1
|
Stovickova L, Hansikova H, Hanzalova J, Musova Z, Semjonov V, Stovicek P, Hadzic H, Novotna L, Simcik M, Strnad P, Serbina A, Karamazovova S, Schwabova Paulasova J, Vyhnalek M, Krsek P, Zumrova A. Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach. J Neurol 2024; 271:3439-3454. [PMID: 38520521 PMCID: PMC11136723 DOI: 10.1007/s00415-024-12223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/25/2024]
Abstract
This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.
Collapse
Affiliation(s)
- Lucie Stovickova
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic.
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Medical Faculty, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jitka Hanzalova
- Department of Immunology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Zuzana Musova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Valerij Semjonov
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Haris Hadzic
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Ludmila Novotna
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Martin Simcik
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Pavel Strnad
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Anastaziia Serbina
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Simona Karamazovova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Jaroslava Schwabova Paulasova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Pavel Krsek
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Alena Zumrova
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| |
Collapse
|
2
|
Lynch DR, Perlman S, Schadt K. Omaveloxolone for the treatment of Friedreich ataxia: clinical trial results and practical considerations. Expert Rev Neurother 2024; 24:251-258. [PMID: 38269532 DOI: 10.1080/14737175.2024.2310617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Omavaloxolone, an NRF2 activator, recently became the first drug approved specifically for the treatment of Friedreich ataxia (FRDA). This landmark achievement provides a background for a review of the detailed data leading to the approval. AREAS COVERED The authors review the data from the 4 major articles on FRDA in the context of the authors' considerable (>1000 patients) experience in treating individuals with FRDA. The data is presented in the context not only of its scientific meaning but also in the practical context of therapy in FRDA. EXPERT OPINION Omaveloxolone provides a significant advance in the treatment of FRDA that is likely to be beneficial in a majority of the FRDA population. The data suggesting a benefit is consistent, and adverse issues are relatively modest. The major remaining questions are the subgroups that are most responsive and how long the beneficial effects will remain significant in FRDA patients.
Collapse
Affiliation(s)
- David R Lynch
- Friedrech Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan Perlman
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Kim Schadt
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Lynch DR, Mathews KD, Perlman S, Zesiewicz T, Subramony S, Omidvar O, Vogel AP, Krtolica A, Litterman N, van der Ploeg L, Heerinckx F, Milner P, Midei M. Double blind trial of a deuterated form of linoleic acid (RT001) in Friedreich ataxia. J Neurol 2023; 270:1615-1623. [PMID: 36462055 DOI: 10.1007/s00415-022-11501-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES Friedreich ataxia is (FRDA) an autosomal recessive neurodegenerative disorder associated with intrinsic oxidative damage, suggesting that decreasing lipid peroxidation (LPO) might ameliorate disease progression. The present study tested the ability of RT001, a deuterated form of linoleic acid (D2-LA), to alter disease severity in patients with FRDA in a double-blind placebo-controlled trial. METHODS Sixty-five subjects were recruited across six sites and received either placebo or active drug for an 11-month study. Subjects were evaluated at 0, 4, 9, and 11 months, with the primary outcome measure being maximum oxygen consumption (MVO2) during cardiopulmonary exercise testing (CPET). A key secondary outcome measure was a composite statistical test using results from the timed 1-min walk (T1MW), peak workload, and MVO2. RESULTS Forty-five subjects completed the protocol. RT001 was well tolerated, with no serious adverse events related to drug. Plasma and red blood cell (RBC) membrane levels of D2-LA and its primary metabolite deuterated arachidonic acid (D2-AA) achieved steady-state concentrations by 4 months. No significant changes in MVO2 were observed for RT001 compared to placebo. Similarly, no differences between the groups were found in secondary or exploratory outcome measures. Post hoc evaluations also suggested minimal effects of RT001 at the dosages used in this study. INTERPRETATIONS The results of this study provide no evidence for a significant benefit of RT001 at the dosages tested in this Friedreich ataxia patient population.
