforms with their own unique advantages and challenges. Obstacles that must be overcome to develop effective cell therapy for these malignancies include selecting an appropriate target antigen, combating immunosuppressive cells and signaling molecules present in the tumor microenvironment, persistence, and delivering a sufficient quantity of antitumor immune cells to the tumor. Induced pluripotent stem cells (iPSCs) offer great promise as a source for both NK and T cell-based therapies due to their unlimited expansion potential. Here, we review clinical trial data, as well as recent basic scientific advances that offer insight into how we may overcome these obstacles, and provide an overview of ongoing trials testing novel strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Spencer M. Erickson
- Internal Medicine Residency Program, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Benjamin M. Manning
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| |
Collapse
|
7
|
Li MSC, Chan ALS, Mok KKS, Chan LL, Mok TSK. Next-generation immunotherapy: igniting new hope for lung cancer. Ther Adv Med Oncol 2024; 16:17588359241302021. [PMID: 39649017 PMCID: PMC11624561 DOI: 10.1177/17588359241302021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024] Open
Abstract
Adoption of immunotherapy has completely transformed the treatment landscape of cancer. Patients with advanced cancer treated with immunotherapy may benefit from durable tumor response and long-term survival. The most widely used immunotherapy in solid tumors is anti-programmed-death (ligand) protein (PD-(L)1), which is now an integral part of non-small cell lung cancer (NSCLC) treatment irrespective of histological cell types and tumor stage. However, the vast majority of patients with advanced NSCLC treated with anti-PD-(L)1 still develop therapeutic resistance, and the prognosis after anti-PD-(L)1 resistance is poor. Resistance mechanisms to PD-1 blockade are often complex and encompass a combination of defects within the cancer-immunity cycle. These defects include failure in antigen presentation and T-cell priming, presence of co-inhibitory immune checkpoints, inability of immune cells to infiltrate the tumor, and presence of immunosuppressive tumor microenvironment. Recently, advances in drug design, genomic sequencing, and gene editing technologies have led to development of next-generation immunotherapies that may potentially overcome these resistance mechanisms. In this review, we will discuss the anti-PD-(L)1 resistance mechanism landscape in NSCLC and four novel modalities of immunotherapy in detail, namely novel immune checkpoint inhibitor and targeted therapy combinations, bispecific antibodies, cancer vaccine, and cell therapy. These novel therapeutics have all demonstrated early clinical data in NSCLC treatment and may work synergistically with each other to restore anticancer immunity. In addition, we share our perspectives on the future promises and challenges in the transformation of these novel immunotherapies to standard clinical care.
Collapse
Affiliation(s)
- Molly S. C. Li
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew L. S. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kevin K. S. Mok
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, Hong Kong
| | - Landon L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tony S. K. Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
8
|
Park H, Kim G, Kim N, Ha S, Yim H. Efficacy and safety of natural killer cell therapy in patients with solid tumors: a systematic review and meta-analysis. Front Immunol 2024; 15:1454427. [PMID: 39478866 PMCID: PMC11522797 DOI: 10.3389/fimmu.2024.1454427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction In 2020, global cancer statistics reported 19.3 million new cases and 10 million deaths annually, highlighting the urgent need for effective treatments. Current therapies, such as surgery, radiation, and chemotherapy, have limitations in comprehensively addressing solid tumor. Recent advances in cancer biology and immuno-oncology, including CAR-T cell therapy, show promise but face efficacy challenges against solid tumors. Methods This meta-analysis systematically reviewed studies from PubMed, Embase, Cochrane, and ClinicalTrials.gov databases up to May 2024 to evaluate the clinical efficacy and safety of unmodified NK cell therapies in solid tumors. The included trials focused on reporting objective response rates (ORR). Results Thirty-one trials involving 600 patients across various cancers (e.g., NSCLC, HCC, breast, ovarian) were analyzed. NK cell therapies demonstrated promising ORRs, particularly 72.3% in hepatocellular carcinoma, often in combination with local therapies. Safety profiles were favorable, with fatigue being the most common adverse event. Discussion NK cell therapies represent a promising treatment option for solid tumors, offering a viable alternative to genetically modified cell therapies like CAR-T. Further research is needed to optimize the clinical utility of NK cell therapy and integrate it effectively into standard cancer treatment regimens. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023438410, identifier CRD42023438410.
