1
|
Mahto AK, Kumari S, Akbar S, Paroha S, Sahoo PK, Kumar A, Dewangan RP. Peptide-Based Therapeutics and Drug Delivery Systems. DRUGS AND A METHODOLOGICAL COMPENDIUM 2023:173-211. [DOI: 10.1007/978-981-19-7952-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Kikuchi AKV, Tayo LL. Principal Component and Structural Element Analysis Provide Insights into the Evolutionary Divergence of Conotoxins. BIOLOGY 2022; 12:20. [PMID: 36671713 PMCID: PMC9855797 DOI: 10.3390/biology12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Predatory cone snails (Conus) developed a sophisticated neuropharmacological mechanism to capture prey, escape against other predators, and deter competitors. Their venom's remarkable specificity for various ion channels and receptors is an evolutionary feat attributable to the venom's variety of peptide components (conotoxins). However, what caused conotoxin divergence remains unclear and may be related to the role of prey shift. Principal component analysis revealed clustering events within diet subgroups indicating peptide sequence similarity patterns based on the prey they subdue. Molecular analyses using multiple sequence alignment and structural element analysis were conducted to observe the events at the molecular level that caused the subgrouping. Three distinct subgroups were identified. Results showed homologous regions and conserved residues within diet subgroups but divergent between other groups. We specified that these structural elements caused subgrouping in alpha conotoxins that may play a role in function specificity. In each diet subgroup, amino acid character, length of intervening amino acids between cysteine residues, and polypeptide length influenced subgrouping. This study provides molecular insights into the role of prey shift, specifically diet preference, in conotoxin divergence.
Collapse
Affiliation(s)
- Akira Kio V. Kikuchi
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
- School of Health Sciences, Mapúa University, Makati City 1200, Philippines
| |
Collapse
|
3
|
Wilhelm P, Luna-Ramirez K, Chin YKY, Dekan Z, Abraham N, Tae HS, Chow CY, Eagles DA, King GF, Lewis RJ, Adams DJ, Alewood PF. Cysteine-Rich α-Conotoxin SII Displays Novel Interactions at the Muscle Nicotinic Acetylcholine Receptor. ACS Chem Neurosci 2022; 13:1245-1250. [PMID: 35357806 DOI: 10.1021/acschemneuro.1c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
α-Conotoxins that target muscle nicotinic acetylcholine receptors (nAChRs) commonly fall into two structural classes, frameworks I and II containing two and three disulfide bonds, respectively. Conotoxin SII is the sole member of the cysteine-rich framework II with ill-defined interactions at the nAChRs. Following directed synthesis of α-SII, NMR analysis revealed a well-defined structure containing a 310-helix frequently employed by framework I α-conotoxins; α-SII acted at the muscle nAChR with half-maximal inhibitory concentrations (IC50) of 120 nM (adult) and 370 nM (fetal) though weakly at neuronal nAChRs. Truncation of α-SII to a two disulfide bond amidated peptide with framework I disulfide connectivity led to similar activity. Surprisingly, the more constrained α-SII was less stable under mild reducing conditions and displayed a unique docking mode at the nAChR.
