1
|
Sharma KB, Subramani C, Ganesh K, Sharma A, Basu B, Balyan S, Sharma G, KA S, Deb A, Srivastava M, Chugh S, Sehrawat S, Bharadwaj K, Rout A, Sahoo PK, Saurav S, Motiani RK, Singh R, Jain D, Asthana S, Wadhwa R, Vrati S. Withaferin A inhibits Chikungunya virus nsP2 protease and shows antiviral activity in the cell culture and mouse model of virus infection. PLoS Pathog 2024; 20:e1012816. [PMID: 39775571 PMCID: PMC11723598 DOI: 10.1371/journal.ppat.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/10/2025] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV. In the ERMS cells, WFA inhibited CHIKV replication early during the life cycle by binding the CHIKV non-structural protein nsP2 and inhibiting its protease activity. This inhibited the viral polyprotein processing and the minus-sense viral RNA synthesis. WFA mounted the nsP2 protease inhibitory activity through its oxidising property as the reducing agents N-acetylcysteine and Glutathione-monoethyl ester effectively reversed the WFA-mediated protease inhibition in vitro and abolished the WFA-mediated antiviral activity in cultured cells. WFA inhibited CHIKV replication in the C57BL/6 mouse model of chikungunya disease, resulting in significantly lower viremia. Importantly, CHIKV-infected mice showed significant joint swelling which was not seen in WFA-treated mice. These data demonstrate the potential of WFA as a novel CHIKV antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shouri KA
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Mitul Srivastava
- Translational Health Science and Technology Institute, Faridabad, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Archana Rout
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Suman Saurav
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepti Jain
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
2
|
Rai P, Garain T, Gupta D. Phytochemical analysis of Tinospora cordifolia and Withania somnifera and their therapeutic activities with special reference to COVID-19. World J Exp Med 2024; 14:95512. [PMID: 39312696 PMCID: PMC11372741 DOI: 10.5493/wjem.v14.i3.95512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Various important medicines make use of secondary metabolites that are produced by plants. Medicinal plants, such as Withania somnifera and Tinospora cordifolia, are rich sources of chemically active compounds and are reported to have numerous therapeutic applications. The therapeutic use of medicinal plants is widely mentioned in Ayurveda and has folkloric importance in different parts of the world. The aim of this review is to summarize the phytochemical profiles, folkloric importance, and primary pharmacological activity of W. somnifera and T. cordifolia with emphasis on their action against the novel coronavirus.
Collapse
Affiliation(s)
- Prateek Rai
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Tanya Garain
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Deepshikha Gupta
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
3
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS-COV-2 targeting main protease and papain-like protease. IUBMB Life 2024; 76:228-241. [PMID: 38059400 DOI: 10.1002/iub.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS-CoV-2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi-organ failure. Thus, drug molecules targeting the SARS-CoV-2 virus-specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain-like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct-acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti-inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half-maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti-SARS-CoV-2 activity in cell-based assays, with half-maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti-inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID-19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type-I interferon response (IFN-α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS-CoV-2-specific enzymes and also host immune pathways involved in virus-mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
4
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS‐COV‐2 targeting main protease and papain‐like protease. IUBMB Life 2024; 76:228-241. [DOI: 10.1002/iub.2793 | pmid: 38059400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 05/15/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS‐CoV‐2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi‐organ failure. Thus, drug molecules targeting the SARS‐CoV‐2 virus‐specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain‐like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct‐acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti‐inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half‐maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti‐SARS‐CoV‐2 activity in cell‐based assays, with half‐maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti‐inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID‐19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type‐I interferon response (IFN‐α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS‐CoV‐2‐specific enzymes and also host immune pathways involved in virus‐mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Ankur Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases) All India Institute of Medical Sciences (AIIMS) Rishikesh India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD) Indian Veterinary Research Institute Bareilly Uttar Pradesh India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