Collapse
Affiliation(s)
- Heesook Park
- Department of Public Health, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gyurin Kim
- Department of Public Health, The Catholic University of Korea, Seoul, Republic of Korea
| | - Najin Kim
- Medical Library, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungyoen Ha
- Department of Statistics, Sungkyunkwan University of Korea, Seoul, Republic of Korea
| | - Hyeonwoo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Thangaraj JL, Coffey M, Lopez E, Kaufman DS. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 2024; 31:1327-1343.e5. [PMID: 38986609 PMCID: PMC11380586 DOI: 10.1016/j.stem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-β) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-β receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-β receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-β inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-β activity. Our findings demonstrate that TGF-β signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-β.
Collapse
Affiliation(s)
- Jaya Lakshmi Thangaraj
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Coffey
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Edith Lopez
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Kumar R, Gupta R. Epigenetic regulation of NKG2D ligand and the rise of NK cell-based immunotherapy for cancer treatment. Front Oncol 2024; 14:1456631. [PMID: 39161385 PMCID: PMC11330816 DOI: 10.3389/fonc.2024.1456631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Epigenetic modifications influence gene expression and effects cancer initiation and progression. Therefore, they serve as diagnostic and prognostic biomarkers and potential therapeutic targets. Natural Killer (NK) cells, integral to the innate immune system, exhibit anti-tumor effect by recognizing and eliminating cancerous cells through the balance of activating and inhibitory ligands. Understanding the epigenetic regulation of NK cell ligands offers insights into enhancing NK cell-mediated tumor eradication. This review explores the epigenetic modifications governing the expression of activating NKG2D ligands and discusses clinical trials investigating NK cell-based immunotherapies, highlighting their potential as effective cancer treatment strategies. Case studies examining the safety and effectiveness of NK cell therapies in different cancer types, such as acute myeloid leukemia (AML) and non-small cell lung cancer (NSCLC), demonstrate promising outcomes with minimal toxicity. These findings underscore the therapeutic prospects of epigenetic modulation of NKG2D ligands and NK cell-based immunotherapies as effective cancer treatment strategies. Future research in the advancement of personalized medicine approaches and novel combination therapies with NK cell will further improve treatment outcomes and provide new therapeutic options for treating patients with various types of cancer.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Choi MG, Son GW, Choi MY, Jung JS, Rho JK, Ji W, Yoon BG, Jo JM, Kim YM, Ko DH, Lee JC, Choi CM. Safety and efficacy of SNK01 (autologous natural killer cells) in combination with cytotoxic chemotherapy and/or cetuximab after failure of prior tyrosine kinase inhibitor in non-small cell lung cancer: non-clinical mouse model and phase I/IIa clinical study. J Immunother Cancer 2024; 12:e008585. [PMID: 38538093 PMCID: PMC10982808 DOI: 10.1136/jitc-2023-008585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Choosing treatments for epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) patients with osimertinib resistance is challenging. We evaluated the safety and efficacy of SNK01 (autologous natural killer (NK) cells) in combination with cytotoxic chemotherapy and/or cetuximab (an anti-EGFR monoclonal antibody) in treating EGFR-mutated NSCLC in this non-clinical and phase I/IIa clinical trial. METHODS We developed a cell line-derived xenograft-humanized mouse model with an osimertinib-resistant lung cancer cell line. The mice were divided into four groups based on treatment (no treatment, cetuximab, SNK01, and combination groups) and