1
|
Kavanagh ME, McLean KJ, Gilbert SH, Amadi C, Snee M, Tunnicliffe RB, Arora K, Boshoff HI, Fanourakis A, Rebello-Lopez MJ, Ortega-Muro F, Levy CW, Munro AW, Leys D, Abell C, Coyne AG. Fragment-based development of small molecule inhibitors targeting Mycobacterium tuberculosis cholesterol metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620643. [PMID: 39803573 PMCID: PMC11722527 DOI: 10.1101/2024.10.28.620643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi- (MDR) and extensively- (XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for Mtb's long-term survival in vivo. Here, we report the development of antitubercular small molecules that inhibit the Mtb cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule 1a that can bind to the heme cofactor of both enzymes. A structure-guided fragment-linking strategy was used to optimize the binding affinity of 1a, yielding a potent dual CYP125/142 inhibitor 5m (KD CYP125/CYP142 = 0.04/0.16 μM). Compound 5m potently inhibits the catalytic activity of CYP125 and CYP142 in vitro (KI values < 0.1 μM), and rapidly depletes Mtb intracellular ATP (IC50 = 0.15 μM). The compound has antimicrobial activity against both drug susceptible and MDR Mtb (MIC99 values 0.4 - 1.5 μM) in extracellular assays, and inhibits the growth of Mtb in human macrophages (MIC = 1.7 μM) with good selectivity over mammalian cytotoxicity (LD50 ≥ 50 μM). The combination of small molecule inhibitors and structural data reported here provide useful tools to study the role of cholesterol metabolism in Mtb and are a promising step towards novel antibiotics targeting bioenergetic pathways, which could be used to help combat MDR-TB.
Collapse
Affiliation(s)
- Madeline E. Kavanagh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kirsty J. McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sophie H. Gilbert
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cecilia Amadi
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Matthew Snee
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Richard B. Tunnicliffe
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | - Colin W. Levy
- Manchester Protein Structure Facility (MPSF), Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Andrew W. Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Anthony G. Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
2
|
Lu Y, Chen H, Shao Z, Sun L, Li C, Lu Y, You X, Yang X. Deletion of the Mycobacterium tuberculosis cyp138 gene leads to changes in membrane-related lipid composition and antibiotic susceptibility. Front Microbiol 2024; 15:1301204. [PMID: 38591032 PMCID: PMC10999552 DOI: 10.3389/fmicb.2024.1301204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the main cause of tuberculosis (TB), has brought a great burden to the world's public health. With the widespread use of Mtb drug-resistant strains, the pressure on anti-TB treatment is increasing. Anti-TB drugs with novel structures and targets are urgently needed. Previous studies have revealed a series of CYPs with important roles in the survival and metabolism of Mtb. However, there is little research on the structure and function of CYP138. Methods In our study, to discover the function and targetability of CYP138, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through growth curves, growth status under different carbon sources, infection curves, SEM, MIC tests, quantitative proteomics, and lipidomics. Results and discussion The knockout of cyp138 was proven to affect the Mtb's macrophage infection, antibiotics susceptibility, and the levels of fatty acid metabolism, membrane-related proteins, and lipids such as triacylglycerol. We proposed that CYP138 plays an important role in the synthesis and decomposition of lipids related to the cell membrane structure as a new potential anti-tuberculosis drug target.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyuan Shao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| |
Collapse
|
3
|
Ghith A, Bell SG. The oxidation of steroid derivatives by the CYP125A6 and CYP125A7 enzymes from Mycobacterium marinum. J Steroid Biochem Mol Biol 2023; 235:106406. [PMID: 37793577 DOI: 10.1016/j.jsbmb.2023.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The members of the bacterial cytochrome P450 (CYP) monooxygenase family CYP125, catalyze the oxidation of steroid derivatives including cholesterol and phytosterols, as the initial activating step in their catabolism. However, several bacterial species contain multiple genes encoding CYP125 enzymes and other CYP enzymes which catalyze cholesterol/cholest-4-en-3-one hydroxylation. An important question is why these bacterium have more than one enzyme with overlapping substrate ranges capable of catalyzing the terminal oxidation of the alkyl chain of these sterols. To further understand the role of these enzymes we investigated CYP125A6 and CYP125A7 from Mycobacterium marinum with various cholesterol analogues. These have modifications on the A and B rings of the steroid and we assessed the substrate binding and catalytic activity of these with each enzyme. CYP125A7 gave similar results to those reported for the CYP125A1 enzyme from M. tuberculosis. Differences in the substrate binding and catalytic activity