1
|
Rigo-Bonnin R, Mas-Bosch V, Canalias F. Measurement uncertainty estimation of free drug concentrations in clinical laboratories using equilibrium dialysis. Clin Chem Lab Med 2024; 62:870-880. [PMID: 38050372 DOI: 10.1515/cclm-2023-1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Developing procedures based on equilibrium dialysis (ED) that allow measuring the free drug concentration in plasma improves therapeutic drug monitoring (TDM) in those cases where its measurement is justified. However, this procedure requires specific sample preparation and presents different pitfalls, which are not error-free. As with any result provided by a clinical laboratory, this one should be as accurate as possible to allow a correct clinical interpretation. The measurement uncertainty (MU) is a parameter that enables the accuracy of results to be known, and that is mandated by ISO 15189. Herein, this study suggests how the MU for the results of the free drug concentrations in serum could be estimated when an ED is used. METHODS A combination of the top-down and bottom-up approaches was used to estimate the MU based on the ISO/TS 20914:2019 and JCGM 100:2008 guidelines, including the concentration of free phenytoin in serum, as an example. Different scenarios were incorporated considering or not a significant bias related to the primary drawbacks of ED: the non-specific binding, the volume shift effect and the Gibbs-Donnan effect. RESULTS The expanded uncertainties estimated ranged between 13.0 and 30.9 %. The highest MU corresponded to the free drug concentrations in serum results when significant biases related to the volume shift and Gibbs-Donnan effects exist. CONCLUSIONS A detailed estimation of MU for free drug concentrations is presented using ED, considering different scenarios. This study could stimulate clinical laboratories to perform MU studies and its application in TDM.
Collapse
Affiliation(s)
- Raúl Rigo-Bonnin
- Laboratori Clínic, IDIBELL, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Virgínia Mas-Bosch
- Laboratori Clínic, IDIBELL, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesca Canalias
- Departament de Bioquímica i Biologia Molecular, Laboratori de Referència d'Enzimologia Clínica, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
2
|
Al-Ahmed ZA, Hameed A, Alharbi A, Pashameah RA, Habeebullah TM, El-Metwaly NM. Novel azapropazone voltammetric sensors based on zinc oxide nanostructure. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2163583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Zehbah A. Al-Ahmed
- Depertment of Chemistry, College of Sciences and Art, Dhahran Aljounb, King Khalid University, Dhahran Aljounb, Saudi Arabia
| | - Ahmed Hameed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Alharbi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rami A. Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Turki M. Habeebullah
- Department of Environment and Health Research, The Custodian of Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al Qura University, Makkah, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Wientjes MG, Lu Z, Chan CHF, Turaga K, Au JLS. Surgical management of peritoneal metastasis: Opportunities for pharmaceutical research. J Control Release 2023; 361:717-726. [PMID: 37574051 PMCID: PMC10560040 DOI: 10.1016/j.jconrel.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Cytoreductive surgery (CRS) has emerged as a survival-extending treatment of peritoneal metastasis (PM); recent advances include using intraperitoneal chemotherapy (IPC) at normothermic or hyperthermic temperatures, or under pressure (CRS + IPC). Clinical CRS + IPC research has established its highly variable efficacy and suggested tumor size, tumor locations and presence of ascites as potential determinants. On the other hand, there is limited knowledge on the effects of pharmaceutical properties on treatment outcomes. The present study investigated the inter-subject variability of paclitaxel binding to proteins in patient ascites because some PM patients show accumulation of ascites and because activity and transport of highly protein-bound drugs such as paclitaxel are affected by protein binding. Ascites samples were collected from 26 patients and investigated for their protein contents using LC/MS/MS proteomics analysis and for the concentrations of total proteins and two major paclitaxel-binding proteins (human serum albumin or HSA and α-1-acid glycoprotein or AAG). The association constants of paclitaxel to HSA and AAG and the extent of protein binding of paclitaxel in patient ascites were studied using equilibrium dialysis. Proteomic analysis of four randomly selected samples revealed 288 proteins, >90% of which are also present in human plasma. Between 72% - 94% of paclitaxel was bound to proteins in patient ascites. The concentrations of HSA and AAG in ascites showed substantial inter-subject variations, ranging from 14.7 - 46.3 mg/mL and 0.13-2.56 mg/mL, respectively. The respective paclitaxel association constants to commercially available HSA and AAG were ∼ 3.5 and ∼ 120 mM. Calculation using these constants and the HSA and AAG concentrations in individual patient ascites indicated that these two proteins accounted for >85% of the total protein-binding of paclitaxel in ascites. The extensive drug binding to ascites proteins, by reducing the pharmacologically active free fraction, may lead to the diminished CRS efficacy in PM patients with ascites. Clinical advances in CRS + IPC have outpaced current knowledge of pharmaceutical properties in this setting. IPC, as a locally acting therapy, is subjected to processes different from those governing systemic treatments. This study, to our knowledge, is the first to illustrate the implications of drug properties in the CRS + IPC efficacy against PM. While drugs are now an integral part of PM patient management, there is limited pharmaceutical research in this treatment setting (e.g., effects of hyperthermia or pressure on drug transport or release from delivery systems, pharmacokinetics, pharmacodynamics). Hence, CRS + IPC of PM represents an area where additional pharmaceutical research can assist further development and optimization.
Collapse
Affiliation(s)
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA
| | - Carlos H F Chan
- Department of Surgery and Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kiran Turaga
- School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jessie L S Au
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Ren F, Liu Y, Li S, Li X, Wu X, Li Y, Zhang Z. Therapeutic drug monitoring of free vancomycin concentration in practice: A new analytical technique based on the HFCF-UF sample separation method. Biomed Chromatogr 2023; 37:e5559. [PMID: 36478261 DOI: 10.1002/bmc.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to establish a method for free vancomycin concentration determination in human plasma and apply it to clinical therapeutic drug monitoring (TDM). The unbound vancomycin in plasma was separated by the hollow fiber centrifugal ultrafiltration (HFCF-UF) technique and analyzed by HPLC. Chromatographic conditions were optimized, the specificity, linearity, precision, recovery and stability of the method were examined, and plasma samples of patients were measured. The standard curve for free vancomycin is y = 0.0277x - 0.0080 with good linearity within 0.25-50 μg·mL-1 . The relative and absolute recovery rates for vancomycin were 98.63-101.0% and 88.41-101.2%, respectively. The intraday and interday precision RSDs were <10%. Plasma was stable under several conditions. The TDM value of the free vancomycin concentration of 20 patients was 0.99-38.51 μg·mL-1 , and the correlation between the free and total concentrations was not significant. The unbound fraction of vancomycin ranged from 25.5 to 84.8%, with large variation. The operation of free vancomycin separation by HFCF-UF was simple and suitable for TDM in practice. The unbound fraction of vancomycin in clinical samples varied significantly between individuals. It is recommended to perform free concentration TDM in critically ill patients.