Collapse
Affiliation(s)
- David R Lynch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, 502F Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Katherine D Mathews
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Susan Perlman
- University of California Los Angeles, Los Angeles, USA
| | - Theresa Zesiewicz
- USF Ataxia Research Center, University of South Florida, James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Sub Subramony
- Norman Fixel Center for Neurological Disorders, University of Florida College of Medicine, Gainesville, USA
| | - Omid Omidvar
- University of California Los Angeles, Los Angeles, USA
| | - Adam P Vogel
- University of Melbourne, Parkville, Australia.,Redenlab Inc, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
4
|
Angulo MB, Bertalovitz A, Argenziano MA, Yang J, Patel A, Zesiewicz T, McDonald TV. Frataxin deficiency alters gene expression in Friedreich ataxia derived IPSC-neurons and cardiomyocytes. Mol Genet Genomic Med 2022; 11:e2093. [PMID: 36369844 PMCID: PMC9834160 DOI: 10.1002/mgg3.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is an autosomal recessive disease, whereby homozygous inheritance of an expanded GAA trinucleotide repeat expansion in the first intron of the FXN gene leads to transcriptional repression of the encoded protein frataxin. FRDA is a progressive neurodegenerative disorder, but the primary cause of death is heart disease which occurs in 60% of the patients. Several functions of frataxin have been proposed, but none of them fully explain why its deficiency causes the FRDA phenotypes nor why the most affected cell types are neurons and cardiomyocytes. METHODS To investigate, we generated iPSC-derived neurons (iNs) and cardiomyocytes (iCMs) from an FRDA patient and upregulated FXN expression via lentivirus without altering genomic GAA repeats at the FXN locus. RESULTS RNA-seq and differential gene expression enrichment analyses demonstrated that frataxin deficiency affected the expression of glycolytic pathway genes in neurons and extracellular matrix pathway genes in cardiomyocytes. Genes in these pathways were differentially expressed when compared to a control and restored to control levels when FRDA cells were supplemented with frataxin. CONCLUSIONS These results offer novel insight into specific roles of frataxin deficiency pathogenesis in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Mariana B. Angulo
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Alexander Bertalovitz
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Mariana A. Argenziano
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Jiajia Yang
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Aarti Patel
- Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Theresa Zesiewicz
- Department of NeurologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Thomas V. McDonald
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| |
Collapse
|
5
|
Wang D, Ho ES, Cotticelli MG, Xu P, Napierala JS, Hauser LA, Napierala M, Himes BE, Wilson RB, Lynch DR, Mesaros C. Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia. J Lipid Res 2022; 63:100255. [PMID: 35850241 PMCID: PMC9399481 DOI: 10.1016/j.jlr.2022.100255] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and β-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.
Collapse
Affiliation(s)
- Dezhen Wang
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elaine S Ho
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peining Xu
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill S Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Lauren A Hauser
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Marek Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David R Lynch
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Dong YNA, Mesaros C, Xu P, Mercado-Ayón E, Halawani S, Ngaba LV, Warren N, Sleiman P, Rodden LN, Schadt KA, Blair IA, Lynch DR. Frataxin controls ketone body metabolism through regulation of OXCT1. PNAS NEXUS 2022; 1:pgac142. [PMID: 36016708 PMCID: PMC9396447 DOI: 10.1093/pnasnexus/pgac142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/21/2022] [Indexed: 02/05/2023]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by the deficiency of mitochondrial protein frataxin, which plays a crucial role in iron-sulphur cluster formation and ATP production. The cellular function of frataxin is not entirely known. Here, we demonstrate that frataxin controls ketone body metabolism through regulation of 3-Oxoacid CoA-Transferase 1 (OXCT1), a rate limiting enzyme catalyzing the conversion of ketone bodies to acetoacetyl-CoA that is then fed into the Krebs cycle. Biochemical studies show a physical interaction between frataxin and OXCT1 both in vivo and in vitro. Frataxin overexpression also increases OXCT1 protein levels in human skin fibroblasts while frataxin deficiency decreases OXCT1 in multiple cell types including cerebellum and skeletal muscle both acutely and chronically, suggesting that frataxin directly regulates OXCT1. This regulation is mediated by frataxin-dependent suppression of ubiquitin-proteasome system (UPS)-dependent OXCT1 degradation. Concomitantly, plasma ketone bodies are significantly elevated in frataxin deficient knock-in/knockout (KIKO) mice with no change in the levels of other enzymes involved in ketone body production. In addition, ketone bodies fail to be metabolized to acetyl-CoA accompanied by increased succinyl-CoA in vitro in frataxin deficient cells, suggesting that ketone body elevation is caused by frataxin-dependent reduction of OXCT1 leading to deficits in tissue utilization of ketone bodies. Considering the potential role of metabolic abnormalities and deficiency of ATP production in FRDA, our results suggest a new role for frataxin in ketone body metabolism and also suggest modulation of OXCT1 may be a potential therapeutic approach for FRDA.