with the cholesterol analogues were observed with CYP125A6. For example, while cholesteryl sulfate could bind to both enzymes it was only oxidized by CYP125A6 and not by CYP125A7. CYP125A6 generated higher levels of metabolites with the majority of C-3 and C-7 substituted cholesterol analogues such 7-ketocholesterol. However, 5α-cholestan-3β-ol was only oxidized by CYP125A7 enzyme. The cholest-4-en-3-one and 7-ketocholesterol-bound forms of the CYP125A6 and CYP125A7 enzymes were modelled using AlphaFold. The structural models highlighted differences in the binding modes of the steroid derivatives within the same enzyme. Significant changes in the binding mode of the steroids between these CYP125 enzymes and other bacterial cholesterol oxidizing enzymes, CYP142A3 and CYP124A1, were also seen. Despite this, all these models predicted the selectivity for terminal methyl hydroxylation, in agreement with the experimental data.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Manthalkar L, Ajazuddin, Bhattacharya S. Evidence-based capacity of natural cytochrome enzyme inhibitors to increase the effectivity of antineoplastic drugs. Discov Oncol 2022; 13:142. [PMID: 36571647 PMCID: PMC9792636 DOI: 10.1007/s12672-022-00605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Cytochrome (CYP) enzymes catalyze the metabolism of numerous exogenous and endogenous substrates in cancer therapy leading to significant drug interactions due to their metabolizing effect. CYP enzymes play an important role in the metabolism of essential anticancer medications. They are shown to be overexpressed in tumor cells at numerous locations in the body. This overexpression could be a result of lifestyle factors, presence of hereditary variants of CYP (Bio individuality) and multi-drug resistance. This finding has sparked an interest in using CYP inhibitors to lower their metabolizing activity as a result facilitating anti-cancer medications to have a therapeutic impact. As a result of the cytotoxic nature of synthetic enzyme inhibitors and the increased prevalence of herbal medication, natural CYP inhibitors have been identified as an excellent way to inhibit overexpression sighting their tendency to show less cytotoxicity, lesser adverse drug reactions and enhanced bioavailability. Nonetheless, their effect of lowering the hindrance caused in chemotherapy due to CYP enzymes remains unexploited to its fullest. It has been observed that there is a substantial decrease in first pass metabolism and increase in intestinal absorption of chemotherapeutic drugs like paclitaxel when administered along with flavonoids which help suppress certain specific cytochrome enzymes which play a role in paclitaxel metabolism. This review elaborates on the role and scope of phytochemicals in primary, secondary and tertiary care and how targeted prevention of cancer could be a breakthrough in the field of chemotherapy and oncology. This opens up a whole new area of research for delivery of these natural inhibitors along with anticancer drugs with the help of liposomes, micelles, nanoparticles, the usage of liquid biopsy analysis, artificial intelligence in medicine, risk assessment tools, multi-omics and multi-parametric analysis. Further, the site of action, mechanisms, metabolites involved, experimental models, doses and observations of two natural compounds, quercetin & thymoquinone, and two plant extracts, liquorice & garlic on CYP enzymes have been summarized.
Collapse
Affiliation(s)
- Laxmi Manthalkar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, 425405, Maharashtra, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, 490024, Chhattisgarh, India.
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, 425405, Maharashtra, India.
| |
Collapse
|
5
|
Wang XX, Ke X, Liu ZQ, Zheng YG. Rational development of mycobacteria cell factory for advancing the steroid biomanufacturing. World J Microbiol Biotechnol 2022; 38:191. [PMID: 35974205 PMCID: PMC9381402 DOI: 10.1007/s11274-022-03369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Steroidal resource occupies a vital proportion in the pharmaceutical industry attributing to their important therapeutic effects on fertility, anti-inflammatory and antiviral activities. Currently, microbial transformation from phytosterol has become the dominant strategy of steroidal drug intermediate synthesis that bypasses the traditional chemical route. Mycobacterium sp. serve as the main industrial microbial strains that are capable of introducing selective functional modifications of steroidal intermediate, which has become an indispensable platform for steroid biomanufacturing. By reviewing the progress in past two decades, the present paper concentrates mainly on the microbial rational modification aspects that include metabolic pathway editing, key enzymes engineering, material transport pathway reinforcement, toxic metabolic intermediates removal and byproduct reconciliation. In addition, progress on omics analysis and direct genetic manipulation are summarized and classified that may help reform the industrial hosts with more efficiency. The paper provides an insightful present for steroid biomanufacturing especially on the current trends and prospects of mycobacteria.