5
|
Ozeer FZ, Nagandran S, Wu YS, Wong LS, Stephen A, Lee MF, Kijsomporn J, Guad RM, Batumalaie K, Oyewusi HA, Verma A, Yadav E, Afzal S, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Sarker MMR. A comprehensive review of phytochemicals of Withania somnifera (L.) Dunal (Solanaceae) as antiviral therapeutics. DISCOVER APPLIED SCIENCES 2024; 6:187. [DOI: 10.1007/s42452-024-05845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 11/22/2024]
Abstract
AbstractViruses have caused millions and billions of infections and high mortality rates without successful immunization due to a lack of antiviral drugs approved for clinical use. Therefore, the discovery of novel antiviral drugs is impertinent and natural products are excellent alternative sources. Withania somnifera (L.) Dunal (Solanaceae) is recognized as one of the most significant herbs in the Ayurvedic system and it had been utilized in various biological actions for more than 3000 years. This review aimed to discuss the therapeutic effects and associated molecular mechanisms of Withania somnifera (WS) and its phytochemicals, withanolides against various viruses in preclinical and clinical settings towards developing potential inhibitors which could target virus proteins or their respective host cell receptors. WS was reported to attenuate coronavirus disease 2019 (COVID-19), serve as a potential ligand against the herpes simplex virus (HSV) DNA polymerase, suppress Alzheimer’s disease progression by inhibiting the cytotoxicity induced by the human immunodeficiency virus 1 (HIV-1)-activated beta-amyloid (Aβ), and attenuate the neuraminidase activity of H1N1 influenza. WS root extracts have also reduced the mortality rates and stress levels in tilapia infected with tilapia lake virus (TiLV), and stimulated antiviral nitric oxide formation in chicks infected with infectious bursal disease (IBD). With increasing evidence from previous literatures, further in vitro and in vivo investigations of WS against other viral infections may provide promising results.
Graphical Abstract
Collapse
|
6
|
Srivastava A, Ahmad R, Wani IA, Siddiqui S, Yadav K, Trivedi A, Upadhyay S, Husain I, Ahamad T, Dudhagi SS. Steroidal lactones from Withania somnifera effectively target Beta, Gamma, Delta and Omicron variants of SARS-CoV-2 and reveal a decreased susceptibility to viral infection and perpetuation: a polypharmacology approach. In Silico Pharmacol 2024; 12:14. [PMID: 38419919 PMCID: PMC10897645 DOI: 10.1007/s40203-023-00184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Prevention from disease is presently the cornerstone of the fight against COVID-19. With the rapid emergence of novel SARS-CoV-2 variants, there is an urgent need for novel or repurposed agents to strengthen and fortify the immune system. Existing vaccines induce several systemic and local side-effects that can lead to severe consequences. Moreover, elevated cytokines in COVID-19 patients with cancer as co-morbidity represent a significant bottleneck in disease prognosis and therapy. Withania somnifera (WS) and its phytoconstituent(s) have immense untapped immunomodulatory and therapeutic potential and the anticancer potential of WS is well documented. To this effect, WS methanolic extract (WSME) was characterized using HPLC. Withanolides were identified as the major phytoconstituents. In vitro cytotoxicity of WSME was determined against human breast MDA-MB-231 and normal Vero cells using MTT assay. WSME displayed potent cytotoxicity against MDA-MB-231 cells (IC50: 66 µg/mL) and no effect on Vero cells in the above range. MD simulations of Withanolide A with SARS-CoV-2 main protease and spike receptor-binding domain as well as Withanolide B with SARS-CoV spike glycoprotein and SARS-CoV-2 papain-like protease were performed using Schrödinger. Stability of complexes followed the order 6M0J-Withanolide A > 6W9C-Withnaolide B > 5WRG-Withanolide B > 6LU7-Withanolide A. Maximum stable interaction(s) were observed between Withanolides A and B with SARS-CoV-2 and SARS-CoV spike glycoproteins, respectively. Withanolides A and B also displayed potent binding to pro-inflammatory markers viz. serum ferritin and IL-6. Thus, WS phytoconstituents have the potential to be tested further in vitro and in vivo as novel antiviral agents against COVID-19 patients having cancer as a co-morbidity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00184-y.