Collapse
Affiliation(s)
- Yi NA Dong
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peining Xu
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sarah Halawani
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Warren
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Patrick Sleiman
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kimberly A Schadt
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
7
|
Rodden LN, Rummey C, Dong YN, Lynch DR. Clinical Evidence for Variegated Silencing in Patients With Friedreich Ataxia. Neurol Genet 2022; 8:e683. [PMID: 35620135 PMCID: PMC9128033 DOI: 10.1212/nxg.0000000000000683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives Friedreich ataxia (FRDA) is a neurodegenerative disease caused by a GAA triplet repeat (GAA-TR) expansion in intron 1 of the FXN gene. Patients have 100-1,300 GAA triplets compared with less than 30 in healthy controls. The GAA-TR expansion leads to FXN silencing, and consequent frataxin protein deficiency results in progressive ataxia, scoliosis, cardiomyopathy, and diabetes. The overt heterogeneity in age at onset and disease severity is explained partly by the length of the GAA-TR, in which shorter repeats correlate with milder disease. Evidence of variegated silencing in FRDA suggests that patients with shorter repeats retain a significant proportion of cells with FXN genes that have escaped GAA-TR expansion-induced silencing, explaining the less severe frataxin deficiency in this subpopulation. In ex vivo experiments, the proportion of spared cells negatively correlates with GAA-TR length until it plateaus at 500 triplets, an indication that the maximal number of silenced cells has been reached. In this study, we assessed whether an analogous ceiling effect occurs in severity of clinical features of FRDA by analyzing clinical outcome data. Methods The FRDA Clinical Outcome Measures Study database was used for a cross-sectional analysis of 1,000 patients with FRDA. Frataxin levels were determined by lateral flow immunoassays. Results The length of the GAA-TR in our cohort predicted frataxin level (R2 = 0.38, p < 0.0001) and age at onset (R2 = 0.46, p < 0.0001) but only with GAA-TRs with ≤700 triplets. Age and disease duration predicted performance on clinical outcome measures, and such predictions in linear regression models statistically improved in the subcohort of patients with >700 GAA triplets. The prevalence of cardiomyopathy and scoliosis increased as GAA-TR length increased up to 700 GAA triplets where prevalence plateaued. Discussion Our data suggest that there is a ceiling effect on the clinical consequences of GAA-TR length in FRDA, as would be predicted by variegated silencing. Patients with GAA-TRs of >700 triplets represent a subgroup in which the severity of clinical manifestations based on GAA-TR length have reached maximal levels and therefore display limited clinical variability in disease progression.
Collapse
Affiliation(s)
- Layne N. Rodden
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - Christian Rummey
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - Yi Na Dong
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - David R. Lynch
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| |
Collapse
|
8
|
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by deficiency of frataxin, an essential mitochondrial protein involved in iron sulfur cluster biogenesis, oxidative phosphorylation and other processes. FRDA most notably affects the heart, sensory neurons, spinal cord, cerebellum, and other brain regions, and manifests clinically as ataxia, sensory loss, dysarthria, spasticity, and hypertrophic cardiomyopathy. Therapeutic approaches in FRDA have consisted of two different approaches: (1) augmenting or restoring frataxin production and (2) modulating a variety of downstream processes related to mitochondrial dysfunction, including reactive oxygen species production, ferroptosis, or Nrf2 activation. AREAS COVERED In this review, we summarize data from major phase II clinical trials in FRDA published between 2015 and 2020, which includes A0001/EPI743, Omaveloxolone, RT001, and Actimmune. EXPERT OPINION A growing number of drug candidates are being tested in phase II clinical trials for FRDA; however, most have not met their primary endpoints, and none have received FDA approval. In this review, we aim to summarize completed phase II clinical trials in FRDA, outlining critical lessons that have been learned and that should be incorporated into future trial design to ultimately optimize drug development in FRDA.
Collapse
|
9
|
Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal 2021; 5:NS20200093. [PMID: 34046211 PMCID: PMC8132591 DOI: 10.1042/ns20200093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Friedreich ataxia (FRDA) is a recessive disorder resulting from relative deficiency of the mitochondrial protein frataxin. Frataxin functions in the process of iron–sulfur (Fe–S) cluster synthesis. In this review, we update some of the processes downstream of frataxin deficiency that may mediate the pathophysiology. Based on cellular models, in vivo models and observations of patients, ferroptosis may play a major role in the pathogenesis of FRDA along with depletion of antioxidant reserves and abnormalities of mitochondrial biogenesis. Ongoing clinical trials with ferroptosis inhibitors and nuclear factor erythroid 2-related factor 2 (Nrf2) activators are now targeting each of the processes. In addition, better understanding of the mitochondrial events in FRDA may allow the development of improved imaging methodology for assessing the disorder. Though not technologically feasible at present, metabolic imaging approaches may provide a direct methodology to understand the mitochondrial changes occurring in FRDA and provide a methodology to monitor upcoming trials of frataxin restoration.