Collapse
Affiliation(s)
- Feifei Ren
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yixin Liu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangchen Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xikun Wu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaqian Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Does Monitoring Total and Free Polymyxin B1 Plasma Concentrations Predict Polymyxin B-Induced Nephrotoxicity? A Retrospective Study in Critically Ill Patients. Infect Dis Ther 2022; 11:1591-1608. [PMID: 35689791 PMCID: PMC9334479 DOI: 10.1007/s40121-022-00655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The correlation between total and free polymyxin B (PMB including PMB1 and PMB2) exposure in vivo and acute kidney injury (AKI) remains obscure. This study explores the relationships between plasma exposure of PMB1 and PMB2 and nephrotoxicity, and investigates the risk factors for PMB-induced acute kidney injury (AKI) in critically ill patients. METHODS Critically ill patients who used PMB and met the criteria were enrolled. The total plasma concentration and plasma binding of PMB1 and PMB2 were analysed by liquid chromatography-tandem mass spectrometry and equilibrium dialysis. RESULTS A total of 89 patients were finally included, and AKI developed in 28.1% of them. The peak concentration of PMB1 (Cmax (B1)) (adjusted odds ratio (AOR) = 1.68, 95% CI 1.08-2.62, p = 0.023), baseline BUN level (AOR = 1.08, 95% CI 1.01-1.16, p = 0.039) and hypertension (AOR = 3.73, 95% CI 1.21-11.54, p = 0.022) were independent risk factors for PMB-induced AKI. The area under the ROC curve of the model was 0.799. When Cmax (B1) was 5.23 μg/ml or more, the probability of AKI was higher than 50%. The ratio of PMB1/PMB2 decreased after PMB preparation entered into the body. The protein binding rate in critically ill patients indicated significant individual differences. Free Cmax (B) and free Cmax (B1) levels in the AKI group were significantly (p < 0.05) higher than those in the non-AKI group. Total and free concentrations of PMB in patients showed a positive correlation. CONCLUSIONS Both the ROC curve and logistic regression model showed that Cmax (B1) was a good predictor for the probability of PMB-induced AKI. Early therapeutic drug monitoring (TDM) of PMB should be considered in critically ill patients. Compared with Cmin (B), Cmax (B) and Cmax (B1) may be helpful for the early prediction of PMB-induced AKI in critically ill patients.
Collapse
|
6
|
Li C, Jiang Y, Chu S, Yin X, Tan S, Huang Z, Dai X, Gong X, Fang X, Tian D. Analysis of low-abundance molecules in complex matrices by quadrupole-linear ion trap mass spectrometry using a simultaneous fragmentation and accumulation strategy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9276. [PMID: 35189675 DOI: 10.1002/rcm.9276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Fast and sensitive analysis of low-abundance molecules in complex matrices has always been a challenge in chemical and biological applications. Mass spectrometry (MS) has been widely used in the fields of chemical and biological analysis due to its unparalleled specificity and sensitivity. However, the MS signals consistently deteriorate in the presence of matrices. Demands for more sensitive and efficient methods to analyze those low-abundance molecules in chemical and biological systems are in urgent need. METHODS Based on a home-made quadrupole-linear ion trap (Q-LIT) mass spectrometer, a simultaneous fragmentation and accumulation strategy was developed to improve the sensitivity of the analysis for the low-abundance molecules in complex matrices. Ions were filtered by the quadrupole into the LIT. The precursor ions were fragmented and the product ions were isolated and accumulated in the LIT simultaneously. The fragmentation, isolation and accumulation processes were conducted at the same time. The accumulation time could be controlled to accumulate sufficient product ions. RESULTS With this strategy, the signal intensity of targeted molecules could be increased by 2-8 times and by increasing the accumulation time, this could be further enhanced. Those interferences induced by isomers and matrices can be reduced by using our method. We further applied our method to the quantification and analysis of biological samples. Tryptic digested peptides of myoglobin (Mb) were successfully detected by our method. CONCLUSIONS We have established a new method with great advantages in the detection of molecules in complex matrices. The application of this method promises better results in the bioanalytical area, especially for the analysis of substances in complex matrices in the future.
Collapse
Affiliation(s)
- Chang Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Shiying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zejian Huang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Di Tian
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| |
Collapse
|
7
|
Peters M, Bockfeld D, Tamm M. Cationic Iridium(I) NHC‐Phosphinidene Complexes and Their Application in Hydrogen Isotope Exchange Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Peters
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Dirk Bockfeld
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
8
|
Comparison of liquid-liquid extraction, microextraction and ultrafiltration for measuring free concentrations of testosterone and phenytoin. Bioanalysis 2022; 14:195-204. [PMID: 35034505 PMCID: PMC8830356 DOI: 10.4155/bio-2021-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: The purpose of the study was to find methods suitable for measuring the free concentrations of testosterone and phenytoin. Materials & methods: Sample solutions of the compounds in buffer and human albumin were processed using liquid-liquid extraction, microextraction and ultrafiltration and analyzed by LC-MS/MS. Results: Liquid-liquid extraction with dibutyl phthalate provided complete extraction from buffer solutions and partial extraction from albumin samples. Spintip C18 devices provided exhaustive extraction from buffer and albumin samples. Spintip C8 devices offered complete extraction from buffer and approximately 50% recovery from albumin samples. Centrifree ultrafiltration devices showed high recovery of free concentrations from all the samples, while Amicon and Nanosep devices provided partial recovery. Conclusion: Spintip C8 and Centrifree devices proved useful for measuring free concentrations.