Collapse
Affiliation(s)
- Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Irshad A. Wani
- Department of Cardiology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, UP 226007 India
| | - Anchal Trivedi
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Shivbrat Upadhyay
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Ishrat Husain
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Tanveer Ahamad
- Department of Biotechnology, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003 India
| | - Shivanand S. Dudhagi
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, UP 226001 India
| |
Collapse
|
7
|
Maurya DK, Sharma D. Culinary spices and herbs in managing early and long-COVID-19 complications: A comprehensive review. Phytother Res 2023; 37:4908-4931. [PMID: 37468320 DOI: 10.1002/ptr.7957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Human race is preparing for the upsurge and aftermath of COVID-19 pandemic complicated by novel variants, new waves, variable mortality rate, and post-COVID complications. Despite use of repurposed drugs, symptomatic treatments and licensing of multiple vaccines, the daily number of cases and rate of transmission are significant. Culinary spices and herbs have been historically used in pandemic and non-pandemic times to reduce respiratory viral burden. Specific food items and culinary spices can boost the levels of protective immunity and also offer therapeutic benefits against impervious bugs via well-known as well as less-known but scientifically testable mechanisms. Here, we analyzed the phytochemicals profile of Ayurvedic herbs and inferred from the clinical trials/observational studies to provide a focused and succinct perspective on the relevance of "food-based" traditional decoction to moderate COVID-19 disease and long-COVID via modulation of immunity and reinstatement of homeostasis. We also underscore the druggable targets in pathogenesis of COVID-19 which are relevant to the ongoing clinical trials using spices and herbs. This information will provide a strong scientific rationale for standardization of the traditional herbs-based therapies and adopting the use of herbs, spices, and their formulations for reducing SARS-CoV-2 transmission, long-COVID symptoms, and COVID-19 disease progression.
Collapse
Affiliation(s)
- Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SCB, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK, Fuloria S, Chinni SV, Ramachawolran G. Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery. Microorganisms 2023; 11:1000. [PMID: 37110423 PMCID: PMC10142625 DOI: 10.3390/microorganisms11041000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmacy, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Malaysia;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, Johor Bahru 81750, Malaysia;
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia;
| | - Ashok Kumar
- Department of Internal Medicine, Division of Pulmonary, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA;
| | - Subash C. B. Gopinath
- Centre of Excellence (CoE), Faculty of Chemical Engineering & Technology & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia;
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Subang Jaya 42610, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Malaysia;
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No 4, Jalan Sepoy Lines, Georgetown 10450, Malaysia
| |
Collapse
|
9
|
Khandelwal V, Sharma T, Gupta S, Singh S, Sharma MK, Parashar D, Kashyap VK. Stem cell therapy: a novel approach against emerging and re-emerging viral infections with special reference to SARS-CoV-2. Mol Biol Rep 2023; 50:2663-2683. [PMID: 36536185 PMCID: PMC9762873 DOI: 10.1007/s11033-022-07957-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/17/2022] [Indexed: 12/23/2022]
Abstract
The past several decades have witnessed the emergence and re-emergence of many infectious viral agents, flaviviruses, influenza, filoviruses, alphaviruses, and coronaviruses since the advent of human deficiency virus (HIV). Some of them even become serious threats to public health and have raised major global health concerns. Several different medicinal compounds such as anti-viral, anti-malarial, and anti-inflammatory agents, are under investigation for the treatment of these viral diseases. These therapies are effective improving recovery rates and overall survival of patients but are unable to heal lung damage caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, there is a critical need to identify effective treatments to combat this unmet clinical need. Due to its antioxidant and immunomodulatory properties, stem cell therapy is considered a novel approach to regenerate damaged lungs and reduce inflammation. Stem cell therapy uses a heterogeneous subset of regenerative cells that can be harvested from various adult tissue types and is gaining popularity due to its prodigious regenerative potential as well as immunomodulatory and anti-inflammatory properties. These cells retain expression of cluster of differentiation markers (CD markers), interferon-stimulated gene (ISG), reduce expression of pro-inflammatory cytokines and, show a rapid proliferation rate, which makes them an attractive tool for cellular therapies and to treat various inflammatory and viral-induced injuries. By examining various clinical studies, this review demonstrates positive considerations for the implications of stem cell therapy and presents a necessary approach for treating virally induced infections in patients.