Collapse
|
10
|
Smith FM, Kosman DJ. Molecular Defects in Friedreich's Ataxia: Convergence of Oxidative Stress and Cytoskeletal Abnormalities. Front Mol Biosci 2020; 7:569293. [PMID: 33263002 PMCID: PMC7686857 DOI: 10.3389/fmolb.2020.569293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2020] [Indexed: 01/18/2023] Open
Abstract
Friedreich’s ataxia (FRDA) is a multi-faceted disease characterized by progressive sensory–motor loss, neurodegeneration, brain iron accumulation, and eventual death by hypertrophic cardiomyopathy. FRDA follows loss of frataxin (FXN), a mitochondrial chaperone protein required for incorporation of iron into iron–sulfur cluster and heme precursors. After the discovery of the molecular basis of FRDA in 1996, over two decades of research have been dedicated to understanding the temporal manifestations of disease both at the whole body and molecular level. Early research indicated strong cellular iron dysregulation in both human and yeast models followed by onset of oxidative stress. Since then, the pathophysiology due to dysregulation of intracellular iron chaperoning has become central in FRDA relative to antioxidant defense and run-down in energy metabolism. At the same time, limited consideration has been given to changes in cytoskeletal organization, which was one of the first molecular defects noted. These alterations include both post-translational oxidative glutathionylation of actin monomers and differential DNA processing of a cytoskeletal regulator PIP5K1β. Currently unknown in respect to FRDA but well understood in the context of FXN-deficient cell physiology is the resulting impact on the cytoskeleton; this disassembly of actin filaments has a particularly profound effect on cell–cell junctions characteristic of barrier cells. With respect to a neurodegenerative disorder such as FRDA, this cytoskeletal and tight junction breakdown in the brain microvascular endothelial cells of the blood–brain barrier is likely a component of disease etiology. This review serves to outline a brief history of this research and hones in on pathway dysregulation downstream of iron-related pathology in FRDA related to actin dynamics. The review presented here was not written with the intent of being exhaustive, but to instead urge the reader to consider the essentiality of the cytoskeleton and appreciate the limited knowledge on FRDA-related cytoskeletal dysfunction as a result of oxidative stress. The review examines previous hypotheses of neurodegeneration with brain iron accumulation (NBIA) in FRDA with a specific biochemical focus.
Collapse
Affiliation(s)
- Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
11
|
Fil D, Chacko BK, Conley R, Ouyang X, Zhang J, Darley-Usmar VM, Zuberi AR, Lutz CM, Napierala M, Napierala JS. Mitochondrial damage and senescence phenotype of cells derived from a novel frataxin G127V point mutation mouse model of Friedreich's ataxia. Dis Model Mech 2020; 13:dmm045229. [PMID: 32586831 PMCID: PMC7406325 DOI: 10.1242/dmm.045229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeat sequences in intron 1 of FXN, whereas a fraction of patients are compound heterozygotes, with a missense or nonsense mutation in one FXN allele and expanded GAAs in the other. A prevalent missense mutation among FRDA patients changes a glycine at position 130 to valine (G130V). Herein, we report generation of the first mouse model harboring an Fxn point mutation. Changing the evolutionarily conserved glycine 127 in mouse Fxn to valine results in a failure-to-thrive phenotype in homozygous animals and a substantially reduced number of offspring. Like G130V in FRDA, the G127V mutation results in a dramatic decrease of Fxn protein without affecting transcript synthesis or splicing. FxnG127V mouse embryonic fibroblasts exhibit significantly reduced proliferation and increased cell senescence. These defects are evident in early passage cells and are exacerbated at later passages. Furthermore, increased frequency of mitochondrial DNA lesions and fragmentation are accompanied by marked amplification of mitochondrial DNA in FxnG127V cells. Bioenergetics analyses demonstrate higher sensitivity and reduced cellular respiration of FxnG127V cells upon alteration of fatty acid availability. Importantly, substitution of FxnWT with FxnG127V is compatible with life, and cellular proliferation defects can be rescued by mitigation of oxidative stress via hypoxia or induction of the NRF2 pathway. We propose FxnG127V cells as a simple and robust model for testing therapeutic approaches for FRDA.
Collapse
Affiliation(s)
- Daniel Fil
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Balu K Chacko
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robbie Conley
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aamir R Zuberi
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Cathleen M Lutz
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Rodríguez LR, Lapeña T, Calap-Quintana P, Moltó MD, Gonzalez-Cabo P, Navarro Langa JA. Antioxidant Therapies and Oxidative Stress in Friedreich´s Ataxia: The Right Path or Just a Diversion? Antioxidants (Basel) 2020; 9:E664. [PMID: 32722309 PMCID: PMC7465446 DOI: 10.3390/antiox9080664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Friedreich´s ataxia is the commonest autosomal recessive ataxia among population of European descent. Despite the huge advances performed in the last decades, a cure still remains elusive. One of the most studied hallmarks of the disease is the increased production of oxidative stress markers in patients and models. This feature has been the motivation to develop treatments that aim to counteract such boost of free radicals and to enhance the production of antioxidant defenses. In this work, we present and critically review those "antioxidant" drugs that went beyond the disease´s models and were approved for its application in clinical trials. The evaluation of these trials highlights some crucial aspects of the FRDA research. On the one hand, the analysis contributes to elucidate whether oxidative stress plays a central role or whether it is only an epiphenomenon. On the other hand, it comments on some limitations in the current trials that complicate the analysis and interpretation of their outcome. We also include some suggestions that will be interesting to implement in future studies and clinical trials.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Tamara Lapeña
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 46100 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | |
Collapse
|
13
|
Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother 2019; 20:1855-1867. [PMID: 31311349 DOI: 10.1080/14656566.2019.1639671] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Friedreich ataxia (FRDA), a rare disease caused by the deficiency of the mitochondrial matrix protein frataxin, affects roughly 1 in 50,000 individuals worldwide. Current and emerging therapies focus on reversing the deleterious effects of such deficiency including mitochondrial augmentation and increasing frataxin levels, providing the possibility of treatment options for this physiologically complex, multisystem disorder. Areas covered: In this review article, the authors discuss the current and prior in vivo and in vitro research studies related to the treatment of FRDA, with a particular interest in future implications of each therapy. Expert opinion: Since the discovery of FXN in 1996, multiple clinical trials have occurred or are currently occurring; at a rapid pace for a rare disease. These trials have been directed at the augmentation of mitochondrial function and/or alleviation of symptoms and are not regarded as potential cures in FRDA. Either a combination of therapies or a drug that replaces or increases the pathologically low levels of frataxin better represent potential cures in FRDA.