Collapse
Affiliation(s)
- Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
6
|
Ortega Ugalde S, Wallraven K, Speer A, Bitter W, Grossmann TN, Commandeur JNM. Acetylene containing cyclo(L-Tyr-L-Tyr)-analogs as mechanism-based inhibitors of CYP121A1 from Mycobacterium tuberculosis. Biochem Pharmacol 2020; 177:113938. [PMID: 32224137 DOI: 10.1016/j.bcp.2020.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a globally significant infective disease that is caused by a single infectious agent, Mycobacterium tuberculosis (Mtb). Because of the rise in the number of multidrug-resistant (MDR) TB strains, identification of alternative drug targets for the development of drugs with different mechanism of actions is desired. CYP121A1, one of the twenty cytochrome P450 enzymes encoded in the Mtb genome, was previously shown to be essential for bacterial growth. This enzyme catalyzes the intramolecular C-C crosslinking reaction of the cyclopeptide cyclo(L-tyr-L-tyr) (cYY) yielding the metabolite mycocyclosin. In the present study, acetylene-substituted cYY-analogs were synthesized and evaluated as potential mechanism-based inhibitors of CYP121A1. The acetylene-substituted cYY-analogs were capable of binding to CYP121A1 with affinities comparable with cYY, and exhibited a Type I binding mode, indicative of a substrate-like binding, mandatory for metabolism. Only the cYY-analogs which contain an acetylene-substitution at one (2a) or both (3) para-positions of cYY showed mechanism-based inhibition of CYP121A1 activity. The values of KI and kinact were 236 µM and 0.045 min-1, respectively, for compound 2a, and 145 µM and 0.015 min-1, repectively, for compound 3 The inactivation could neither be reversed by dialysis nor be prevented by including glutathione. LC-MS analysis demonstrated that the inactivation results from covalent binding to the apoprotein, whereas the heme was unmodified. Interestingly, the mass increment of the CYP121A1 apoprotein was significantly smaller than was expected from the ketene formed by oxidation of the acetylene-group, indicative for a secondary cleavage reaction in the active site of CYP121A1. Although the two acetylene-containing cYY-analogs showed significant mechanism-based inhibition, growth inhibition of the Mtb strains was only observed at millimolar concentrations. This low efficacy may be due to insufficient irreversible inactivation of CYP121A1 and/or insufficient cellular uptake. Although the identified mechanism-based inhibitors have no perspective for Mtb-treatment, this study is the first proof-of-principle that mechanism-based inhibition of CYP121A1 is feasible and may provide the basis for new strategies in the design and development of compounds against this promising therapeutic target.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Jan N M Commandeur
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
8
|
Kishk SM, McLean KJ, Sood S, Smith D, Evans JW, Helal MA, Gomaa MS, Salama I, Mostafa SM, de Carvalho LPS, Levy CW, Munro AW, Simons C. Design and Synthesis of Imidazole and Triazole Pyrazoles as Mycobacterium Tuberculosis CYP121A1 Inhibitors. ChemistryOpen 2019; 8:995-1011. [PMID: 31367508 PMCID: PMC6646865 DOI: 10.1002/open.201900227] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
The emergence of untreatable drug-resistant strains of Mycobacterium tuberculosis is a major public health problem worldwide, and the identification of new efficient treatments is urgently needed. Mycobacterium tuberculosis cytochrome P450 CYP121A1 is a promising drug target for the treatment of tuberculosis owing to its essential role in mycobacterial growth. Using a rational approach, which includes molecular modelling studies, three series of azole pyrazole derivatives were designed through two synthetic pathways. The synthesized compounds were biologically evaluated for their inhibitory activity towards M. tuberculosis and their protein binding affinity (K D). Series 3 biarylpyrazole imidazole derivatives were the most effective with the isobutyl (10 f) and tert-butyl (10 g) compounds displaying optimal activity (MIC 1.562 μg/mL, K D 0.22 μM (10 f) and 4.81 μM (10 g)). The spectroscopic data showed that all the synthesised compounds produced a type II red shift of the heme Soret band indicating either direct binding to heme iron or (where less extensive Soret shifts are observed) putative indirect binding via an interstitial water molecule. Evaluation of biological and physicochemical properties identified the following as requirements for activity: LogP >4, H-bond acceptors/H-bond donors 4/0, number of rotatable bonds 5-6, molecular volume >340 Å3, topological polar surface area <40 Å2.
Collapse
Affiliation(s)
- Safaa M. Kishk
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBU.K.
- Medicinal Chemistry Department, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
| | - Kirsty J. McLean
- Manchester Institute of Biotechnology, School of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNU.K.
| | - Sakshi Sood
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATU.K.
| | - Darren Smith
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBU.K.
| | - Jack W.D. Evans
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBU.K.
| | - Mohamed A. Helal
- Medicinal Chemistry Department, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
- Biomedical Sciences ProgramUniversity of Science and Technology Zewail City of Science and TechnologyGiza12588Egypt
| | - Mohamed S. Gomaa
- Medicinal Chemistry Department, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
- Department of Chemistry College of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammamKingdom of Saudi Arabia
| | - Ismail Salama
- Medicinal Chemistry Department, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
| | - Samia M. Mostafa
- Medicinal Chemistry Department, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
| | - Luiz Pedro S. de Carvalho
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATU.K.
| | - Colin W. Levy
- Manchester Institute of Biotechnology, School of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNU.K.