Collapse
Affiliation(s)
- Vishal Khandelwal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Tarubala Sharma
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Shoorvir Singh
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Manish Kumar Sharma
- Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, 224001, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA. .,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
10
|
Rani N, Singh R, Kumar P, Sharma P, Sharma V. Natural Compounds as Potential Anti-COVID Agents. ANTI-INFECTIVE AGENTS 2023; 21:3-13. [DOI: 10.2174/2211352520666220404093338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2025]
Abstract
Background:
health crisis in the world and has been declared a public health emergency of international concern by WHO. A number of treatment strategies have been utilized to encounter the prevailing disease. But still the need of most appropriate therapeutic agent is still awaited. In search of anti-COVID treatment regimen, molecular docking approach was used to identify the natural compounds which may have potential for treatment of COVID and acts on specific target and possess selective mechanism. Our goal is to identify the potential anti-COVID compounds from the natural resources via virtual screening and protein of spike glycoprotein was considered as virtual inhibition.
Method.:
Molecular docking was carried out by using Molergo Virtual Docker. 35 compounds from different plant sources were selected and docked in the enzyme pocket.
Results. The docking result revealed that some of the compounds exhibited good potency against the virus and can be used further for developing new drug regimen.
Conclusion. The compounds of natural origin could be a good target and can be used as lead compounds for the treatment of this dreadful disease.
Collapse
Affiliation(s)
- Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Randhir Singh
- Department of Pharmacy, Central University
of Punjab, Bathinda, Punjab, India
| | | | - Prerna Sharma
- Guru Gobind Singh
College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Vikas Sharma
- Guru Gobind Singh
College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
11
|
Alanazi HH, Elfaki E. The immunomodulatory role of withania somnifera (L.) dunal in inflammatory diseases. Front Pharmacol 2023; 14:1084757. [PMID: 36909188 PMCID: PMC9992553 DOI: 10.3389/fphar.2023.1084757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Withania somnifera (L.) Dunal (Solanaceae) (also known as Ashwagandha) is a botanical drug that has been used for centuries to treat many chronic diseases like high blood pressure, arthritis, diabetes, Alzheimer's disease, and depression. As many botanical drugs, w. Somnifera possesses anti-inflammatory, antioxidant, anticarinogenic, anti-diabetic, and anti-asthmatic properties. W. somnifera is often compared to the ginseng plant due to its ability to reduce stress, improve cognitive functions (e.g., memory), and promote a healthy immune system. It promotes immunomodulatory effects whose function is to balance the humoral and cellular responses of the adaptive immune system. The therapeutic effect of w. Somnifera is attributed to active ingredients like alkaloids, steroidal lactones (such as withanolides, withaferins), and steroidal saponins. Although w. Somnifera is safe and highly recommended for treating various diseases, the current knowledge and understanding of its operational mechanisms are limited. One of the proposed mechanisms states that w. Somnifera promotes cellular-mediated immunity or initiates chemical interactions that contribute to therapeutic effects. Withania somnifera has been shown to play a significant role in immunological diseases by modulating several cytokines, increasing T-cell proliferation and enhancing macrophages functions. In this review, we will discuss the latest therapeutic effects of w. Somnifera on a number of diseases through modulating immunological markers and which specific components of w. Somnifera induce these therapeutic activities. We will also focus on the chemical properties in w. Somnifera components and their immunomodulatory role in type 2 allergic diseases where type 2 inflammation is highly imbalanced.