Collapse
Affiliation(s)
- Alexandra Clay
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Patrick Hearle
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Kim Schadt
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| |
Collapse
|
14
|
Lynch DR, Farmer J, Hauser L, Blair IA, Wang QQ, Mesaros C, Snyder N, Boesch S, Chin M, Delatycki MB, Giunti P, Goldsberry A, Hoyle C, McBride MG, Nachbauer W, O'Grady M, Perlman S, Subramony SH, Wilmot GR, Zesiewicz T, Meyer C. Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia. Ann Clin Transl Neurol 2018; 6:15-26. [PMID: 30656180 PMCID: PMC6331199 DOI: 10.1002/acn3.660] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Previous studies have demonstrated that suppression of Nrf2 in Friedreich ataxia tissues contributes to excess oxidative stress, mitochondrial dysfunction, and reduced ATP production. Omaveloxolone, an Nrf2 activator and NF-kB suppressor, targets dysfunctional inflammatory, metabolic, and bioenergetic pathways. The dose-ranging portion of this Phase 2 study assessed the safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia patients (NCT02255435). Methods Sixty-nine Friedreich ataxia patients were randomized 3:1 to either omaveloxolone or placebo administered once daily for 12 weeks. Patients were randomized in cohorts of eight patients, at dose levels of 2.5-300 mg/day. Results Omaveloxolone was well tolerated, and adverse events were generally mild. Optimal pharmacodynamic changes (noted by changes in ferritin and GGT) were observed at doses of 80 and 160 mg/day. No significant changes were observed in the primary outcome, peak work load in maximal exercise testing (0.9 ± 2.9 W, placebo corrected). At the 160 mg/day dose, omaveloxolone improved the secondary outcome of the mFARS by 3.8 points versus baseline (P = 0.0001) and by 2.3 points versus placebo (P = 0.06). Omaveloxolone produced greater improvements in mFARS in patients that did not have musculoskeletal foot deformity (pes cavus). In patients without this foot deformity, omaveloxolone improved mFARS by 6.0 points from baseline (P < 0.0001) and by 4.4 points versus placebo (P = 0.01) at the 160 mg/day. Interpretation Treatment of Friedreich ataxia patients with omaveloxolone at the optimal dose level of 160 mg/day appears to improve neurological function. Therefore, omaveloxolone treatment is being examined in greater detail at 150 mg/day for Friedreich ataxia.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology The Children's Hospital of Philadelphia 502 Abramson Research Center 3615 Civic Center Blvd Philadelphia Pennsylvania 19104-4318
| | - Jennifer Farmer
- Friedreich's Ataxia Research Alliance 533 W Uwchlan Ave Downingtown Pennsylvania 19335
| | - Lauren Hauser
- Division of Neurology The Children's Hospital of Philadelphia 502 Abramson Research Center 3615 Civic Center Blvd Philadelphia Pennsylvania 19104-4318
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Qing Qing Wang
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Nathaniel Snyder
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Sylvia Boesch
- Department of Neurology Medizinische Universität Innsbruck Christoph-Probst-Platz 1 Innrain 52 6020 Innsbruck Austria
| | - Melanie Chin
- Reata Pharmaceuticals 2801 Gateway Drive Suite 150 Irving Texas 75063
| | - Martin B Delatycki
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Flemington Road Parkville Victoria 3052 Australia
| | - Paola Giunti
- Institute of Neurology University College of London Queen Square London United Kingdom WC1N 3BG
| | - Angela Goldsberry
- Department of Neurology Medizinische Universität Innsbruck Christoph-Probst-Platz 1 Innrain 52 6020 Innsbruck Austria
| | - Chad Hoyle
- Department of Neurology The Ohio State University 395 W. 12th Ave. 7th Floor Columbus Ohio 43210
| | - Michael G McBride
- Division of Neurology The Children's Hospital of Philadelphia 502 Abramson Research Center 3615 Civic Center Blvd Philadelphia Pennsylvania 19104-4318
| | - Wolfgang Nachbauer
- Department of Neurology Medizinische Universität Innsbruck Christoph-Probst-Platz 1 Innrain 52 6020 Innsbruck Austria
| | - Megan O'Grady
- Reata Pharmaceuticals 2801 Gateway Drive Suite 150 Irving Texas 75063
| | - Susan Perlman
- Department of Neurology University of California Los Angeles BOX 956975 1-167 RNRC Los Angeles California 90095
| | - S H Subramony
- Department of Neurology McKnight Brain Institute Room L3-100 1149 Newell Drive Gainesville Florida 32611
| | - George R Wilmot
- Department of Neurology Emory University 1365 Clifton Rd Atlanta Georgia 30322
| | - Theresa Zesiewicz
- Department of Neurology University of South Florida 12901 Bruce B Downs Blvd. MDC 55 Tampa Florida 33612
| | - Colin Meyer
- Reata Pharmaceuticals 2801 Gateway Drive Suite 150 Irving Texas 75063
| |
Collapse
|
15
|
Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal 2018; 2:NS20180060. [PMID: 32714592 PMCID: PMC7373238 DOI: 10.1042/ns20180060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease with developmental features caused by a genetic deficiency of frataxin, a small, nuclear-encoded mitochondrial protein. Frataxin deficiency leads to impairment of iron–sulphur cluster synthesis, and consequently, ATP production abnormalities. Based on the involvement of such processes in FRDA, initial pathophysiological hypotheses focused on reactive oxygen species (ROS) production as a key component of the mechanism. With further study, a variety of other events appear to be involved, including abnormalities of mitochondrially related metabolism and dysfunction in mitochondrial biogenesis. Consequently, present therapies focus not only on free radical damage, but also on control of metabolic abnormalities and correction of mitochondrial biogenesis. Understanding the multitude of abnormalities in FRDA thus offers possibilities for treatment of this disorder.
Collapse
|
16
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
17
|
Calap-Quintana P, Navarro JA, González-Fernández J, Martínez-Sebastián MJ, Moltó MD, Llorens JV. Drosophila melanogaster Models of Friedreich's Ataxia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5065190. [PMID: 29850527 PMCID: PMC5907503 DOI: 10.1155/2018/5065190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 11/17/2022]
Abstract
Friedreich's ataxia (FRDA) is a rare inherited recessive disorder affecting the central and peripheral nervous systems and other extraneural organs such as the heart and pancreas. This incapacitating condition usually manifests in childhood or adolescence, exhibits an irreversible progression that confines the patient to a wheelchair, and leads to early death. FRDA is caused by a reduced level of the nuclear-encoded mitochondrial protein frataxin due to an abnormal GAA triplet repeat expansion in the first intron of the human FXN gene. FXN is evolutionarily conserved, with orthologs in essentially all eukaryotes and some prokaryotes, leading to the development of experimental models of this disease in different organisms. These FRDA models have contributed substantially to our current knowledge of frataxin function and the pathogenesis of the disease, as well as to explorations of suitable treatments. Drosophila melanogaster, an organism that is easy to manipulate genetically, has also become important in FRDA research. This review describes the substantial contribution of Drosophila to FRDA research since the characterization of the fly frataxin ortholog more than 15 years ago. Fly models have provided a comprehensive characterization of the defects associated with frataxin deficiency and have revealed genetic modifiers of disease phenotypes. In addition, these models are now being used in the search for potential therapeutic compounds for the treatment of this severe and still incurable disease.
Collapse
Affiliation(s)
- P. Calap-Quintana
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
| | - J. A. Navarro
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - J. González-Fernández
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
| | | | - M. D. Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - J. V. Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
| |
Collapse
|
18
|
Rummey C, Kichula E, Lynch DR. Clinical trial design for Friedreich ataxia - Where are we now and what do we need? Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1449638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christian Rummey
- Departments of Neurology and Pediatrics, Clinical Data Science GmbH, Basel, Switzerland
| | - Elizabeth Kichula
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R. Lynch
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
19
|
Guo L, Wang Q, Weng L, Hauser LA, Strawser CJ, Rocha AG, Dancis A, Mesaros C, Lynch DR, Blair IA. Liquid Chromatography-High Resolution Mass Spectrometry Analysis of Platelet Frataxin as a Protein Biomarker for the Rare Disease Friedreich's Ataxia. Anal Chem 2018; 90:2216-2223. [PMID: 29272104 PMCID: PMC5817373 DOI: 10.1021/acs.analchem.7b04590] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Friedreich's ataxia (FA) is an autosomal recessive disease caused by an intronic GAA triplet expansion in the FXN gene, leading to reduced expression of the mitochondrial protein frataxin. FA is estimated to affect 1 in 50 000 with a mean age of death in the fourth decade of life. There are no approved treatments for FA, although experimental approaches, which involve up-regulation or replacement of frataxin protein, are being tested. Frataxin is undetectable in serum or plasma, and whole blood cannot be used because it is present in long-lived erythrocytes. Therefore, an assay was developed for analyzing frataxin in platelets, which have a half-life of 10 days. The assay is based on stable isotope dilution immunopurification two-dimensional nano-ultra high performance liquid chromatography/parallel reaction monitoring/mass spectrometry. The lower limit of quantification was 0.078 pg frataxin/μg protein, and the assay had 100% sensitivity and specificity for discriminating between controls and FA cases. The mean levels of control and FA platelet frataxin were 9.4 ± 2.6 and 2.4 ± 0.6 pg/μg protein, respectively. The assay should make it possible to rigorously monitor the effects of therapeutic interventions on frataxin expression in this devastating disease.