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNU.K.
| | - Claire Simons
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBU.K.
| |
Collapse
|
9
|
Thirunavukkarasu S, Khader SA. Advances in Cardiovascular Disease Lipid Research Can Provide Novel Insights Into Mycobacterial Pathogenesis. Front Cell Infect Microbiol 2019; 9:116. [PMID: 31058102 PMCID: PMC6482252 DOI: 10.3389/fcimb.2019.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in industrialized nations and an emerging health problem in the developing world. Systemic inflammatory processes associated with alterations in lipid metabolism are a major contributing factor that mediates the development of CVDs, especially atherosclerosis. Therefore, the pathways promoting alterations in lipid metabolism and the interplay between varying cellular types, signaling agents, and effector molecules have been well-studied. Mycobacterial species are the causative agents of various infectious diseases in both humans and animals. Modulation of host lipid metabolism by mycobacteria plays a prominent role in its survival strategy within the host as well as in disease pathogenesis. However, there are still several knowledge gaps in the mechanistic understanding of how mycobacteria can alter host lipid metabolism. Considering the in-depth research available in the area of cardiovascular research, this review presents an overview of the parallel areas of research in host lipid-mediated immunological changes that might be extrapolated and explored to understand the underlying basis of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Ortega Ugalde S, Boot M, Commandeur JNM, Jennings P, Bitter W, Vos JC. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets? Appl Microbiol Biotechnol 2019; 103:3597-3614. [PMID: 30810776 PMCID: PMC6469627 DOI: 10.1007/s00253-019-09697-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/26/2022]
Abstract
This review covers the current knowledge of the cytochrome P450 enzymes (CYPs) of the human pathogen Mycobacterium tuberculosis (Mtb) and their endogenous redox partners, focusing on their biological function, expression, regulation, involvement in antibiotic resistance, and suitability for exploitation as antitubercular targets. The Mtb genome encodes twenty CYPs and nine associated redox partners required for CYP catalytic activity. Transposon insertion mutagenesis studies have established the (conditional) essentiality of several of these enzymes for in vitro growth and host infection. Biochemical characterization of a handful of Mtb CYPs has revealed that they have specific physiological functions in bacterial virulence and persistence in the host. Analysis of the transcriptional response of Mtb CYPs and redox partners to external insults and to first-line antibiotics used to treat tuberculosis showed a diverse expression landscape, suggesting for some enzymes a potential role in drug resistance. Combining the knowledge about the physiological roles and expression profiles indicates that, at least five Mtb CYPs, CYP121A1, CYP125A1, CYP139A1, CYP142A1, and CYP143A1, as well as two ferredoxins, FdxA and FdxC, can be considered promising novel therapeutic targets.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Maikel Boot
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section of Molecular Microbiology, AIMMS, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - J Chris Vos
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Shi W, Chen J, Zhang S, Zhang W, Zhang Y. Identification of Novel Mutations in LprG ( rv1411c), rv0521, rv3630, rv0010c, ppsC, and cyp128 Associated with Pyrazinoic Acid/Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018; 62:e00430-18. [PMID: 29686155 PMCID: PMC6021685 DOI: 10.1128/aac.00430-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/20/2018] [Indexed: 11/20/2022] Open
Abstract
Despite progress, the mechanisms of action and resistance of pyrazinamide (PZA) are not well understood. We characterized 109 mutants resistant to pyrazinoic acid (POA), the active form of PZA, and found that while most (n = 101 [93%]) mutants had panD mutations and 4 (4%) had clpC1 mutations (S91G), new mutations in lprG (rv1411c) and rv0521 (n = 4 [4%]), rv3630, rv0010c, ppsC, and cyp128 (cytochrome P450 128) were identified, shedding new light on the mechanisms of action and resistance of PZA in M. tuberculosis.
Collapse
Affiliation(s)
- Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Affiliation(s)
- Xu Zhu
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christopher C. McAtee
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corinna S. Schindler
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Potential drug targets in the Mycobacterium tuberculosis cytochrome P450 system. J Inorg Biochem 2018; 180:235-245. [PMID: 29352597 DOI: 10.1016/j.jinorgbio.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023]
Abstract
The Mycobacterium tuberculosis genome encodes twenty cytochrome P450 enzymes, most or all of which appear to have specific physiological functions rather than being devoted to the removal of xenobiotics. However, in many cases their specific functions remain obscure. Considerable spectroscopic, biophysical, crystallographic, and catalytic information is available on nine of these cytochrome P450 enzymes, although gaps exist in our knowledge of even these enzymes. The available evidence indicates that at least three of the better-characterized enzymes are promising targets for antituberculosis drug discovery. This review summarizes the information on the nine relatively well-characterized cytochrome P450 enzymes, with a particular emphasis on CYP121, CYP125, and CYP142 from Mycobacterium tuberculosis and Mycobacterium smegmatis.