treated weekly for 5 weeks. In the clinical study, 12 patients with EGFR-mutated NSCLC who failed prior tyrosine kinase inhibitor (TKI) received SNK01 weekly in combination with gemcitabine/carboplatin (n=6) or cetuximab/gemcitabine/carboplatin (n=6) and dose escalation of SNK01 following the "3+3" design. RESULTS In the non-clinical study, an increase in NK cells in the blood and enhanced NK cell tumor infiltration were observed in the SNK01 group. The volume of tumor extracted after treatment was the smallest in the combination group. In the clinical study, 12 patients (median age, 60.9 years; all adenocarcinoma cases) received SNK01 weekly for 7-8 weeks (4×109 cells/dose (n=6); 6×109 cells/dose (n=6)). The maximum feasible dose of SNK01 was 6×109 cells/dose without dose-limiting toxicity. Efficacy outcomes showed an objective response rate of 25%, disease control rate of 100%, and median progression-free survival of 143 days. CONCLUSION SNK01 in combination with cytotoxic chemotherapy, including cetuximab, for EGFR-mutated NSCLC with TKI resistance was safe and exerted a potential antitumor effect. TRIAL REGISTRATION NUMBER NCT04872634.
Collapse
Affiliation(s)
- Myeong Geun Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | | | | | | | - Jin Kyung Rho
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Wonjun Ji
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Ma S, Caligiuri MA, Yu J. Harnessing Natural Killer Cells for Lung Cancer Therapy. Cancer Res 2023; 83:3327-3339. [PMID: 37531223 DOI: 10.1158/0008-5472.can-23-1097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Although natural killer (NK) cells are garnering interest as a potential anticancer therapy because they selectively recognize and eliminate cancer cells, their use in treating solid tumors, including lung cancer, has been limited due to impediments to their efficacy, such as their limited ability to reach tumor tissues, the reduced antitumor activity of tumor-infiltrating NK cells, and the suppressive tumor microenvironment (TME). This comprehensive review provides an in-depth analysis of the cross-talk between the lung cancer TME and NK cells. We highlight the various mechanisms used by the TME to modulate NK-cell phenotypes and limit infiltration, explore the role of the TME in limiting the antitumor activity of NK cells, and discuss the current challenges and obstacles that hinder the success of NK-cell-based immunotherapy for lung cancer. Potential opportunities and promising strategies to address these challenges have been implemented or are being developed to optimize NK-cell-based immunotherapy for lung cancer. Through critical evaluation of existing literature and emerging trends, this review provides a comprehensive outlook on the future of NK-cell-based immunotherapy for treating lung cancer.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, California
| |
Collapse
|
14
|
Imbimbo M, Wetterwald L, Friedlaender A, Parikh K, Addeo A. Cellular Therapy in NSCLC: Between Myth and Reality. Curr Oncol Rep 2023; 25:1161-1174. [PMID: 37646900 PMCID: PMC10556121 DOI: 10.1007/s11912-023-01443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW In this paper, we review the current state and modalities of adoptive cell therapies (ACT) in non-small cell lung carcinoma (NSCLC). We also discuss the challenges hampering the use of ACT and the approaches to overcome these barriers. RECENT FINDINGS Several trials are ongoing investigating the three main modalities of T cell-based ACT: tumor-infiltrating lymphocytes (TILs), genetically engineered T-cell receptors (TCRs), and chimeric antigen receptor (CAR) T cells. The latter, in particular, has revolutionized the treatment of hematologic malignancies. However, the efficacy against solid tumor is still sparse. Major limitations include the following: severe toxicities, restricted infiltration and activation within the tumors, antigen escape and heterogeneity, and manufacturing issues. ACT is a promising tool to improve the outcome of metastatic NSCLC, but significant translational and clinical research is needed to improve its application and expand the use in NSCLC.