Collapse
Affiliation(s)
- Lili Guo
- Penn SRP Center and Center of Excellence in Environmental Toxicology Center, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn/CHOP Center of Excellence in Friedreich’s Ataxia, Philadelphia, Pennsylvania 19104, United States
| | - Qingqing Wang
- Penn SRP Center and Center of Excellence in Environmental Toxicology Center, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn/CHOP Center of Excellence in Friedreich’s Ataxia, Philadelphia, Pennsylvania 19104, United States
| | - Liwei Weng
- Penn SRP Center and Center of Excellence in Environmental Toxicology Center, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lauren A. Hauser
- Penn/CHOP Center of Excellence in Friedreich’s Ataxia, Philadelphia, Pennsylvania 19104, United States
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Departments of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cassandra J. Strawser
- Penn/CHOP Center of Excellence in Friedreich’s Ataxia, Philadelphia, Pennsylvania 19104, United States
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Departments of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Agostinho G. Rocha
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Clementina Mesaros
- Penn SRP Center and Center of Excellence in Environmental Toxicology Center, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn/CHOP Center of Excellence in Friedreich’s Ataxia, Philadelphia, Pennsylvania 19104, United States
| | - David R. Lynch
- Penn/CHOP Center of Excellence in Friedreich’s Ataxia, Philadelphia, Pennsylvania 19104, United States
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
- Departments of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ian A. Blair
- Penn SRP Center and Center of Excellence in Environmental Toxicology Center, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn/CHOP Center of Excellence in Friedreich’s Ataxia, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Sims C, Salliant N, Worth AJ, Parry R, Mesaros C, Blair IA, Snyder NW. Metabolic tracing analysis reveals substrate-specific metabolic deficits in platelet storage lesion. Transfusion 2017; 57:2683-2689. [PMID: 28836286 DOI: 10.1111/trf.14292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Storage of platelets (PLTs) results in a progressive defect termed PLT storage lesion (PSL). The PSL is characterized by poor PLT quality on a variety of assays. Metabolic defects are thought to underlie the PSL; thus this study was designed to quantitatively probe specific metabolic pathways over PLT storage. STUDY DESIGN AND METHODS Relative incorporation of stable isotope-labeled substrates was quantified by isotopologue analysis of key acyl-coenzyme A (CoA) thioester products for fresh, viable (after collection, Days 2-5), and expired PLTs (after Day 5). We examined the incorporation of acetate, glucose, and palmitate into acetyl- and succinyl-CoA via liquid chromatography-tandem mass spectrometry. RESULTS Storage-related defects in the incorporation of acetyl-CoA derived from acetate and palmitate were observed. Carbon derived from palmitate and acetate in succinyl-CoA was reduced over storage time. Glucose incorporation into succinyl-CoA increased in viable PLTs and then decreased in expired PLTs. Carbon derived from octanoate and pyruvate remained partially able to incorporate into acetyl- and succinyl-CoA in expired PLTs, with high variability in pyruvate incorporation. CONCLUSION Isotopologue analysis is useful in probing substrate specific defects in the PSL.
Collapse
Affiliation(s)
- Carrie Sims
- Division of Traumatology, Surgical Critical Care and Emergency Surgery
| | - Noelle Salliant
- Division of Traumatology, Surgical Critical Care and Emergency Surgery
| | - Andrew J Worth
- Department of Systems Pharmacology and Translational Therapeutics
| | - Robert Parry
- Department of Systems Pharmacology and Translational Therapeutics
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics.,Penn SRP Center and Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics.,Penn SRP Center and Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Company profile: BluePen Biomarkers LLC – integrated biomarker solutions. Future Sci OA 2016; 2:FSO124. [PMID: 28031971 PMCID: PMC5137845 DOI: 10.4155/fsoa-2016-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022] Open
Abstract
BluePen Biomarkers provides a unique comprehensive multi-omics biomarker discovery and validation platform. We can quantify, integrate and analyze genomics, proteomics, metabolomics and lipidomics biomarkers, alongside clinical data, demographics and other phenotypic data. A unique bio-inspired signal processing analytic approach is used that has the proven ability to identify biomarkers in a wide variety of diseases. The resulting biomarkers can be used for diagnosis, prognosis, mechanistic studies and predicting treatment response, in contexts from core research through clinical trials. BluePen Biomarkers provides an additional groundbreaking research goal: identifying surrogate biomarkers from different modalities. This not only provides new biological insights, but enables least invasive, least-cost tests that meet or exceed the predictive quality of current tests.