Collapse
|
9
|
Eke AC. An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics. J Basic Clin Physiol Pharmacol 2021; 33:581-598. [PMID: 34881531 DOI: 10.1515/jbcpp-2021-0312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 01/23/2023]
Abstract
For many years, the medical community has relied in clinical practice on historic data about the physiological changes that occur during pregnancy. However, some newer studies have disputed a number of assumptions in these data for not being evidence-based or derived from large prospective cohort-studies. Accurate knowledge of these physiological changes is important for three reasons: Firstly, it facilitates correct diagnosis of diseases during pregnancy; secondly, it enables us to answer questions about the effects of medication during pregnancy and the ways in which pregnancy alters pharmacokinetic and drug-effects; and thirdly, it allows for proper modeling of physiologically-based pharmacokinetic models, which are increasingly used to predict gestation-specific changes and drug-drug interactions, as well as develop new knowledge on the mode-of-action of drugs, the mechanisms underlying their interactions, and any adverse effects following drug exposure. This paper reviews new evidence regarding the physiologic changes during pregnancy in relation to existing knowledge.
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Electrochemical sensor for tricyclic antidepressants with low nanomolar detection limit: Quantitative Determination of Amitriptyline and Nortriptyline in blood. Talanta 2021; 239:123072. [PMID: 34864535 DOI: 10.1016/j.talanta.2021.123072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022]
Abstract
Amitriptyline and its metabolite, Nortriptyline are commonly used tricyclic antidepressant (TCA) drugs that are electrochemically active. In this work, the performance characteristics of a plasticized PVC membrane-coated glassy carbon (GC) electrode are described for the voltammetric quantification of Amitriptyline and Nortriptyline in whole blood. The highly lipophilic Amitriptyline and Nortriptyline preferentially partition into the plasticized PVC membrane where the free drug is oxidized on the GC electrode. The concentrations of the drugs in the membrane are orders of magnitude larger than in the sample solution, resulting in superb limit of detection (LOD) of the membrane-coated voltammetric sensor: 3 nmol/L for Amitriptyline and 20 nmol/L for Nortriptyline. Conversely, hydrophilic components of the sample solution, e.g., proteins, the protein-bound fraction of the drugs, and electrochemically active small molecules are blocked from entering the membrane, which provides exceptional selectivity for the membrane-coated sensor and feasibility for the measurements of Amitriptyline in whole blood. In this work, the concentrations of Amitriptyline and Nortriptyline were determined in whole blood using the sensor and the results of our analysis were compared to the results of the standard HPLC-MS method. Based on our experience, the one-step voltammetric methods with the membrane-coated sensor may become a real alternative to the significantly more complex HPLC-MS analysis.
Collapse
|
11
|
Celestin MN, Musteata FM. Impact of Changes in Free Concentrations and Drug-Protein Binding on Drug Dosing Regimens in Special Populations and Disease States. J Pharm Sci 2021; 110:3331-3344. [PMID: 34089711 PMCID: PMC8458247 DOI: 10.1016/j.xphs.2021.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Over the last few decades, scientists and clinicians have often focused their attention on the unbound fraction of drugs as an indicator of efficacy and the eventual outcome of drug treatments for specific illnesses. Typically, the total drug concentration (bound and unbound) in plasma is used in clinical trials to assess a compound's efficacy. However, the free concentration of a drug tends to be more closely related to its activity and interaction with the body. Thus far, measuring the unbound concentration has been a challenge. Several mechanistic models have attempted to solve this problem by estimating the free drug fraction from available data such as total drug and binding protein concentrations. The aims of this review are first, to give an overview of the methods that have been used to date to calculate the unbound drug fraction. Second, to assess the pharmacokinetic parameters affected by changes in drug protein binding in special populations such as pediatrics, the elderly, pregnancy, and obesity. Third, to review alterations in drug protein binding in some selected disease states and how these changes impact the clinical outcomes for the patients; the disease states include critical illnesses, transplantation, renal failure, chronic kidney disease, and epilepsy. And finally, to discuss how various disease states shift the ratio of unbound to total drug and the consequences of such shifts on dosing adjustments and reaching the therapeutic target.
Collapse
Affiliation(s)
- Marie N Celestin
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States
| | - Florin M Musteata
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States.
| |
Collapse
|
12
|
Roy KS, Nazdrajić E, Shimelis OI, Ross MJ, Chen Y, Cramer H, Pawliszyn J. Optimizing a High-Throughput Solid-Phase Microextraction System to Determine the Plasma Protein Binding of Drugs in Human Plasma. Anal Chem 2021; 93:11061-11065. [PMID: 34353028 DOI: 10.1021/acs.analchem.1c01986] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma protein binding refers to the binding of a drug to plasma proteins after entering the body. The measurement of plasma protein binding is essential during drug development and in clinical practice, as it provides a more detailed understanding of the available free concentration of a drug in the blood, which is in turn critical for pharmacokinetics and pharmacodynamics studies. In addition, the accurate determination of the free concentration of a drug in the blood is also highly important for therapeutic drug monitoring and in personalized medicine. The present study uses C18-coated solid-phase microextraction 96-pin devices to determine the free concentrations of a set of drugs in plasma, as well as the plasma protein binding of drugs with a wide range of physicochemical properties. It should be noted that the extracted amounts used to calculate the binding constants and plasma protein bindings should be measured at respective equilibrium for plasma and phosphate buffer. Therefore, special attention is placed on properly determining the equilibration times required to correctly estimate the free concentrations of drugs in the investigated systems. The plasma protein binding values obtained with the 96-pin devices are consistent with those reported in the literature. The 96-pin device used in this research can be easily coupled with a Concept96 or other automated robotic systems to create an automated plasma protein binding determination protocol that is both more time and labor efficient compared to conventional equilibrium dialysis and ultrafiltration methods.