Collapse
Affiliation(s)
- Martina Imbimbo
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, Lausanne University Hospital, Lausanne, Switzerland.
| | - Laureline Wetterwald
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, Lausanne University Hospital, Lausanne, Switzerland
| | - Alex Friedlaender
- Oncology Department, University Hospital Geneva (HUG), 1205, Geneva, Switzerland
- Oncology Department, Clinique Générale Beaulieu, 1206, Geneva, Switzerland
| | - Kaushal Parikh
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva (HUG), 1205, Geneva, Switzerland
| |
Collapse
|
15
|
Wen SWC, Nederby L, Andersen RF, Hansen TS, Nyhus CH, Hilberg O, Jakobsen A, Hansen TF. NK cell activity and methylated HOXA9 ctDNA as prognostic biomarkers in patients with non-small cell lung cancer treated with PD-1/PD-L1 inhibitors. Br J Cancer 2023; 129:135-142. [PMID: 37137997 PMCID: PMC10307873 DOI: 10.1038/s41416-023-02285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND PD-1/PD-L1 inhibitors have improved survival for patients with non-small cell lung cancer (NSCLC). We evaluated natural killer cell activity (NKA) and methylated HOXA9 circulating tumor DNA (ctDNA) as prognostic biomarkers in NSCLC patients treated with PD-1/PD-L1 inhibitors. METHODS Plasma was prospectively collected from 71 NSCLC patients before treatment with PD-1/PD-L1 inhibitors and before cycles 2-4. We used the NK Vue® assay to measure the level of interferon gamma (IFNγ) as a surrogate for NKA. Methylated HOXA9 was measured by droplet digital PCR. RESULTS A score combining NKA and ctDNA status measured after one treatment cycle had a strong prognostic impact. Group 1 had IFNγ < 250 pg/ml and detectable ctDNA (n = 27), group 2 consisted of patients with either low levels of IFNγ and undetectable ctDNA or high levels of IFNγ and detectable ctDNA (n = 29), group 3 had IFNγ ≥250 pg/ml and undetectable ctDNA (n = 15). Median OS was 221 days (95% CI 121-539 days), 419 days (95% CI 235-650 days), and 1158 days (95% CI 250 days-not reached), respectively (P = 0.002). Group 1 had a poor prognosis with a hazard ratio of 5.560 (95% CI 2.359-13.101, n = 71, P < 0.001) adjusting for PD-L1 status, histology, and performance status. CONCLUSIONS Combining NKA and ctDNA status after one cycle of treatment was prognostic in patients with NSCLC treated with PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Sara Witting Christensen Wen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark.
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsloews Vej 19, 3rd floor, 5000, Odense C, Denmark.
| | - Line Nederby
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Rikke Fredslund Andersen
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Torben Schjødt Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Christa Haugaard Nyhus
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Ole Hilberg
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsloews Vej 19, 3rd floor, 5000, Odense C, Denmark
- Department of Medicine, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Anders Jakobsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsloews Vej 19, 3rd floor, 5000, Odense C, Denmark
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsloews Vej 19, 3rd floor, 5000, Odense C, Denmark
| |
Collapse
|
16
|
Chen X, Jiang L, Liu X. Natural killer cells: the next wave in cancer immunotherapy. Front Immunol 2022; 13:954804. [PMID: 35967421 PMCID: PMC9364606 DOI: 10.3389/fimmu.2022.954804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapies focusing on rejuvenating T cell activities, like PD-1/PD-L1 and CTLA-4 blockade, have unprecedentedly revolutionized the landscape of cancer treatment. Yet a previously underexplored component of the immune system - natural killer (NK) cell, is coming to the forefront of immunotherapeutic attempts. In this review, we discuss the contributions of NK cells in the success of current immunotherapies, provide an overview of the current preclinical and clinical strategies at harnessing NK cells for cancer treatment, and highlight that NK cell-mediated therapies emerge as a major target in the next wave of cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | | |
Collapse
|