1
|
Fang P, You M, Cao Y, Feng Q, Shi L, Wang J, Sun X, Yu D, Zhou W, Yin L, Mei F, Zhu X, Cheng A, Tan X. Development and validation of bioanalytical assays for the quantification of 9MW2821, a nectin-4-targeting antibody-drug conjugate. J Pharm Biomed Anal 2024; 248:116318. [PMID: 38908237 DOI: 10.1016/j.jpba.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
We designed and developed 9MW2821, an anti-Nectin-4 antibody-drug conjugate (ADC) with an enzymatically cleavable valine-citrulline linker and monomethyl auristatin E (MMAE) as the payload. Four bioanalytical assays for total antibodies, conjugated antibodies, conjugated payload, and free payload were then developed and validated for the comprehensive evaluation of the multiple drug forms of 9MW2821. Specific sandwich enzyme-linked immunosorbent assays were used to quantify total antibodies and conjugated antibody, showing good drug-to-antibody ratio (DAR) tolerance. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine free MMAE, and conjugated MMAE was quantified using a combination of ligand-binding assay (LBA) and LC-MS/MS. Based on these four assays, we studied the serum stability and monkey pharmacokinetic profiles of 9MW2821, and the in vivo DAR of 9MW2821 was calculated and dynamically monitored. In conclusion, we developed and validated series of bioanalytical assays to quantify multiple forms of 9MW2821, a new ADC, and used the assays to evaluate the serum stability and monkey pharmacokinetic characteristics. The results indicate good linker stability and suggest that the developed assays can be further used in clinical settings.
Collapse
Affiliation(s)
- Peng Fang
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Meng You
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Yuxia Cao
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Qingjun Feng
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Lei Shi
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Jin Wang
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Xiaowei Sun
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Dongan Yu
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Wei Zhou
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Long Yin
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Fei Mei
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Xiaohong Zhu
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Aidi Cheng
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China
| | - Xiaoding Tan
- Jiangsu Mabwell Health Pharmaceutical R&D Co. Ltd., Taizhou 225300, China.
| |
Collapse
|
2
|
Yin F, Adhikari D, Sun M, Shane Woolf M, Ma E, Mylott W, Shaheen E, Harriman S, Pinkas J. Bioanalysis of an antibody drug conjugate (ADC) PYX-201 in human plasma using a hybrid immunoaffinity LC-MS/MS approach. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123715. [PMID: 37094503 DOI: 10.1016/j.jchromb.2023.123715] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
PYX-201 is an anti-extra domain B splice variant of fibronectin (EDB + FN) antibody drug conjugate (ADC) composed of a fully human IgG1 antibody, a cleavable mcValCitPABC linker, and four Auristatin 0101 (Aur0101, PF-06380101) payload molecules. To better understand the pharmacokinetic (PK) profile of PYX-201 after it is administered to cancer patients, the development of a reliable bioanalytical assay to accurately and precisely quantitate PYX-201 in human plasma is required. In this manuscript, we present a hybrid immunoaffinity LC-MS/MS assay used to successfully analyze PYX-201 in human plasma. PYX-201 was enriched by MABSelect beads coated with protein A in human plasma samples. The bound proteins were subjected to "on-bead" proteolysis with papain to release the payload Aur0101. The stable isotope labelled internal standard (SIL-IS) Aur0101-d8 was added and the released Aur0101 was quantified as a surrogate for the total ADC concentration. The separation was performed on a UPLC C18 column coupled with tandem mass spectrometry. The LC-MS/MS assay was validated over the range 0.0250 to 25.0 µg/mL with excellent accuracy and precision. The overall accuracy (%RE) was between -3.8% and -0.1% and the inter-assay precision (%CV) was <5.8%. PYX-201 was found to be stable in human plasma for at least 24 h on ice, 15 days after being stored at -80 °C, as well as after five freeze/thaw cycles of being frozen at -25 °C or -80 °C and thawed on ice. The assay this paper reports on, has been successfully applied to human sample analysis to support clinical studies.
Collapse
Affiliation(s)
- Feng Yin
- Department of Nonclinical Research, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Diana Adhikari
- Department of Nonclinical Research, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Minghao Sun
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services, 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - M Shane Woolf
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services, 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Eric Ma
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services, 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - William Mylott
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services, 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Elizabeth Shaheen
- Department of Project Management, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Shawn Harriman
- Department of Nonclinical Research, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA.
| | - Jan Pinkas
- Department of Nonclinical Research, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA.
| |
Collapse
|
3
|
Qin Q, Gong L. Current Analytical Strategies for Antibody-Drug Conjugates in Biomatrices. Molecules 2022; 27:6299. [PMID: 36234836 PMCID: PMC9572530 DOI: 10.3390/molecules27196299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of biotherapeutics, consisting of a cytotoxic payload covalently bound to an antibody by a linker. Ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) are the favored techniques for the analysis of ADCs in biomatrices. The goal of our review is to provide current strategies related to a series of bioanalytical assays for pharmacokinetics (PK) and anti-drug antibody (ADA) assessments. Furthermore, the strengths and limitations of LBA and LC-MS platforms are compared. Finally, potential factors that affect the performance of the developed assays are also provided. It is hoped that the review can provide valuable insights to bioanalytical scientists on the use of an integrated analytical strategy involving LBA and LC-MS for the bioanalysis of ADCs and related immunogenicity evaluation.
Collapse
Affiliation(s)
- Qiuping Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
4
|
The role of ligand-binding assay and LC-MS in the bioanalysis of complex protein and oligonucleotide therapeutics. Bioanalysis 2021; 13:931-954. [PMID: 33998268 DOI: 10.4155/bio-2021-0009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented. With the discovery of novel and more complex therapeutic modalities, there is an increased need for the biopharmaceutical industry to develop a comprehensive bioanalytical strategy integrating both LBA and LC-MS.
Collapse
|
5
|
Antibody–drug conjugate bioanalysis using LB-LC–MS/MS hybrid assays: strategies, methodology and correlation to ligand-binding assays. Bioanalysis 2016; 8:1383-401. [DOI: 10.4155/bio-2016-0017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Antibody–drug conjugates (ADCs) are complex drug constructs with multiple species in the heterogeneous mixture that contribute to their efficacy and toxicity. The bioanalysis of ADCs involves multiple assays and analytical platforms. Methods: A series of ligand binding and LC–MS/MS (LB-LC–MS/MS) hybrid assays, through different combinations of anti-idiotype (anti-Id), anti-payload, or generic capture reagents, and cathepsin-B or trypsin enzyme digestion, were developed and evaluated for the analysis of conjugated-payload as well as for species traditionally measured by ligand-binding assays, total-antibody and conjugated-antibody. Results & conclusion: Hybrid assays are complementary or viable alternatives to ligand-binding assay for ADC bioanalysis and PK/PD modeling. The fit-for-purpose choice of analytes, assays and platforms and an integrated strategy from Discovery to Development for ADC PK and bioanalysis are recommended.
Collapse
|