Collapse
Affiliation(s)
- Patrick Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karen Luna-Ramirez
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yanni K.-Y. Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nikita Abraham
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Eagles
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Zhao Y, Antunes A. Biomedical Potential of the Neglected Molluscivorous and Vermivorous Conus Species. Mar Drugs 2022; 20:md20020105. [PMID: 35200635 PMCID: PMC8878422 DOI: 10.3390/md20020105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 01/14/2023] Open
Abstract
Within the Conidae family, the piscivorous Conus species have been a hotspot target for drug discovery. Here, we assess the relevance of Conus and their other feeding habits, and thus under distinctive evolutionary constraints, to highlight the potential of neglected molluscivorous and vermivorous species in biomedical research and pharmaceutical industry. By singling out the areas with inadequate Conus disquisition, such as the Tamil Nadu Coast and the Andaman Islands, research resources can be expanded and better protected through awareness. In this study, 728 Conus species and 190 species from three other genera (1 from Californiconus, 159 from Conasprella and 30 from Profundiconus) in the Conidae family are assessed. The phylogenetic relationships of the Conidae species are determined and their known feeding habits superimposed. The worm-hunting species appeared first, and later the mollusc- and fish-hunting species were derived independently in the Neogene period (around 23 million years ago). Interestingly, many Conus species in the warm and shallow waters become polyphagous, allowing them to hunt both fish and worms, given the opportunities. Such newly gained trait is multi originated. This is controversial, given the traditional idea that most Conus species are specialized to hunt certain prey categories. However, it shows the functional complexity and great potential of conopeptides from some worm-eating species. Pharmaceutical attempts and relevant omics data have been differentially obtained. Indeed, data from the fish-hunting species receive strong preference over the worm-hunting ones. Expectedly, conopeptides from the fish-hunting species are believed to include the most potential candidates for biomedical research. Our work revisits major findings throughout the Conus evolution and emphasizes the importance of increasing omics surveys complemented with further behavior observation studies. Hence, we claim that Conus species and their feeding habits are equally important, highlighting many places left for Conus exploration worldwide. We also discuss the Conotoxin drug discovery potentials and the urgency of protecting the bioresources of Conus species. In particular, some vermivorous species have demonstrated great potential in malaria therapy, while other conotoxins from several worm- and mollusc-eating species exhibited explicit correlation with SARS-CoV-2. Reclaiming idle data with new perspectives could also promote interdisciplinary studies in both virological and toxicological fields.
Collapse
Affiliation(s)
- Yihe Zhao
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +353-22-340-1813
| |
Collapse
|
5
|
Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv 2021; 54:107871. [PMID: 34801661 DOI: 10.1016/j.biotechadv.2021.107871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The marine environment is a huge reservoir of biodiversity and represents an excellent source of chemical compounds, some of which have large economical values. In the urgent quest for new pharmaceuticals, marine-based drug discovery has progressed significantly over the past several decades and we now benefit from a series of approved marine natural products (MNPs) to treat cancer and pain while an additional collection of promising leads are in clinical trials. However, the discovery and supply of MNPs has always been challenging given their low bioavailability and structural complexity. Their manufacture for pre-clinical and clinical development but also commercialization mainly relies upon marine source extraction and chemical synthesis, which are associated with high costs, unsustainability and severe environmental problems. In this review, we discuss how metabolic engineering now raises reasonable expectations for the implementation of microbial cell factories, which may provide a sustainable approach for MNP-based drug supply in the near future.
Collapse
Affiliation(s)
- Nicolas Papon
- Univ. Angers, Univ. Brest, GEIHP, SFR ICAT, F-49000 Angers, France.
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France.
| |
Collapse
|
6
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
7
|
Turner A, Kaas Q, Craik DJ. Hormone-like conopeptides - new tools for pharmaceutical design. RSC Med Chem 2020; 11:1235-1251. [PMID: 34095838 PMCID: PMC8126879 DOI: 10.1039/d0md00173b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Conopeptides are a diverse family of peptides found in the venoms of marine cone snails and are used in prey capture and host defence. Because of their potent activity on a range of mammalian targets they have attracted interest as leads in drug design. Until recently most focus had been on studying conopeptides having activity at ion channels and related neurological targets but, with recent discoveries that some conopeptides might play hormonal roles, a new area of conopeptide research has opened. In this article we first summarize the canonical pharmaceutical families of Conus venom peptides and then focus on new research relating to hormone-like conopeptides and their potential applications. Finally, we briefly examine methods of chemically stabilizing conopeptides to improve their pharmacological properties. A summary is presented of conopeptides in clinical trials and a call for future work on hormone-like conopeptides.