Collapse
|
14
|
Solution NMR Studies of Mycobacterium tuberculosis Proteins for Antibiotic Target Discovery. Molecules 2017; 22:molecules22091447. [PMID: 28858250 PMCID: PMC6151718 DOI: 10.3390/molecules22091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/27/2017] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis is an infectious disease caused by Mycobacteriumtuberculosis, which triggers severe pulmonary diseases. Recently, multidrug/extensively drug-resistant tuberculosis strains have emerged and continue to threaten global health. Because of the development of drug-resistant tuberculosis, there is an urgent need for novel antibiotics to treat these drug-resistant bacteria. In light of the clinical importance of M. tuberculosis, 2067 structures of M. tuberculsosis proteins have been determined. Among them, 52 structures have been solved and studied using solution nuclear magnetic resonance (NMR). The functional details based on structural analysis of M. tuberculosis using NMR can provide essential biochemical data for the development of novel antibiotic drugs. In this review, we introduce diverse structural and biochemical studies on M. tuberculosis proteins determined using NMR spectroscopy.
Collapse
|
15
|
Vasilevskaya AV, Yantsevich AV, Sergeev GV, Lemish AP, Usanov SA, Gilep AA. Identification of Mycobacterium tuberculosis enzyme involved in vitamin D and 7-dehydrocholesterol metabolism. J Steroid Biochem Mol Biol 2017; 169:202-209. [PMID: 27289046 DOI: 10.1016/j.jsbmb.2016.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 11/27/2022]
Abstract
Problems arising during treatment of tuberculosis are well known, therefore studies of Mycobacterium drug molecular targets are an area of particular importance. Members of the cytochrome P450 family (CYP) may belong to potential candidates for drug targets being involved in metabolism of biologically important molecules in the host organism. CYP124 of Mycobacterium tuberculosis (MTCYP124) catalyzes ω-hydroxylation of methyl-branched lipids. The data obtained in the present study indicate that this enzyme can also oxidize provitamin D3 (7-dehydrocholesterol) and vitamin D3. We found that the final product is different from 1α- and 25-hydroxyvitamin D3, so we propose that MTCYP124 is involved in alternative pathway for metabolism of vitamin D3.
Collapse
Affiliation(s)
- A V Vasilevskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus
| | - A V Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus
| | - G V Sergeev
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus
| | - A P Lemish
- Institute of an Experimental Veterinary Science n. S.N. Wyshelesski, 220003, Minsk, Briketa 28, Belarus
| | - S A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus
| | - A A Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences, 220141, Minsk, Kuprevicha 5/2, Belarus.
| |
Collapse
|
16
|
McBee ME, Chionh YH, Sharaf ML, Ho P, Cai MWL, Dedon PC. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes. Front Microbiol 2017; 8:459. [PMID: 28377755 PMCID: PMC5359317 DOI: 10.3389/fmicb.2017.00459] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
The role of reactive oxygen species (ROS) in microbial metabolism and stress response has emerged as a major theme in microbiology and infectious disease. Reactive fluorescent dyes have the potential to advance the study of ROS in the complex intracellular environment, especially for high-content and high-throughput analyses. However, current dye-based approaches to measuring intracellular ROS have the potential for significant artifacts. Here, we describe a robust platform for flow cytometric quantification of ROS in bacteria using fluorescent dyes, with ROS measurements in 10s-of-1000s of individual cells under a variety of conditions. False positives and variability among sample types (e.g., bacterial species, stress conditions) are reduced with a flexible four-step gating scheme that accounts for side- and forward-scattered light (morphological changes), background fluorescence, DNA content, and dye uptake to identify cells producing ROS. Using CellROX Green dye with Escherichia coli, Mycobacterium smegmatis, and Mycobacterium bovis BCG as diverse model bacteria, we show that (1) the generation of a quantifiable CellROX Green signal for superoxide, but not hydrogen peroxide-induced hydroxyl radicals, validates this dye as a superoxide detector; (2) the level of dye-detectable superoxide does not correlate with cytotoxicity or antibiotic sensitivity; (3) the non-replicating, antibiotic tolerant state of nutrient-deprived mycobacteria is associated with high levels of superoxide; and (4) antibiotic-induced production of superoxide is idiosyncratic with regard to both the species and the physiological state of the bacteria. We also show that the gating method is applicable to other fluorescent indicator dyes, such as the 5-carboxyfluorescein diacetate acetoxymethyl ester and 5-cyano-2,3-ditolyl tetrazolium chloride for cellular esterase and reductive respiratory activities, respectively. These results demonstrate that properly controlled flow cytometry coupled with fluorescent probes provides precise and accurate quantitative analysis of ROS generation and metabolic changes in stressed bacteria.
