1
|
Miniature mass spectrometer-based point-of-care assay for cabotegravir and rilpivirine in whole blood. Anal Bioanal Chem 2022; 414:3387-3395. [PMID: 35169905 PMCID: PMC9018536 DOI: 10.1007/s00216-022-03954-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 11/01/2022]
Abstract
HIV prevention and treatment with injectable cabotegravir and/or rilpivirine administered once every 4 to 8 weeks is an attractive alternative to daily therapy. Prescribed dosage and drug concentrations in plasma are based on patient data collected in clinical trials, but actual patients are expected to exhibit more variability in drug concentrations, which is important to quantify. Here, we demonstrate the first quantitative point-of-care assay with a miniature mass spectrometer to assess these drug concentrations in whole blood. Quantitative performance is obtained using paper spray ionization in combination with tandem mass spectrometry (MS/MS) in the clinically relevant concentration range of both drugs. Limits of quantitation (LoQs) of cabotegravir and rilpivirine are measured to be 750 ng/mL and 20 ng/mL, respectively. The assay turnaround time is < 4 min, and strong linear relationships are established between MS/MS responses and concentration, with percentage of relative standard deviations (RSDs) that are <15% at concentrations above the LoQs. The speed, portability, low power consumption, and specificity offered by the miniature instrument should make it an appropriate platform for measuring drug concentrations in a walk-in clinic using small volumes of patient blood.
Collapse
|
2
|
Lee S, Chintalapudi K, Badu-Tawiah AK. Clinical Chemistry for Developing Countries: Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:437-465. [PMID: 33979544 PMCID: PMC8932337 DOI: 10.1146/annurev-anchem-091520-085936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early disease diagnosis is necessary to enable timely interventions. Implementation of this vital task in the developing world is challenging owing to limited resources. Diagnostic approaches developed for resource-limited settings have often involved colorimetric tests (based on immunoassays) due to their low cost. Unfortunately, the performance/sensitivity of such simplistic tests are often limited and significantly hinder opportunities for early disease detection. A new criterion for selecting diagnostic tests in low- and middle-income countries is proposed here that is based on performance-to-cost ratio. For example, modern mass spectrometry (MS) now involves analysis of the native sample in the open laboratory environment, enabling applications in many fields, including clinical research, forensic science, environmental analysis, and agriculture. In this critical review, we summarize recent developments in chemistry that enable MS to be applied effectively in developing countries. In particular, we argue that closed automated analytical systems may not offer the analytical flexibility needed in resource-limited settings. Alternative strategies proposed here have potential to be widely accepted in low- and middle-income countries through the utilization of the open-source ambient MS platform that enables microsampling techniques such as dried blood spot to be coupled with miniature mass spectrometers in a centralized analytical platform. Consequently, costs associated with sample handling and maintenance can be reduced by >50% of the total ownership cost, permitting analytical measurements to be operated at high performance-to-cost ratios in the developing world.
Collapse
Affiliation(s)
- Suji Lee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Kavyasree Chintalapudi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
3
|
Kang M, Lian R, Zhang X, Li Y, Zhang Y, Zhang Y, Zhang W, Ouyang Z. Rapid and on-site detection of multiple fentanyl compounds by dual-ion trap miniature mass spectrometry system. Talanta 2020; 217:121057. [DOI: 10.1016/j.talanta.2020.121057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
|
4
|
Mielczarek P, Silberring J, Smoluch M. MINIATURIZATION IN MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2020; 39:453-470. [PMID: 31793697 DOI: 10.1002/mas.21614] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Expectations for continuous miniaturization in mass spectrometry are not declining for years. Portable instruments are highly welcome by the industry, science, space agencies, forensic laboratories, and many other units. All are striving for the small, cheap, and as good as possible instruments. This review describes the recent developments of miniature mass spectrometers and also provides selected applications where these devices are used. Upcoming perspectives of further development are also discussed. @ 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowskiej St. 34, 41-819, Zabrze, Poland
| | - Marek Smoluch
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
5
|
Wells SS, Dawod M, Kennedy RT. CE-MS with electrokinetic supercharging and application to determination of neurotransmitters. Electrophoresis 2019; 40:2946-2953. [PMID: 31502303 PMCID: PMC6947659 DOI: 10.1002/elps.201900203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Electrokinetic supercharging (EKS) is known as one of the most effective online electrophoretic preconcentration techniques, though pairing with it with mass spectrometry has presented challenges. Here, EKS is successfully paired with ESI-MS/MS to provide a sensitive and robust method for analysis of biogenic amines in biological samples. Injection parameters including electric field strength and the buffer compositions used for the separation and focusing were investigated to achieve suitable resolution, high sensitivity, and compatibility with ESI-MS. Using EKS, the sensitivity of the method was improved 5000-fold compared to a conventional hydrodynamic injection with CZE. The separation allowed for baseline resolution of several neurotransmitters within 16 min with LODs down to 10 pM. This method was applied to targeted analysis of seven biogenic amines from rat brain stem and whole Drosophila tissue. This is the first method to use EKS with CE-ESI-MS/MS to analyze biological samples.