Collapse
Affiliation(s)
- Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Olga I Shimelis
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - M James Ross
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Yong Chen
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Hugh Cramer
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
The Effect of Plasma Protein Binding on the Therapeutic Monitoring of Antiseizure Medications. Pharmaceutics 2021; 13:pharmaceutics13081208. [PMID: 34452168 PMCID: PMC8401952 DOI: 10.3390/pharmaceutics13081208] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a widely diffused neurological disorder including a heterogeneous range of syndromes with different aetiology, severity and prognosis. Pharmacological treatments are based on the use, either in mono- or in polytherapy, of antiseizure medications (ASMs), which act at different synaptic levels, generally modifying the excitatory and/or inhibitory response through different action mechanisms. To reduce the risk of adverse effects and drug interactions, ASMs levels should be closely evaluated in biological fluids performing an appropriate Therapeutic Drug Monitoring (TDM). However, many decisions in TDM are based on the determination of the total drug concentration although measurement of the free fraction, which is not bound to plasma proteins, is becoming of ever-increasing importance since it correlates better with pharmacological and toxicological effects. Aim of this work has been to review methodological aspects concerning the evaluation of the free plasmatic fraction of some ASMs, focusing on the effect and the clinical significance that drug-protein binding has in the case of widely used drugs such as valproic acid, phenytoin, perampanel and carbamazepine. Although several validated methodologies are currently available which are effective in separating and quantifying the different forms of a drug, prospective validation studies are undoubtedly needed to better correlate, in real-world clinical contexts, pharmacokinetic monitoring to clinical outcomes.
Collapse
|
14
|
Cibotaru D, Celestin MN, Kane MP, Musteata FM. Method for Simultaneous Determination of Free Concentration, Total Concentration, and Plasma Binding Capacity in Clinical Samples. J Pharm Sci 2020; 110:1401-1411. [PMID: 33307041 DOI: 10.1016/j.xphs.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Most quantitative research methods are based on measuring either the total or the free concentration of an analyte in a sample. However, this is often insufficient for the study of complex biological systems. The main objective of this research was to develop new methods for providing more information from samples: the free concentration (Cf), the total concentration (Ct), and the plasma binding capacity (PBC). Samples were processed using microextraction and ultrafiltration. For each of these techniques, two quantification procedures were used: addition of isotopically labeled standard and repeated analysis of the same sample. The new methods were validated by analyzing clinical samples and samples with known concentrations. Methods based on addition of labeled compound were found to be the fastest, and most reproducible. For analysis of clinical samples, methods based on microextraction were more sensitive and more accurate than those based on ultrafiltration. For analysis of pooled plasma samples, the overall accuracy of all approaches to determine PBC, testosterone Cf, and testosterone Ct was between 94 and 109%, 87-113%, and 94-122% respectively. The new approach goes beyond a simple concentration measurement, giving more information from clinical samples, with great potential for personalizing drug dosage and therapy to the needs of individual patients.
Collapse
Affiliation(s)
- Dorina Cibotaru
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Marie N Celestin
- Albany College of Pharmacy and Health Sciences, Department of Pharmacy Practice, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Michael P Kane
- Albany College of Pharmacy and Health Sciences, Department of Pharmacy Practice, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Florin M Musteata
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
15
|
Simultaneous determination of free and total paclitaxel in blood in a three-phase laminar flow microchip. J Chromatogr A 2020; 1627:461391. [DOI: 10.1016/j.chroma.2020.461391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 02/04/2023]
|
16
|
Mehryab F, Rabbani S, Shahhosseini S, Shekari F, Fatahi Y, Baharvand H, Haeri A. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater 2020; 113:42-62. [PMID: 32622055 DOI: 10.1016/j.actbio.2020.06.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Exosomes are small nanoparticles secreted by almost all cells and have a well-known role in intercellular communication. They are found in different body fluids and can also be isolated from cell culture media. They contain a natural cargo including various protein and nucleic acid molecules originated from their donor cells. In recent years, exosomes have emerged as a desired drug delivery system. They are believed to provide a targeted delivery of drug molecules, supplemented with their natural function. Furthermore, they have a membranous structure similar to liposomes, and that motivated researchers to apply their previous experience of drug loading into liposomes for exosomes. Herein, we discuss applied methods for the encapsulation of different drugs into exosomes, parameters affecting the incorporation of drug molecules into exosomes, characterization techniques, recent achievements, commercialization challenges and the potential future developments of exosomal drugs. Overall, while the application of exosomes as a drug delivery system is still in its infancy, they are considered to be a new class of natural nanocarriers with great potential for clinical application. Understanding of their key formulation parameters, pharmaceutical properties, in vivo behavior and applicable scale-up production will pave their way to the market. STATEMENT OF SIGNIFICANCE: Details of loading methods, characterization and biopharmaceutical properties of drug-incorporated exosomes are presented. Most parameters affecting encapsulation of drugs into exosomes are mentioned to serve as a guide for future studies in this field. Moreover, challenges on the way of exosomes to the market and clinic are described.
Collapse
|
17
|
Prediction of Serum-Free and Cerebrospinal Fluid Valproic Acid Levels in Patients With Hypoalbuminemia After Craniotomy. Ther Drug Monit 2020; 42:610-616. [DOI: 10.1097/ftd.0000000000000749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Lamy E, Fall F, Boigne L, Gromov K, Fabresse N, Grassin-Delyle S. Validation according to European and American regulatory agencies guidelines of an LC-MS/MS method for the quantification of free and total ropivacaine in human plasma. ACTA ACUST UNITED AC 2020; 58:701-708. [DOI: 10.1515/cclm-2018-1298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/05/2019] [Indexed: 11/15/2022]
Abstract
AbstractBackgroundRopivacaine is a widely used local anaesthetic drug, highly bound to plasma proteins with a free plasma fraction of about 5%. Therefore, the monitoring of free drug concentration is most relevant to perform pharmacokinetic studies and to understand the drug pharmacokinetic/pharmacodynamic (PK/PD) relationship.MethodsA high-sensitivity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using reverse-phase LC and electrospray ionisation mass spectrometry with multiple reaction monitoring (MRM) is described for the quantitation of both free and total ropivacaine in human plasma. Ropivacaine-d7 was used as an internal standard (IS).ResultsThe method was validated in the range 0.5–3000 ng/mL, with five levels of QC samples and according to the European Medicine Agency and Food and Drug Administration guidelines. The performance of the method was excellent with a precision in the range 6.2%–14.7%, an accuracy between 93.6% and 113.7% and a coefficient of variation (CV) of the IS-normalised matrix factor below 15%. This suitability of the method for the quantification of free and total ropivacaine in clinical samples was demonstrated with the analysis of samples from patients undergoing knee arthroplasty and receiving a local ropivacaine infiltration.ConclusionsA method was developed and validated for the quantification of free and total ropivacaine in human plasma and was shown suitable for the analysis of clinical samples.