Collapse
Affiliation(s)
- Megan E McBee
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Singapore, Singapore
| | - Yok H Chionh
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and TechnologySingapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Mariam L Sharaf
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Singapore, Singapore
| | - Peiying Ho
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Singapore, Singapore
| | - Maggie W L Cai
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and TechnologySingapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Peter C Dedon
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and TechnologySingapore, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, CambridgeMA, USA
| |
Collapse
|
17
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
18
|
Kavanagh ME, Coyne AG, McLean KJ, James GG, Levy CW, Marino LB, de Carvalho LPS, Chan DSH, Hudson SA, Surade S, Leys D, Munro AW, Abell C. Fragment-Based Approaches to the Development of Mycobacterium tuberculosis CYP121 Inhibitors. J Med Chem 2016; 59:3272-302. [PMID: 27002486 PMCID: PMC4835159 DOI: 10.1021/acs.jmedchem.6b00007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The essential enzyme CYP121 is a target for drug development against antibiotic resistant strains of Mycobacterium tuberculosis. A triazol-1-yl phenol fragment 1 was identified to bind to CYP121 using a cascade of biophysical assays. Synthetic merging and optimization of 1 produced a 100-fold improvement in binding affinity, yielding lead compound 2 (KD = 15 μM). Deconstruction of 2 into its component retrofragments allowed the group efficiency of structural motifs to be assessed, the identification of more LE scaffolds for optimization and highlighted binding affinity hotspots. Structure-guided addition of a metal-binding pharmacophore onto LE retrofragment scaffolds produced low nanomolar (KD = 15 nM) CYP121 ligands. Elaboration of these compounds to target binding hotspots in the distal active site afforded compounds with excellent selectivity against human drug-metabolizing P450s. Analysis of the factors governing ligand potency and selectivity using X-ray crystallography, UV-vis spectroscopy, and native mass spectrometry provides insight for subsequent drug development.
Collapse
Affiliation(s)
- Madeline E Kavanagh
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Kirsty J McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Guy G James
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Colin W Levy
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Leonardo B Marino
- Laboratory of Mycobacterial Metabolism and Antibiotic Research, Francis Crick Institute, The Mill Hill Laboratory , London NW7 1AA, U.K.,School of Pharmaceutical Sciences, São Paulo State University (UNESP) , 4801-902 Araraquara, SP, Brazil
| | - Luiz Pedro S de Carvalho
- Laboratory of Mycobacterial Metabolism and Antibiotic Research, Francis Crick Institute, The Mill Hill Laboratory , London NW7 1AA, U.K
| | - Daniel S H Chan
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Sean A Hudson
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Sachin Surade
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA U.K
| | - David Leys
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Andrew W Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Chris Abell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
19
|
Frank DJ, Waddling CA, La M, Ortiz de Montellano PR. Cytochrome P450 125A4, the Third Cholesterol C-26 Hydroxylase from Mycobacterium smegmatis. Biochemistry 2015; 54:6909-16. [PMID: 26522442 PMCID: PMC4660985 DOI: 10.1021/acs.biochem.5b01029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msmeg) can grow on cholesterol as the sole carbon
source. In Mtb the utilization of cholesterol can
be initiated by CYP125A1 or CYP142A1
and in Msmeg by the orthologous CYP125A3 and CYP142A2.
Double knockout of the two enzymes in Mtb prevents
its growth on cholesterol, but the double knockout of Msmeg is still able to grow, albeit at a slower rate. We report here that Msmeg has a third enzyme, CYP125A4, that also oxidizes cholesterol,
although it has a much higher activity for the oxidation of 7α-hydroxycholesterol.
The ability of Msmeg CYP125A4 (and Mtb CYP125A1) to oxidize 7α-hydroxycholesterol is due, at least
in part, to the presence of a smaller amino acid side chain facing
C-7 of the sterol substrate than in CYP125A3. The ability to oxidize
7-substituted steroids broadens the range of sterol carbon sources
for growth, but even more importantly in Mtb, additional
biological effects are possible due to the potent immunomodulatory
activity of 7α,26-dihydroxycholesterol.
Collapse
Affiliation(s)
- Daniel J Frank
- Department of Pharmaceutical Chemistry, University of California , San Francisco, California 94158-2517, United States
| | - Christopher A Waddling
- Department of Biochemistry and Biophysics, University of California , San Francisco, California 94158-2517, United States
| | - Maggie La
- Department of Pharmaceutical Chemistry, University of California , San Francisco, California 94158-2517, United States
| | - Paul R Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California , San Francisco, California 94158-2517, United States
| |
Collapse
|
20
|
Frank DJ, Madrona Y, Ortiz de Montellano PR. Cholesterol ester oxidation by mycobacterial cytochrome P450. J Biol Chem 2014; 289:30417-30425. [PMID: 25210044 PMCID: PMC4215225 DOI: 10.1074/jbc.m114.602771] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mycobacteria share a common cholesterol degradation pathway initiated by oxidation of the alkyl side chain by enzymes of cytochrome P450 (CYP) families 125 and 142. Structural and sequence comparisons of the two enzyme families revealed two insertions into the N-terminal region of the CYP125 family (residues 58-67 and 100-109 in the CYP125A1 sequence) that could potentially sterically block the oxidation of the longer cholesterol ester molecules. Catalytic assays revealed that only CYP142 enzymes are able to oxidize cholesteryl propionate, and although CYP125 enzymes could oxidize cholesteryl sulfate, they were much less efficient at doing so than the CYP142 enzymes. The crystal structure of CYP142A2 in complex with cholesteryl sulfate revealed a substrate tightly fit into a smaller active site than was previously observed for the complex of CYP125A1 with 4-cholesten-3-one. We propose that the larger CYP125 active site allows for multiple binding modes of cholesteryl sulfate, the majority of which trigger the P450 catalytic cycle, but in an uncoupled mode rather than one that oxidizes the sterol. In contrast, the more unhindered and compact CYP142 structure enables enzymes of this family to readily oxidize cholesteryl esters, thus providing an additional source of carbon for mycobacterial growth.