Collapse
|
22
|
Worth AJ, Marchione DM, Parry RC, Wang Q, Gillespie KP, Saillant NN, Sims C, Mesaros C, Snyder NW, Blair IA. LC-MS Analysis of Human Platelets as a Platform for Studying Mitochondrial Metabolism. J Vis Exp 2016:e53941. [PMID: 27077278 DOI: 10.3791/53941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Perturbed mitochondrial metabolism has received renewed interest as playing a causative role in a range of diseases. Probing alterations to metabolic pathways requires a model in which external factors can be well controlled, allowing for reproducible and meaningful results. Many studies employ transformed cellular models for these purposes; however, metabolic reprogramming that occurs in many cancer cell lines may introduce confounding variables. For this reason primary cells are desirable, though attaining adequate biomass for metabolic studies can be challenging. Here we show that human platelets can be utilized as a platform to carry out metabolic studies in combination with liquid chromatography-tandem mass spectrometry analysis. This approach is amenable to relative quantification and isotopic labeling to probe the activity of specific metabolic pathways. Availability of platelets from individual donors or from blood banks makes this model system applicable to clinical studies and feasible to scale up. Here we utilize isolated platelets to confirm previously identified compensatory metabolic shifts in response to the complex I inhibitor rotenone. More specifically, a decrease in glycolysis is accompanied by an increase in fatty acid oxidation to maintain acetyl-CoA levels. Our results show that platelets can be used as an easily accessible and medically relevant model to probe the effects of xenobiotics on cellular metabolism.
Collapse
Affiliation(s)
- Andrew J Worth
- Center for Cancer Pharmacology, University of Pennsylvania; Center for Excellence in Environmental Toxicology, University of Pennsylvania
| | - Dylan M Marchione
- Center for Excellence in Environmental Toxicology, University of Pennsylvania; Penn SRP and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Robert C Parry
- Center for Cancer Pharmacology, University of Pennsylvania; Center for Excellence in Environmental Toxicology, University of Pennsylvania
| | - Qingqing Wang
- Center for Excellence in Environmental Toxicology, University of Pennsylvania; Penn SRP and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Kevin P Gillespie
- Center for Excellence in Environmental Toxicology, University of Pennsylvania; Penn SRP and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Noelle N Saillant
- Division of Traumatology, Department of Surgery, Critical Care and Acute Care Surgery, University of Pennsylvania
| | - Carrie Sims
- Division of Traumatology, Department of Surgery, Critical Care and Acute Care Surgery, University of Pennsylvania
| | - Clementina Mesaros
- Center for Cancer Pharmacology, University of Pennsylvania; Center for Excellence in Environmental Toxicology, University of Pennsylvania
| | | | - Ian A Blair
- Center for Cancer Pharmacology, University of Pennsylvania; Center for Excellence in Environmental Toxicology, University of Pennsylvania;
| |
Collapse
|
23
|
LC-quadrupole/Orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and ¹³C-isotopic labeling of acyl-coenzyme A thioesters. Anal Bioanal Chem 2016; 408:3651-8. [PMID: 26968563 DOI: 10.1007/s00216-016-9448-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 01/13/2023]
Abstract
Acyl-coenzyme A (acyl-CoA) thioesters are evolutionarily conserved, compartmentalized, and energetically activated substrates for biochemical reactions. The ubiquitous involvement of acyl-CoA thioesters in metabolism, including the tricarboxylic acid cycle, fatty acid metabolism, amino acid degradation, and cholesterol metabolism highlights the broad applicability of applied measurements of acyl-CoA thioesters. However, quantitation of acyl-CoA levels provides only one dimension of metabolic information and a more complete description of metabolism requires the relative contribution of different precursors to individual substrates and pathways. Using two distinct stable isotope labeling approaches, acyl-CoA thioesters can be labeled with either a fixed [(13)C3(15)N1] label derived from pantothenate into the CoA moiety or via variable [(13)C] labeling into the acyl chain from metabolic precursors. Liquid chromatography-hybrid quadrupole/Orbitrap high-resolution mass spectrometry using parallel reaction monitoring, but not single ion monitoring, allowed the simultaneous quantitation of acyl-CoA thioesters by stable isotope dilution using the [(13)C3(15)N1] label and measurement of the incorporation of labeled carbon atoms derived from [(13)C6]-glucose, [(13)C5(15)N2]-glutamine, and [(13)C3]-propionate. As a proof of principle, we applied this method to human B cell lymphoma (WSU-DLCL2) cells in culture to precisely describe the relative pool size and enrichment of isotopic tracers into acetyl-, succinyl-, and propionyl-CoA. This method will allow highly precise, multiplexed, and stable isotope-resolved determination of metabolism to refine metabolic models, characterize novel metabolism, and test modulators of metabolic pathways involving acyl-CoA thioesters.
Collapse
|