Collapse
Affiliation(s)
- Elodie Lamy
- Plateforme de spectrométrie de masse MasSpecLab, INSERM UMR 1173, UFR Simone Veil – Santé, Université Versailles Saint Quentin, Université Paris Saclay, Montigny le Bretonneux, France
| | - Fanta Fall
- Plateforme de spectrométrie de masse MasSpecLab, INSERM UMR 1173, UFR Simone Veil – Santé, Université Versailles Saint Quentin, Université Paris Saclay, Montigny le Bretonneux, France
| | - Lisa Boigne
- Plateforme de spectrométrie de masse MasSpecLab, INSERM UMR 1173, UFR Simone Veil – Santé, Université Versailles Saint Quentin, Université Paris Saclay, Montigny le Bretonneux, France
| | - Kirill Gromov
- Department of Orthopaedic Surgery, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nicolas Fabresse
- Plateforme de spectrométrie de masse MasSpecLab, INSERM UMR 1173, UFR Simone Veil – Santé, Université Versailles Saint Quentin, Université Paris Saclay, Montigny le Bretonneux, France
- Laboratoire de Toxicologie, Hôpital Raymond Poincaré, AP-HP, Garches, France
| | - Stanislas Grassin-Delyle
- Plateforme de spectrométrie de masse MasSpecLab, INSERM UMR 1173, UFR Simone Veil – Santé, Université Versailles Saint Quentin, Université Paris Saclay, Montigny le Bretonneux, France
- Département des maladies respiratoires, Hôpital Foch, Suresnes, France, Phone: +33.1.70.42.94.22
| |
Collapse
|
19
|
Huq M, Tascon M, Nazdrajic E, Roszkowska A, Pawliszyn J. Measurement of Free Drug Concentration from Biological Tissue by Solid-Phase Microextraction: In Silico and Experimental Study. Anal Chem 2019; 91:7719-7728. [DOI: 10.1021/acs.analchem.9b00983] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Huq
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marcos Tascon
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emir Nazdrajic
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
20
|
Concentration-dependent plasma protein binding: Expect the unexpected. Eur J Pharm Sci 2018; 122:341-346. [DOI: 10.1016/j.ejps.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
|
21
|
Chin PKL, Drennan PG, Gardiner SJ, Zhang M, Dalton SC, Chambers ST, Begg EJ. Total flucloxacillin plasma concentrations poorly reflect unbound concentrations in hospitalized patients with Staphylococcus aureus bacteraemia. Br J Clin Pharmacol 2018; 84:2311-2316. [PMID: 29908071 DOI: 10.1111/bcp.13673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022] Open
Abstract
AIMS Flucloxacillin dosing may be guided by measurement of its total plasma concentrations. Flucloxacillin is highly protein bound with fraction unbound in plasma (fu ) of around 0.04 in healthy individuals. The utility of measuring unbound flucloxacillin concentrations for patients outside the intensive care unit (ICU) is not established. We aimed to compare flucloxacillin fu in non-ICU hospitalised patients against healthy volunteers, and to examine the performance of a published model for predicting unbound concentrations, using total flucloxacillin and plasma albumin concentrations. METHODS Data from 12 healthy volunteers (248 samples) and 47 hospitalized patients (61 samples) were examined. Plasma flucloxacillin concentrations were measured using a validated liquid chromatography-tandem mass spectrometry method. Flucloxacillin fu for the two groups was compared using a generalized estimating equation model to account for clustered observations. The performance of the single protein binding site prediction model in hospitalized patients was compared with measured unbound concentrations using Bland-Altman plots. RESULTS The median (range) flucloxacillin fu for healthy (median albumin 45 g l-1 ) and hospitalized individuals (median albumin 30 g l-1 ) were 0.04 (0.02-0.07) and 0.10 (0.05-0.37), respectively (P < 0.0001). The prediction model underpredicted unbound flucloxacillin concentrations with a mean bias (95% limits of agreement) of -54% (-137%, +30%). CONCLUSIONS The flucloxacillin fu values observed in our cohort of hospitalized patients had a wide range and were greater than those of healthy individuals. Unbound flucloxacillin plasma concentrations were predicted poorly by the model. Instead, unbound concentrations should be measured to guide dosing.
Collapse
Affiliation(s)
- Paul Ken Leong Chin
- Department of Medicine, University of Otago, Christchurch, New Zealand.,Department of Clinical Pharmacology, Canterbury District Health Board, Christchurch, New Zealand
| | - Philip George Drennan
- Department of Clinical Pharmacology, Canterbury District Health Board, Christchurch, New Zealand
| | - Sharon Jane Gardiner
- Antimicrobial Pharmacist, Departments of Clinical Pharmacology, Infectious Diseases and Pharmacy, Christchurch Hospital, Christchurch, New Zealand
| | - Mei Zhang
- Department of Medicine, University of Otago, Christchurch, and Toxicology, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Simon Charles Dalton
- Department of Infectious Diseases, Christchurch Hospital, Christchurch, New Zealand
| | | | - Evan James Begg
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
22
|
Valero M, Burhop A, Jess K, Weck R, Tamm M, Atzrodt J, Derdau V. Evaluation of a P,N-ligated iridium(I) catalyst in hydrogen isotope exchange reactions of aryl and heteroaryl compounds. J Labelled Comp Radiopharm 2018; 61:380-385. [PMID: 29271003 DOI: 10.1002/jlcr.3595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023]
Abstract
We have developed a novel and efficient iridium-catalyzed hydrogen isotope exchange reaction method with secondary and tertiary sulfonamides at ambient temperatures. Furthermore N-oxides and phosphonamides have been successfully applied in hydrogen isotope exchange reactions with moderate to excellent deuterium introduction.