Collapse
Affiliation(s)
- Daniel J. Frank
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517
| | - Yarrow Madrona
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517
| | - Paul R. Ortiz de Montellano
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, To whom correspondence should be addressed: University of California, San Francisco, 600 16th St., N576D, San Francisco, CA 94158-2517. Tel.: 425-476-2903; E-mail:
| |
Collapse
|
21
|
Wei J, Liang J, Shi Q, Yuan P, Meng R, Tang X, Yu L, Guo N. Genome-wide transcription analyses in Mycobacterium tuberculosis treated with lupulone. Braz J Microbiol 2014; 45:333-41. [PMID: 24948953 PMCID: PMC4059319 DOI: 10.1590/s1517-83822014005000032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 04/01/2013] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, still causes higher mortality than any other bacterial pathogen until now. With the emergence and spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR-TB) strains, it becomes more important to search for alternative targets to develop new antimycobacterial drugs. Lupulone is a compound extracted from Hops (Hurnulus lupulus), which exhibits a good antimicrobial activity against M. tuberculosis with minimal inhibitory concentration (MIC) value of 10 μg/mL, but the response mechanisms of lupulone against M. tuberculosis are still poorly understood. In this study, we used a commercial oligonucleotide microarray to determine the overall transcriptional response of M. tuberculosis H37Rv triggered by exposure to MIC of lupulone. A total of 540 genes were found to be differentially regulated by lupulone. Of these, 254 genes were upregulated, and 286 genes were downregulated. A number of important genes were significantly regulated which are involved in various pathways, such as surface-exposed lipids, cytochrome P450 enzymes, PE/PPE multigene families, ABC transporters, and protein synthesis. Real-time quantitative RT-PCR was performed for choosed genes to verified the microarray results. To our knowledge, this genome-wide transcriptomics approach has produced the first insights into the response of M. tuberculosis to a lupulone challenge.
Collapse
Affiliation(s)
- Jian Wei
- Life Science Department ChangChun Normal University Changchun P.R. China ; Bio-Reactor Center Jilin Agrichultural University Changchun P.R. China
| | - Junchao Liang
- Department of Food Quality and Safety Key Laboratory of Zoonosis Research Institute of Zoonosis Ministry of Education Changchun P. R. China
| | - Qiyun Shi
- Department of Food Quality and Safety Key Laboratory of Zoonosis Research Institute of Zoonosis Ministry of Education Changchun P. R. China
| | - Peng Yuan
- Department of Food Quality and Safety Key Laboratory of Zoonosis Research Institute of Zoonosis Ministry of Education Changchun P. R. China
| | - Rizeng Meng
- Jilin Enrty-Exit Inspection and Quarantine Bureau Changchun P.R. China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM Research Institute of Tsinghua University in Shenzhen Shenzhen P.R. China
| | - Lu Yu
- Department of Food Quality and Safety Key Laboratory of Zoonosis Research Institute of Zoonosis Ministry of Education Changchun P. R. China
| | - Na Guo
- Department of Food Quality and Safety Key Laboratory of Zoonosis Research Institute of Zoonosis Ministry of Education Changchun P. R. China
| |
Collapse
|
22
|
Duffell KM, Hudson SA, McLean KJ, Munro AW, Abell C, Matak-Vinković D. Nanoelectrospray Ionization Mass Spectrometric Study of Mycobacterium tuberculosis CYP121–Ligand Interactions. Anal Chem 2013; 85:5707-14. [DOI: 10.1021/ac400236z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Katie M. Duffell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge
CB2 1EW, United Kingdom
| | - Sean A. Hudson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge
CB2 1EW, United Kingdom
| | - Kirsty J. McLean
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester
M1 7DN, United Kingdom
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester
M1 7DN, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge
CB2 1EW, United Kingdom
| | - Dijana Matak-Vinković
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge
CB2 1EW, United Kingdom
| |
Collapse
|
23
|
Hudson SA, McLean KJ, Surade S, Yang YQ, Leys D, Ciulli A, Munro AW, Abell C. Application of Fragment Screening and Merging to the Discovery of Inhibitors of theMycobacterium tuberculosisCytochrome P450 CYP121. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Hudson SA, McLean KJ, Surade S, Yang YQ, Leys D, Ciulli A, Munro AW, Abell C. Application of Fragment Screening and Merging to the Discovery of Inhibitors of theMycobacterium tuberculosisCytochrome P450 CYP121. Angew Chem Int Ed Engl 2012; 51:9311-6. [DOI: 10.1002/anie.201202544] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/10/2012] [Indexed: 02/03/2023]
|
25
|
Mycobacterium tuberculosis cytochrome P450 enzymes: a cohort of novel TB drug targets. Biochem Soc Trans 2012; 40:573-9. [DOI: 10.1042/bst20120062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TB (tuberculosis) disease remains responsible for the death of over 1.5 million people each year. The alarming emergence of drug-resistant TB has sparked a critical need for new front-line TB drugs with a novel mode of action. In the present paper, we review recent genomic and biochemical evidence implicating Mycobacterium tuberculosis CYP (cytochrome P450) enzymes as exciting potential targets for new classes of anti-tuberculars. We also discuss HTS (high-throughput screening) and fragment-based drug-discovery campaigns that are being used to probe their potential druggability.