Collapse
Affiliation(s)
- Shane S Wells
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Lv Y, Bai H, Yang J, He Y, Ma Q. Direct Mass Spectrometry Analysis Using In-Capillary Dicationic Ionic Liquid-Based in Situ Dispersive Liquid–Liquid Microextraction and Sonic-Spray Ionization. Anal Chem 2019; 91:6661-6668. [DOI: 10.1021/acs.analchem.9b00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yueguang Lv
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
7
|
Pu F, Alfaro CM, Pirro V, Xie Z, Ouyang Z, Cooks RG. Rapid determination of isocitrate dehydrogenase mutation status of human gliomas by extraction nanoelectrospray using a miniature mass spectrometer. Anal Bioanal Chem 2019; 411:1503-1508. [PMID: 30710208 PMCID: PMC6450702 DOI: 10.1007/s00216-019-01632-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
Isocitrate dehydrogenase (IDH) I and II mutations in gliomas cause an abnormal accumulation of 2-hydroxyglutarate (2-HG) in these tumor cells. These mutations have potential prognostic value in that knowledge of the mutation status can lead to improved surgical resection. Information on mutation status obtained by immunohistochemistry or genomic analysis is not available during surgery. We report a rapid extraction nanoelectrospray ionization (nESI) method of determining 2-HG. This should allow the determination of IDH mutation status to be performed intraoperatively, within minutes, using a miniature mass spectrometer. This study demonstrates that the combination of tandem mass spectrometry with low-resolution mass spectrometry allows this analysis to be performed with confidence. Graphical Abstract.
Collapse
Affiliation(s)
- Fan Pu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Clint M Alfaro
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Valentina Pirro
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhuoer Xie
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zheng Ouyang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Abstract
Direct sampling mass spectrometry (MS) has been advancing aggressively, showing immense potential in translating MS into the clinical field. Unlike traditional MS analysis involving extensive sample preparation and chromatographic separation, quick and simple procedures with minimal sample pretreatment or purification became available with direct sampling. An overview of the development in this field is provided, including some representative ambient ionization and fast extraction methods. Quantitative applications of these methods are emphasized and their efficacy are highlighted from a clinical aspect; non-quantitative applications in clinical analysis are also discussed. This review also discusses the integration of direct sampling MS with miniature mass spectrometers and its future outlook as an emerging clinical tool for point-of-care analysis.
Collapse
Affiliation(s)
- Fan Pu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Spencer Chiang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenpeng Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Zou R, Cao W, Chong L, Hua W, Xu H, Mao Y, Page J, Shi R, Xia Y, Hu TY, Zhang W, Ouyang Z. Point-of-Care Tissue Analysis Using Miniature Mass Spectrometer. Anal Chem 2018; 91:1157-1163. [PMID: 30525456 DOI: 10.1021/acs.analchem.8b04935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The combination of direct sampling ionization and miniature mass spectrometer presents a promising technical pathway of point-of-care analysis in clinical applications. In this work, a miniature mass spectrometry system was used for analysis of tissue samples. Direct tissue sampling coupled with extraction spray ionization was used with a home-built miniature mass spectrometer, Mini 12. Lipid species in tissue samples were well profiled in rat brain, kidney, and liver in a couple of minutes. By incorporating a photochemical (Paternò-Büchi) reaction, fast identification of lipid C═C location was realized. Relative quantitation of the lipid C═C isomer was performed by calculating the intensity ratio C═C diagnostic product ions, by which FA 18:1 (Δ9)/FA 18:1 (Δ11) was found to change significantly in mouse cancerous breast tissue samples. Accumulation of 2-hydroxylglutarate in human glioma samples, not in normal brains, can also be easily identified for rapid diagnosis.
Collapse
Affiliation(s)
- Ran Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Leelyn Chong
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Jessica Page
- Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yu Xia
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Tony Y Hu
- The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Wenpeng Zhang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
10
|
Rapid and on-site analysis of amphetamine-type illicit drugs in whole blood and raw urine by slug-flow microextraction coupled with paper spray mass spectrometry. Anal Chim Acta 2018; 1032:75-82. [DOI: 10.1016/j.aca.2018.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/16/2022]
|
11
|
Themed issue on ‘emerging technologies in mass spectrometry’. Bioanalysis 2017. [DOI: 10.4155/bio-2017-4976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|