Collapse
Affiliation(s)
- Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Al Jouf, Saudi Arabia
| | - Elyasa Elfaki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Al Jouf, Saudi Arabia
| |
Collapse
|
12
|
Bhat JA, Akther T, Najar RA, Rasool F, Hamid A. Withania somnifera (L.) Dunal (Ashwagandha); current understanding and future prospect as a potential drug candidate. Front Pharmacol 2022; 13:1029123. [PMID: 36578541 PMCID: PMC9790970 DOI: 10.3389/fphar.2022.1029123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer and Neurodegenerative diseases are one of the most dreadful diseases to cure and chemotherapy has found a prime place in cancerous treatments while as different strategies have been tested in neurodegenerative diseases as well. However, due to adverse shortcomings like the resistance of cancerous cells and inefficiency in neurodegenerative disease, plant sources have always found a prime importance in medicinal use for decades, Withania somnifera (L.) Dunal (W. somnifera) is a well-known plant with medicinal use reported for centuries. It is commonly known as winter cherry or ashwagandha and is a prime source of pharmaceutically active compounds withanolides. In recent years research is being carried in understanding the extensive role of W. somnifera in cancer and neurological disorders. W. somnifera has been reported to be beneficial in DNA repair mechanisms; it is known for its cellular repairing properties and helps to prevent the apoptosis of normal cells. This review summarizes the potential properties and medicinal benefits of W. somnifera especially in cancer and neurodegenerative diseases. Available data suggest that W. somnifera is effective in controlling disease progressions and could be a potential therapeutic target benefiting human health status. The current review also discusses the traditional medicinal applications of W. somnifera, the experimental evidence supporting its therapeutical potential as well as obstacles that necessitate being overcome for W. somnifera to be evaluated as a curative agent in humans.
Collapse
Affiliation(s)
- Javeed Ahmad Bhat
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, United States,*Correspondence: Javeed Ahmad Bhat, ; Abid Hamid,
| | - Tahira Akther
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Faheem Rasool
- Government College for Women, Jammu, Jammu and Kashmir, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Srinagar, India,*Correspondence: Javeed Ahmad Bhat, ; Abid Hamid,
| |
Collapse
|
13
|
Latha D, Hrishikesh D, Shiban G, Chandrashekar C, Bharath BR. In silico, in vitro screening of plant extracts for anti-SARS-CoV-2 activity and evaluation of their acute and sub-acute toxicity. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100233. [PMID: 35403091 PMCID: PMC8801592 DOI: 10.1016/j.phyplu.2022.100233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 04/18/2023]
Abstract
BACKGROUND In the absence of a specific drug for COVID 19, treatment with plant extracts could be an option worthy of further investigation and has motivated to evaluate the safety and anti-SARS-CoV-2 activity of plant extracts. PURPOSE To screen the phytochemicals for anti-SARS-CoV-2 in silico and evaluate their safety and efficacy in vitro and in vivo. METHOD The phytochemicals for anti-SARS-CoV-2 were screened in silico using molecular docking. The hits generated from in silico screening were subjected for extraction, isolation and purification. The anti-SARS-CoV-2 activity of Zanthoxylum piperitum (E1), Withania somnifera (E2), Calophyllum inophyllum (E3), Andrographis paniculata (E4), Centella asiatica (E5) ethanol extracts. The aerial parts were used for E1, E3, E4, E5 and root was used for E2. The in vitro safety and anti-SARS-CoV-2 activity of plant methanol extracts were performed in VeroE6 cells using Remdesivir as positive control. The acute and sub-acute toxicity study was performed in Wistar male and female rats. RESULTS The percentage of cell viability for E4, E5 and E2 treated VeroE6 cells were remarkably good on the 24th and 48th hour of treatment. The in vitro anti-SARS-CoV-2 activity of E4, E5 and E2 were significant for both E gene and N gene. The percentage of SARS-CoV-2 inhibition for E4 was better than Remdesivir. For E gene and N gene, Remdesivir showed IC50 of 0.15 µM and 0.11 µM respectively, For E gene and N gene, E4 showed IC50 of 1.18 µg and 1.16 µg respectively. Taking the clue from in vitro findings, the E4, E5 and E2 were combined (E 4.5.2) and evaluated for acute and sub-acute toxicity in Wistar male and female rats. No statistically significant difference in haematological, biochemical and histopathological parameters were noticed. CONCLUSION The study demonstrated the anti-SARS-CoV-2 activity in vitro and safety of plant extracts in both in vitro and in vivo experimental conditions.
Collapse
Affiliation(s)
- Damle Latha
- Computational Biology, Atrimed Biotech LLP, Banglore, 560100, India
| | | | - Ganju Shiban
- Atrimed Pharmaceuticals Pvt. Ltd, Banglore, 560001, India
| | - C Chandrashekar
- Computational Biology, Atrimed Biotech LLP, Banglore, 560100, India
| | - B R Bharath
- Computational Biology, Atrimed Biotech LLP, Banglore, 560100, India
| |
Collapse
|
14
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|