Collapse
|
26
|
Hsu CY, Wu CW, Talaat AM. Genome-Wide Sequence Variation among Mycobacterium avium Subspecies paratuberculosis Isolates: A Better Understanding of Johne's Disease Transmission Dynamics. Front Microbiol 2011; 2:236. [PMID: 22163226 PMCID: PMC3234532 DOI: 10.3389/fmicb.2011.00236] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/09/2011] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne’s disease, infects many farmed ruminants, wild-life animals, and recently isolated from humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole-genome sequences of several M. ap and M. avium subspecies avium (M. avium) isolates to gain insights into genomic diversity associated with variable hosts and environments. Using Next-generation sequencing technology, all six M. ap isolates showed a high percentage of similarity (98%) to the reference genome sequence of M. ap K-10 isolated from cattle. However, two M. avium isolates (DT 78 and Env 77) showed significant sequence diversity (only 87 and 40% similarity, respectively) compared to the reference strain M. avium 104, a reflection of the wide environmental niches of this group of mycobacteria. Within the M. ap isolates, genomic rearrangements (insertions/deletions) were not detected, and only unique single nucleotide polymorphisms (SNPs) were observed among M. ap isolates. While more of the SNPs (~100) in M. ap genomes were non-synonymous, a total of ~6,000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomics had a enough discriminatory power to differentiate between isolates from different hosts but yet suggesting a bovine source of infection to other animals examined in this study. Interestingly, the human isolate (M. ap 4B) was closely related to a M. ap isolate from a dairy facility, suggesting a common source of infection. Overall, the identified phylo-genomes further supported the idea of a common ancestor to both M. ap and M. avium isolates. Genome-wide analysis described here could provide a strong foundation for a population genetic structure that could be useful for the analysis of mycobacterial evolution and for the tracking of Johne’s disease transmission among animals.
Collapse
Affiliation(s)
- Chung-Yi Hsu
- Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|
27
|
Driscoll MD, McLean KJ, Levy C, Mast N, Pikuleva IA, Lafite P, Rigby SEJ, Leys D, Munro AW. Structural and biochemical characterization of Mycobacterium tuberculosis CYP142: evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. J Biol Chem 2010; 285:38270-82. [PMID: 20889498 PMCID: PMC2992261 DOI: 10.1074/jbc.m110.164293] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/09/2010] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis cytochrome P450 enzyme CYP142 is encoded in a large gene cluster involved in metabolism of host cholesterol. CYP142 was expressed and purified as a soluble, low spin P450 hemoprotein. CYP142 binds tightly to cholesterol and its oxidized derivative cholest-4-en-3-one, with extensive shift of the heme iron to the high spin state. High affinity for azole antibiotics was demonstrated, highlighting their therapeutic potential. CYP142 catalyzes either 27-hydroxylation of cholesterol/cholest-4-en-3-one or generates 5-cholestenoic acid/cholest-4-en-3-one-27-oic acid from these substrates by successive sterol oxidations, with the catalytic outcome dependent on the redox partner system used. The CYP142 crystal structure was solved to 1.6 Å, revealing a similar active site organization to the cholesterol-metabolizing M. tuberculosis CYP125, but having a near-identical organization of distal pocket residues to the branched fatty acid oxidizing M. tuberculosis CYP124. The cholesterol oxidizing activity of CYP142 provides an explanation for previous findings that ΔCYP125 strains of Mycobacterium bovis and M. bovis BCG cannot grow on cholesterol, because these strains have a defective CYP142 gene. CYP142 is revealed as a cholesterol 27-oxidase with likely roles in host response modulation and cholesterol metabolism.
Collapse
Affiliation(s)
- Max D. Driscoll
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kirsty J. McLean
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Colin Levy
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Natalia Mast
- the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 444106, and
| | - Irina A. Pikuleva
- the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 444106, and
| | - Pierre Lafite
- the ICOA-UMR, CNRS 6005, Université d'Orléans, Rue de Chartres, 45067 Orléans, France
| | - Stephen E. J. Rigby
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David Leys
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andrew W. Munro
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|