Collapse
Affiliation(s)
- Mégane Valero
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| | - Annina Burhop
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| | - Kristof Jess
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Remo Weck
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jens Atzrodt
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| | - Volker Derdau
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| |
Collapse
|
23
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
24
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
25
|
Schalkwijk S, Greupink R, Burger D. Free dug concentrations in pregnancy: Bound to measure unbound? Br J Clin Pharmacol 2017; 83:2595-2598. [PMID: 28983934 DOI: 10.1111/bcp.13432] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 08/26/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Stein Schalkwijk
- Department of Pharmacy, Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacology & Toxicology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology & Toxicology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - David Burger
- Department of Pharmacy, Radboud Institute for Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
|
27
|
Salvia miltiorrhiza Roots against Cardiovascular Disease: Consideration of Herb-Drug Interactions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9868694. [PMID: 28473993 PMCID: PMC5394393 DOI: 10.1155/2017/9868694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/12/2017] [Indexed: 11/18/2022]
Abstract
Salvia miltiorrhiza root (Danshen) is widely used in Asia for its cardiovascular benefits and contains both hydrophilic phenolic acids and lipophilic tanshinones, which are believed to be responsible for its therapeutic efficacy. This review summarized the effects of these bioactive components from S. miltiorrhiza roots on pharmacokinetics of comedicated drugs with mechanic insights regarding alterations of protein binding, enzyme activity, and transporter activity based on the published data stemming from both in vitro and in vivo human studies. In vitro studies indicated that cytochrome P450 (CYP450), carboxylesterase enzyme, catechol-O-methyltransferase, organic anion transporter 1 (OAT1) and OAT3, and P-glycoprotein were the major targets involved in S. miltiorrhiza-drug interactions. Lipophilic tanshinones had much more potent inhibitory effects towards CYPs activities compared to hydrophilic phenolic acids, evidenced by much lower Ki values of the former. Clinical S. miltiorrhiza-drug interaction studies were mainly conducted using CYP1A2 and CYP3A4 probe substrates. In addition, the effects of coexisting components on the pharmacokinetic behaviors of those noted bioactive compounds were also included herein.
Collapse
|
28
|
Burhop A, Weck R, Atzrodt J, Derdau V. Hydrogen-Isotope Exchange (HIE) Reactions of Secondary and Tertiary Sulfonamides and Sulfonylureas with Iridium(I) Catalysts. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601599] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Annina Burhop
- Sanofi-Aventis Deutschland GmbH; Integrated Drug Discovery; MedChem; Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst Frankfurt Germany
| | - Remo Weck
- Sanofi-Aventis Deutschland GmbH; Integrated Drug Discovery; MedChem; Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst Frankfurt Germany
| | - Jens Atzrodt
- Sanofi-Aventis Deutschland GmbH; Integrated Drug Discovery; MedChem; Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst Frankfurt Germany
| | - Volker Derdau
- Sanofi-Aventis Deutschland GmbH; Integrated Drug Discovery; MedChem; Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst Frankfurt Germany
| |
Collapse
|
29
|
Jess K, Derdau V, Weck R, Atzrodt J, Freytag M, Jones PG, Tamm M. Hydrogen Isotope Exchange with Iridium(I) Complexes Supported by Phosphine-Imidazolin-2-imine P,N Ligands. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601291] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kristof Jess
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Volker Derdau
- Sanofi; R&D, Integrated Drug Discovery, Med. Chem., Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Remo Weck
- Sanofi; R&D, Integrated Drug Discovery, Med. Chem., Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Jens Atzrodt
- Sanofi; R&D, Integrated Drug Discovery, Med. Chem., Isotope Chemistry & Metabolite Synthesis; Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Matthias Freytag
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
30
|
|
31
|
Wei H, Zhang X, Tian X, Wu G. Pharmaceutical applications of affinity-ultrafiltration mass spectrometry: Recent advances and future prospects. J Pharm Biomed Anal 2016; 131:444-453. [PMID: 27668554 DOI: 10.1016/j.jpba.2016.09.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 11/17/2022]
Abstract
The immunoaffinity of protein with ligand is broadly involved in many bioanalytical methods. Affinity-ultrafiltration mass spectrometry (AUF-MS), a platform based on interaction of protein-ligand affinity, has been developed to fish out interesting molecules from complex matrixes. Here we reviewed the basics of AUF-MS and its recent applications to pharmaceutical field, i.e. target-oriented discovery of lead compounds from combinatorial libraries and natural product extracts, and determination of free drug concentration in biosamples. Selected practical examples were highlighted to illustrate the advances of AUF-MS in pharmaceutical fields. The future prospects were also presented.
Collapse
Affiliation(s)
- Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guanghua Wu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
32
|
Kiang TKL, Ensom MHH. A Comprehensive Review on the Predictive Performance of the Sheiner-Tozer and Derivative Equations for the Correction of Phenytoin Concentrations. Ann Pharmacother 2016; 50:311-25. [PMID: 26825643 DOI: 10.1177/1060028016628166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE In settings where free phenytoin concentrations are not available, the Sheiner-Tozer equation-Corrected total phenytoin concentration = Observed total phenytoin concentration/[(0.2 × Albumin) + 0.1]; phenytoin in µg/mL, albumin in g/dL-and its derivative equations are commonly used to correct for altered phenytoin binding to albumin. The objective of this article was to provide a comprehensive and updated review on the predictive performance of these equations in various patient populations. DATA SOURCES A literature search of PubMed, EMBASE, and Google Scholar was conducted using combinations of the following terms: Sheiner-Tozer, Winter-Tozer, phenytoin, predictive equation, precision, bias, free fraction. STUDY SELECTION AND DATA EXTRACTION All English-language articles up to November 2015 (excluding abstracts) were evaluated. DATA SYNTHESIS This review shows the Sheiner-Tozer equation to be biased and imprecise in various critical care, head trauma, and general neurology patient populations. Factors contributing to bias and imprecision include the following: albumin concentration, free phenytoin assay temperature, experimental conditions (eg, timing of concentration sampling, steady-state dosing conditions), renal function, age, concomitant medications, and patient type. Although derivative equations using varying albumin coefficients have improved accuracy (without much improvement in precision) in intensive care and elderly patients, these equations still require further validation. CONCLUSIONS Further experiments are also needed to yield derivative equations with good predictive performance in all populations as well as to validate the equations' impact on actual patient efficacy and toxicity outcomes. More complex, multivariate predictive equations may be required to capture all variables that can potentially affect phenytoin pharmacokinetics and clinical therapeutic outcomes.