Collapse
Affiliation(s)
- Ashlin Turner
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
8
|
Abboud C, Duveau A, Bouali-Benazzouz R, Massé K, Mattar J, Brochoire L, Fossat P, Boué-Grabot E, Hleihel W, Landry M. Animal models of pain: Diversity and benefits. J Neurosci Methods 2020; 348:108997. [PMID: 33188801 DOI: 10.1016/j.jneumeth.2020.108997] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.
Collapse
Affiliation(s)
- Cynthia Abboud
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Alexia Duveau
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Karine Massé
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Joseph Mattar
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Louison Brochoire
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Walid Hleihel
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Marc Landry
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
9
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
10
|
Marine Toxins and Nociception: Potential Therapeutic Use in the Treatment of Visceral Pain Associated with Gastrointestinal Disorders. Toxins (Basel) 2019; 11:toxins11080449. [PMID: 31370176 PMCID: PMC6723473 DOI: 10.3390/toxins11080449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Visceral pain, of which the pathogenic basis is currently largely unknown, is a hallmark symptom of both functional disorders, such as irritable bowel syndrome, and inflammatory bowel disease. Intrinsic sensory neurons in the enteric nervous system and afferent sensory neurons of the dorsal root ganglia, connecting with the central nervous system, represent the primary neuronal pathways transducing gut visceral pain. Current pharmacological therapies have several limitations, owing to their partial efficacy and the generation of severe adverse effects. Numerous cellular targets of visceral nociception have been recognized, including, among others, channels (i.e., voltage-gated sodium channels, VGSCs, voltage-gated calcium channels, VGCCs, Transient Receptor Potential, TRP, and Acid-sensing ion channels, ASICs) and neurotransmitter pathways (i.e., GABAergic pathways), which represent attractive targets for the discovery of novel drugs. Natural biologically active compounds, such as marine toxins, able to bind with high affinity and selectivity to different visceral pain molecular mediators, may represent a useful tool (1) to improve our knowledge of the physiological and pathological relevance of each nociceptive target, and (2) to discover therapeutically valuable molecules. In this review we report the most recent literature describing the effects of marine toxin on gastrointestinal visceral pain pathways and the possible clinical implications in the treatment of chronic pain associated with gut diseases.
Collapse
|
11
|
|
12
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
13
|
Castro J, Grundy L, Deiteren A, Harrington AM, O'Donnell T, Maddern J, Moore J, Garcia-Caraballo S, Rychkov GY, Yu R, Kaas Q, Craik DJ, Adams DJ, Brierley SM. Cyclic analogues of α-conotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. Br J Pharmacol 2018; 175:2384-2398. [PMID: 29194563 DOI: 10.1111/bph.14115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with irritable bowel syndrome suffer from chronic visceral pain (CVP) and limited analgesic therapeutic options are currently available. We have shown that α-conotoxin Vc1.1 induced activation of GABAB receptors on the peripheral endings of colonic afferents and reduced nociceptive signalling from the viscera. However, the analgesic efficacy of more stable, cyclized versions of Vc1.1 on CVP remains to be determined. EXPERIMENTAL APPROACH Using ex vivo colonic afferent preparations from mice, we determined the inhibitory actions of cyclized Vc1.1 (cVc1.1) and two cVc1.1 analogues on mouse colonic nociceptors in healthy and chronic visceral hypersensitivity (CVH) states. Using whole-cell patch clamp recordings, we also assessed the inhibitory actions of these peptides on the neuronal excitability of colonic innervating dorsal root ganglion neurons. In vivo, the analgesic efficacy of these analogues was assessed by determining the visceromotor response to colorectal distension in healthy and CVH mice. KEY RESULTS cVc1.1 and the cVc1.1 analogues, [C2H,C8F]cVc1.1 and [N9W]cVc1.1, all caused concentration-dependent inhibition of colonic nociceptors from healthy mice. Inhibition by these peptides was greater than those evoked by linear Vc1.1 and was substantially greater in colonic nociceptors from CVH mice. cVc1.1 also reduced excitability of colonic dorsal root ganglion neurons, with greater effect in CVH neurons. CVH mice treated with cVc1.1 intra-colonically displayed reduced pain responses to noxious colorectal distension compared with vehicle-treated CVH mice. CONCLUSIONS AND IMPLICATIONS Cyclic versions of Vc1.1 evoked significant anti-nociceptive actions in CVH states, suggesting that they could be novel candidates for treatment of CVP. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Tracey O'Donnell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jessi Moore
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Grigori Y Rychkov
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Rilei Yu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
14
|
Tabassum N, Tae HS, Jia X, Kaas Q, Jiang T, Adams DJ, Yu R. Role of Cys I-Cys III Disulfide Bond on the Structure and Activity of α-Conotoxins at Human Neuronal Nicotinic Acetylcholine Receptors. ACS OMEGA 2017; 2:4621-4631. [PMID: 30023726 PMCID: PMC6044955 DOI: 10.1021/acsomega.7b00639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 06/08/2023]
Abstract
α-Conotoxins preferentially antagonize muscle and neuronal nicotinic acetylcholine receptors (nAChRs). Native α-conotoxins have two disulfide links, CI-CIII and CII-CIV, and owing to the inherent properties of disulfide bonds, α-conotoxins have been systematically engineered to improve their chemical and biological properties. In this study, we explored the possibility of simplifying the disulfide framework of α-conotoxins Vc1.1, BuIA, ImI, and AuIB, by introducing [C2H,C8F] modification to the CI-CIII bond. We therefore explored the possibility of using hydrophobic packing of standard amino acid side chains to replace disulfide bonds as an alternative strategy to nonnatural amino acid cross-links. The impact of CI-CIII disulfide bond replacement on the conformation of the α-conotoxins was investigated using molecular dynamics (MD) simulations and nuclear magnetic resonance chemical shift index study. Two-electrode voltage clamp techniques and MD simulations were used to study the impact of disulfide bond deletion on the activities of the peptides at human neuronal nAChRs. All disulfide-deleted variants except ImI[C2H,C8F] had reduced potency for inhibiting nAChRs. Our results suggest that the CI-CIII disulfide bond is important to stabilize the secondary structure of α-conotoxins as well as their interaction with neuronal nAChR targets. Results from this study enrich our understanding of the function of the CI-CIII disulfide bond and are useful in guiding future structural engineering of the α-conotoxins.
Collapse
Affiliation(s)
- Nargis Tabassum
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts of Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra
Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Xinying Jia
- The Centre for Advanced Imaging and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - Quentin Kaas
- The Centre for Advanced Imaging and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - Tao Jiang
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
| | - David J. Adams
- Illawarra
Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts of Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
15
|
Cuny H, Yu R, Tae HS, Kompella SN, Adams DJ. α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. Br J Pharmacol 2017; 175:1855-1868. [PMID: 28477355 DOI: 10.1111/bph.13852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal α3-containing nicotinic acetylcholine receptors (nAChRs) in the peripheral nervous system (PNS) and non-neuronal tissues are implicated in a number of severe disease conditions ranging from cancer to cardiovascular diseases and chronic pain. However, despite the physiological characterization of mouse models and cell lines, the precise pathophysiology of nAChRs outside the CNS remains not well understood, in part because there is a lack of subtype-selective antagonists. α-Conotoxins isolated from cone snail venom exhibit characteristic individual selectivity profiles for nAChRs and, therefore, are excellent tools to study the determinants for nAChR-antagonist interactions. Given that human α3β4 subtype selective α-conotoxins are scarce and this is a major nAChR subtype in the PNS, the design of new peptides targeting this nAChR subtype is desirable. Recent studies using α-conotoxins RegIIA and AuIB, in combination with nAChR site-directed mutagenesis and computational modelling, have shed light onto specific nAChR residues, which determine the selectivity of the α-conotoxins for the human α3β2 and α3β4 subtypes. Publications describing the selectivity profile and binding sites of other α-conotoxins confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Hartmut Cuny
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,Victor Chang Cardiac Research Institute, Developmental and Stem Cell Biology Division, Sydney, NSW, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Shiva N Kompella