Collapse
Affiliation(s)
- Tony K L Kiang
- The University of British Columbia, Vancouver, BC, Canada Vancouver General Hospital, Vancouver, BC, Canada
| | - Mary H H Ensom
- The University of British Columbia, Vancouver, BC, Canada Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Measuring unbound versus total vancomycin concentrations in serum and plasma: methodological issues and relevance. Ther Drug Monit 2015; 37:180-7. [PMID: 25072945 DOI: 10.1097/ftd.0000000000000122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies on the unbound fraction (fu) of vancomycin report highly variable results. Great controversy also exists about the correlation between unbound and total vancomycin concentrations. As differences in (pre-)analytic techniques may explain these findings, we investigated the impact of the procedure used to isolate unbound vancomycin in serum/plasma on fu and the correlation between total and unbound concentrations. METHODS Patient samples (n = 39) were analyzed for total and unbound vancomycin concentrations after ultrafiltration (UF, Centrifree at 4°C and 37°C) or equilibrium dialysis (ED, using a Fast Micro-Equilibrium Dialyzer at 37°C) on an Architect i2000SR. To investigate correlations with potential binding proteins, total protein, albumin, alpha-1-acid glycoprotein, and IgA concentrations were also measured. RESULTS The median fu after ED was 72.5% [interquartile range (IQR), 68.7%-75.0%]. Ultrafiltration at 4°C and 37°C resulted in a median fu of 51.6% (IQR, 48.6%-54.8%) and 75.2% (IQR, 69.3%-78.6%), respectively, with no significant difference between unbound vancomycin concentrations after ED and UF at 37°C (P = 0.13). Unbound concentrations obtained through ED and UF correlated linearly (4°C: r = 0.9457; 37°C: r = 0.9478; both P < 0.0001). Linear mixed-model regression showed that total vancomycin as such was the predominant determinant for the unbound concentration, allowing a reliable prediction (mean bias ± SD, 5.0% ± 7.6%). The studied protein concentrations were of no added value in predicting the unbound concentration. CONCLUSIONS Vancomycin fu after UF at 4°C was on average 30.6% lower than that after UF at 37°C, demonstrating the importance of temperature during UF. Ultrafiltration at 37°C resulted in unbound vancomycin concentrations equivalent with ED. As the unbound concentration could be reliably predicted based on total vancomycin concentrations as such, measurement of unbound vancomycin concentrations has little added value over measurements of total vancomycin concentrations.
Collapse
|
34
|
Parker SL, Guerra Valero YC, Roberts DM, Lipman J, Roberts JA, Wallis SC. Determination of Cefalothin and Cefazolin in Human Plasma, Urine and Peritoneal Dialysate by UHPLC-MS/MS: application to a pilot pharmacokinetic study in humans. Biomed Chromatogr 2015; 30:872-9. [PMID: 26394804 DOI: 10.1002/bmc.3622] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 11/08/2022]
Abstract
An ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the analysis of cefazolin and cefalothin in human plasma (total and unbound), urine and peritoneal dialysate has been developed and validated. Total plasma concentrations are measured following protein precipitation and are suitable for the concentration range of 1-500 µg/mL. Unbound concentrations are measured from ultra-filtered plasma acquired using Centrifree(®) devices and are suitable for the concentration range of 0.1-500 µg/mL for cefazolin and 1-500 µg/mL for cefalothin. The urine method is suitable for a concentration range of 0.1-20 mg/mL for cefazolin and 0.2-20 mg/mL for cefalothin. Peritoneal dialysate concentrations are measured using direct injection, and are suitable for the concentration range of 0.2-100 µg/mL for both cefazolin and cefalothin. The cefazolin and cefalothin plasma (total and unbound), urine and peritoneal dialysate results are reported for recovery, inter-assay precision and accuracy, and the lower limit of quantification, linearity, stability and matrix effects, with all results meeting acceptance criteria. The method was used successfully in a pilot pharmacokinetic study with patients with peritoneal dialysis-associated peritonitis, receiving either intraperitoneal cefazolin or cefalothin. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Suzanne L Parker
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia
| | - Yarmarly C Guerra Valero
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia
| | - Darren M Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia
| | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Steven C Wallis
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography. Anal Bioanal Chem 2015; 408:131-40. [PMID: 26462924 DOI: 10.1007/s00216-015-9082-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022]
Abstract
Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333-665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7-9.5% were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5-10 min or less and required only 1-5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research.
Collapse
|
36
|
Liu N, Lu X, Yang Y, Yao CX, Ning B, He D, He L, Ouyang J. Monitoring binding affinity between drug and α1-acid glycoprotein in real time by Venturi easy ambient sonic-spray ionization mass spectrometry. Talanta 2015; 143:240-244. [DOI: 10.1016/j.talanta.2015.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022]
|
37
|
Sooriyaarachchi M, Morris TT, Gailer J. Advanced LC-analysis of human plasma for metallodrug metabolites. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 16:24-30. [PMID: 26547418 DOI: 10.1016/j.ddtec.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
Understanding the fate of metallodrugs in the bloodstream is critical to assess if the parent drug has a reasonable probability to reach the intended target tissue and to predict toxic side-effects. To gain insight into these processes, we have added pharmacologically relevant doses of metallodrugs to blood plasma and applied an LC-method to directly analyze the latter for metallodrug metabolites. Using human or rabbit plasma, this LC-method was employed to gain insight into the metabolism of clinically used as well as emerging anticancer metallodrugs and to unravel the mechanisms by which small molecular weight compounds that - when co-administered with a metallodrug - decrease the toxic side-effects of the metallodrug by modulating its metabolism. The results suggest that the developed LC-method is useful to probe the fate of biologically active novel metal-complexes in plasma to help select those which may be advanced to animal/clinical studies to ultimately develop safer metallodrugs.