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L, Zhang J, Page G, Miller PE, Craik DJ, Adams DJ, Brierley SM. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABA B receptors. Gut 2017; 66:1083-1094. [PMID: 26887818 PMCID: PMC5532460 DOI: 10.1136/gutjnl-2015-310971] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVE α-Conotoxin Vc1.1 is a small disulfide-bonded peptide from the venom of the marine cone snail Conus victoriae. Vc1.1 has antinociceptive actions in animal models of neuropathic pain, but its applicability to inhibiting human dorsal root ganglion (DRG) neuroexcitability and reducing chronic visceral pain (CVP) is unknown. DESIGN We determined the inhibitory actions of Vc1.1 on human DRG neurons and on mouse colonic sensory afferents in healthy and chronic visceral hypersensitivity (CVH) states. In mice, visceral nociception was assessed by neuronal activation within the spinal cord in response to noxious colorectal distension (CRD). Quantitative-reverse-transcription-PCR, single-cell-reverse-transcription-PCR and immunohistochemistry determined γ-aminobutyric acid receptor B (GABABR) and voltage-gated calcium channel (CaV2.2, CaV2.3) expression in human and mouse DRG neurons. RESULTS Vc1.1 reduced the excitability of human DRG neurons, whereas a synthetic Vc1.1 analogue that is inactive at GABABR did not. Human DRG neurons expressed GABABR and its downstream effector channels CaV2.2 and CaV2.3. Mouse colonic DRG neurons exhibited high GABABR, CaV2.2 and CaV2.3 expression, with upregulation of the CaV2.2 exon-37a variant during CVH. Vc1.1 inhibited mouse colonic afferents ex vivo and nociceptive signalling of noxious CRD into the spinal cord in vivo, with greatest efficacy observed during CVH. A selective GABABR antagonist prevented Vc1.1-induced inhibition, whereas blocking both CaV2.2 and CaV2.3 caused inhibition comparable with Vc1.1 alone. CONCLUSIONS Vc1.1-mediated activation of GABABR is a novel mechanism for reducing the excitability of human DRG neurons. Vc1.1-induced activation of GABABR on the peripheral endings of colonic afferents reduces nociceptive signalling. The enhanced antinociceptive actions of Vc1.1 during CVH suggest it is a novel candidate for the treatment for CVP.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | | | - Guy Page
- Anabios, San Diego, California, USA
| | | | - David J Craik
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David J Adams
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
17
|
del Río-Sancho S, Cros C, Coutaz B, Cuendet M, Kalia YN. Cutaneous iontophoresis of μ-conotoxin CnIIIC—A potent Na V 1.4 antagonist with analgesic, anaesthetic and myorelaxant properties. Int J Pharm 2017; 518:59-65. [DOI: 10.1016/j.ijpharm.2016.12.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 01/14/2023]
|
18
|
Tietze D, Leipold E, Heimer P, Böhm M, Winschel W, Imhof D, Heinemann SH, Tietze AA. Molecular interaction of δ-conopeptide EVIA with voltage-gated Na+ channels. Biochim Biophys Acta Gen Subj 2016; 1860:2053-63. [DOI: 10.1016/j.bbagen.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/02/2016] [Accepted: 06/12/2016] [Indexed: 12/19/2022]
|
19
|
High Proteolytic Resistance of Spider-Derived Inhibitor Cystine Knots. INTERNATIONAL JOURNAL OF PEPTIDES 2015; 2015:537508. [PMID: 26843868 PMCID: PMC4710912 DOI: 10.1155/2015/537508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Proteolytic stability in gastrointestinal tract and blood plasma is the major obstacle for oral peptide drug development. Inhibitor cystine knots (ICKs) are linear cystine knot peptides which have multifunctional properties and could become promising drug scaffolds. ProTx-I, ProTx-II, GTx1-15, and GsMTx-4 were spider-derived ICKs and incubated with pepsin, trypsin, chymotrypsin, and elastase in physiological conditions to find that all tested peptides were resistant to pepsin, and ProTx-II, GsMTx-4, and GTx1-15 showed resistance to all tested proteases. Also, no ProTx-II degradation was observed in rat blood plasma for 24 hours in vitro and ProTx-II concentration in circulation decreased to half in 40 min, indicating absolute stability in plasma and fast clearance from the system. So far, linear peptides are generally thought to be unsuitable in vivo, but all tested ICKs were not degraded by pepsin and stomach could be selected for the alternative site of drug absorption for fast onset of the drug action. Since spider ICKs are selective inhibitors of various ion channels which are related to the pathology of many diseases, engineered ICKs will make a novel class of peptide medicines which can treat variety of bothering symptoms.