Collapse
Affiliation(s)
- Melani Sooriyaarachchi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Thomas T Morris
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
38
|
Zheng X, Matsuda R, Hage DS. Analysis of free drug fractions by ultrafast affinity extraction: interactions of sulfonylurea drugs with normal or glycated human serum albumin. J Chromatogr A 2014; 1371:82-9. [PMID: 25456590 PMCID: PMC4254497 DOI: 10.1016/j.chroma.2014.10.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/04/2014] [Accepted: 10/24/2014] [Indexed: 02/08/2023]
Abstract
Ultrafast affinity extraction and a multi-dimensional affinity system were developed for measuring free drug fractions at therapeutic levels. This approach was used to compare the free fractions and global affinity constants of several sulfonylurea drugs in the presence of normal human serum albumin (HSA) or glycated forms of this protein, as are produced during diabetes. Affinity microcolumns containing immobilized HSA were first used to extract the free drug fractions in injected drug/protein mixtures. As the retained drug eluted from the HSA microcolumn, it was passed through a second HSA column for further separation and measurement. Items that were considered during the optimization of this approach included the column sizes and flow rates that were used, and the time at which the second column was placed on-line with the HSA microcolumn. This method required only 1.0 μL of a sample per injection and was able to measure free drug fractions as small as 0.09-2.58% with an absolute precision of ±0.02-0.5%. The results that were obtained indicated that glycation can affect the free fractions of sulfonylurea drugs at typical therapeutic levels and that the size of this effect varies with the level of HSA glycation. Global affinity constants that were estimated from these free drug fractions gave good agreement with those predicted from previous binding studies or determined through a reference method. The same approach could be utilized with other drugs and proteins or modified binding agents of clinical or pharmaceutical interest.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ryan Matsuda
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
39
|
Quantitative determination of free/bound atazanavir via high-throughput equilibrium dialysis and LC-MS/MS, and the application in ex vivo samples. Bioanalysis 2014; 6:3169-82. [DOI: 10.4155/bio.14.251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The determination of drug–protein binding is important in the pharmaceutical development process because of the impact of protein binding on both the pharmacokinetics and pharmacodynamics of drugs. Equilibrium dialysis is the preferred method to measure the free drug fraction because it is considered to be more accurate. The throughput of equilibrium dialysis has recently been improved by implementing a 96-well format plate. Results/methodology: This manuscript illustrates the successful application of a 96-well rapid equilibrium dialysis (RED) device in the determination of atazanavir plasma–protein binding. Discussion/conclusion: This RED method of measuring free fraction was successfully validated and then applied to the analysis of clinical plasma samples taken from HIV-infected pregnant women administered atazanavir. Combined with LC-MS/MS detection, the 96-well format equilibrium dialysis device was suitable for measuring the free and bound concentration of pharmaceutical molecules in a high-throughput mode.
Collapse
|
40
|
Biological sample preparation: attempts on productivity increasing in bioanalysis. Bioanalysis 2014; 6:1691-710. [DOI: 10.4155/bio.14.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sample preparation is an important step of any biomedical analysis. Development and validation of fast, reproducible and reliable sample preparation methods would be very helpful in increasing productivity. Except for a few direct injection methods, almost all biological samples should at least be diluted before any analysis. Sometimes dilution is not possible because of the low concentration of the target analyte in the sample, and alternative pretreatments, such as filtration, precipitation and sample clean up using different extraction methods, are needed. This review focuses on the recent achievements in the pretreatment of biological samples and investigates them in six categories (i.e., dilution, filtration/dialysis, precipitation, extraction [solid-phase extraction, liquid–liquid extraction], novel techniques [turbulent flow chromatography, immunoaffinity method, electromembrane extraction] and combined methods). Each category will be discussed according to its productivity rate and suitability for routine analysis, and the discussed methods will be compared according to the mentioned indices.
Collapse
|
41
|
Bioanalysis for plasma protein binding studies in drug discovery and drug development: views and recommendations of the European Bioanalysis Forum. Bioanalysis 2014; 6:673-82. [DOI: 10.4155/bio.13.338] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasma protein binding (PPB) is an important parameter for a drug’s efficacy and safety that needs to be investigated during each drug-development program. Even though regulatory guidance exists to study the extent of PPB before initiating clinical studies, there are no detailed instructions on how to perform and validate such studies. To explore how PPB studies involving bioanalysis are currently executed in the industry, the European Bioanalysis Forum (EBF) has conducted three surveys among their member companies: PPB studies in drug discovery (Part I); in vitro PPB studies in drug development (Part II); and in vivo PPB studies in drug development. This paper reflects the outcome of the three surveys, which, together with the team discussions, formed the basis of the EBF recommendation. The EBF recommends a tiered approach to the design of PPB studies and the bioanalysis of PPB samples: ‘PPB screening’ experiments in (early) drug discovery versus qualified/validated procedures in drug development.
Collapse
|
42
|
The bioanalytical challenge of determining unbound concentration and protein binding for drugs. Bioanalysis 2013; 5:3033-50. [DOI: 10.4155/bio.13.274] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Knowledge regarding unbound concentrations is of vital importance when exploring the PK and PD of a drug. The accurate and reproducible determination of plasma protein binding and unbound concentrations for a compound/drug is a serious challenge for the bioanalytical laboratory. When the drug is in equilibrium with the binding protein(s), this equilibrium will shift when physiological conditions are not met. Furthermore, the true unbound fraction/concentration is unknown, and there are numerous publications in the scientific literature reporting and discussing data that have been produced without sufficient control of the parameters influencing the equilibrium. In this Review, different parameters affecting the equilibrium and analysis are discussed, together with suggestions on how to control these parameters in order to produce as trustworthy results for unbound concentrations/fractions as possible.
Collapse
|
43
|
Wu Q, Wu D, Guan Y. Fast Equilibrium Micro-Extraction from Biological Fluids with Biocompatible Core–Sheath Electrospun Nanofibers. Anal Chem 2013; 85:5924-32. [DOI: 10.1021/ac4006974] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Wu
- Department of Instrumentation
and Analytical Chemistry, Key Laboratory of Separation Science for
Analytical Chemistry of CAS, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian
116023, P. R. China
- Dalian
Institute of Chemical
Physics, Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Dapeng Wu
- Department of Instrumentation
and Analytical Chemistry, Key Laboratory of Separation Science for
Analytical Chemistry of CAS, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian
116023, P. R. China
| | - Yafeng Guan
- Department of Instrumentation
and Analytical Chemistry, Key Laboratory of Separation Science for
Analytical Chemistry of CAS, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian
116023, P. R. China
| |
Collapse
|