Collapse
|
20
|
Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists. Eur J Med Chem 2015; 103:175-84. [DOI: 10.1016/j.ejmech.2015.08.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/25/2022]
|
21
|
Abstract
Peptide neurotoxins from cone snails called conotoxins are renowned for their therapeutic potential to treat pain and several neurodegenerative diseases. Inefficient assay-guided discovery methods have been replaced by high-throughput bioassays integrated with advanced MS and next-generation sequencing, ushering in the era of 'venomics'. In this review, we focus on the impact of venomics on the understanding of cone snail biology as well as the application of venomics to accelerate the discovery of new conotoxins. We also discuss the continued importance of medicinal chemistry approaches to optimize conotoxins for clinical use, with a descriptive case study of MrIA featured.
Collapse
|
22
|
Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. Proc Natl Acad Sci U S A 2015; 112:E3782-91. [PMID: 26150494 DOI: 10.1073/pnas.1501334112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cone snails are predatory marine gastropods characterized by a sophisticated venom apparatus responsible for the biosynthesis and delivery of complex mixtures of cysteine-rich toxin peptides. These conotoxins fold into small highly structured frameworks, allowing them to potently and selectively interact with heterologous ion channels and receptors. Approximately 2,000 toxins from an estimated number of >70,000 bioactive peptides have been identified in the genus Conus to date. Here, we describe a high-resolution interrogation of the transcriptomes (available at www.ddbj.nig.ac.jp) and proteomes of the diverse compartments of the Conus episcopatus venom apparatus. Using biochemical and bioinformatic tools, we found the highest number of conopeptides yet discovered in a single Conus specimen, with 3,305 novel precursor toxin sequences classified into 9 known superfamilies (A, I1, I2, M, O1, O2, S, T, Z), and identified 16 new superfamilies showing unique signal peptide signatures. We were also able to depict the largest population of venom peptides containing the pharmacologically active C-C-CC-C-C inhibitor cystine knot and CC-C-C motifs (168 and 44 toxins, respectively), as well as 208 new conotoxins displaying odd numbers of cysteine residues derived from known conotoxin motifs. Importantly, six novel cysteine-rich frameworks were revealed which may have novel pharmacology. Finally, analyses of codon usage bias and RNA-editing processes of the conotoxin transcripts demonstrate a specific conservation of the cysteine skeleton at the nucleic acid level and provide new insights about the origin of sequence hypervariablity in mature toxin regions.
Collapse
|
23
|
Cheung RCF, Ng TB, Wong JH. Marine Peptides: Bioactivities and Applications. Mar Drugs 2015; 13:4006-43. [PMID: 26132844 PMCID: PMC4515606 DOI: 10.3390/md13074006] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Huang YH, Chaousis S, Cheneval O, Craik DJ, Henriques ST. Optimization of the cyclotide framework to improve cell penetration properties. Front Pharmacol 2015; 6:17. [PMID: 25709580 PMCID: PMC4321561 DOI: 10.3389/fphar.2015.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
Cell penetrating peptides have been regarded as promising vectors to deliver hydrophilic molecules inside cells. Although they are great tools for research and have high potential as drug delivery systems, their application as drugs is impaired by their low stability in serum. Cyclotides, cyclic disulfide-rich peptides from plants, are ultra-stable molecules that have inspired applications in drug design as they can be used as scaffolds to stabilize linear bioactive sequences. Recently, they have also been shown to possess cell-penetrating properties. The combination of their remarkable stability and cell-penetrating properties opens new avenues for the application of peptides to bind to and inhibit intracellular proteins. Nevertheless, for a broader application of these molecules as vectors is of utmost importance to improve their cellular internalization efficiency. In this study we successfully modified MCoTI-II, one of the most widely studied cyclotide scaffolds in drug design, and improved its internalization properties. The internalization of the newly designed MCoTI-II is as efficient as the gold standard cell-penetrating peptide (CPP) TAT and maintains all the required features as a template to graft desired bioactivities.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - Stephanie Chaousis
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
25
|
Colvin LA, Dougherty PM. Peripheral neuropathic pain: signs, symptoms, mechanisms, and causes: are they linked? Br J Anaesth 2014; 114:361-3. [PMID: 25253232 DOI: 10.1093/bja/aeu323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- L A Colvin
- Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| | - P M Dougherty
- Department of Anesthesiology and Pain Management, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe Boulevard Unit 409, Houston, TX 77030, USA
| |
Collapse
|
26
|
Chen S, Gopalakrishnan R, Schaer T, Marger F, Hovius R, Bertrand D, Pojer F, Heinis C. Dithiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides. Nat Chem 2014; 6:1009-16. [PMID: 25343607 DOI: 10.1038/nchem.2043] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
The disulfide bonds that form between two cysteine residues are important in defining and rigidifying the structures of proteins and peptides. In polypeptides containing multiple cysteine residues, disulfide isomerization can lead to multiple products with different biological activities. Here, we describe the development of a dithiol amino acid (Dtaa) that can form two disulfide bridges at a single amino acid site. Application of Dtaas to a serine protease inhibitor and a nicotinic acetylcholine receptor inhibitor that contain disulfide constraints enhanced their inhibitory activities 40- and 7.6-fold, respectively. X-ray crystallographic and NMR structure analysis show that the peptide ligands containing Dtaas have retained their native tertiary structures. We furthermore show that replacement of two cysteines by Dtaas can avoid the formation of disulfide bond isomers. With these properties, Dtaas are likely to have broad application in the rational design or directed evolution of peptides and proteins with high activity and stability.
Collapse
Affiliation(s)
- Shiyu Chen
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ranganath Gopalakrishnan
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | - Ruud Hovius
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Florence Pojer
- Protein Crystallography Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Northfield SE, Wang CK, Schroeder CI, Durek T, Kan MW, Swedberg JE, Craik DJ. Disulfide-rich macrocyclic peptides as templates in drug design. Eur J Med Chem 2014; 77:248-57. [DOI: 10.1016/j.ejmech.2014.03.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/25/2014] [Accepted: 03/05/2014] [Indexed: 01/04/2023]
|
28
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Medina-Franco JL, Martinez-Mayorga K, Meurice N. Balancing novelty with confined chemical space in modern drug discovery. Expert Opin Drug Discov 2013; 9:151-65. [DOI: 10.1517/17460441.2014.872624] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Bergeron ZL, Chun JB, Baker MR, Sandall DW, Peigneur S, Yu PY, Thapa P, Milisen JW, Tytgat J, Livett BG, Bingham JP. A 'conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile--the pharmacological importance of post-translational modifications. Peptides 2013; 49:145-58. [PMID: 24055806 PMCID: PMC6013274 DOI: 10.1016/j.peptides.2013.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022]
Abstract
Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named α-conotoxin TxIC. We assign this conopeptide to the 4/7 α-conotoxin family based on the peptide's sequence homology and cDNA pre-propeptide alignment. Pharmacologically, α-conotoxin TxIC demonstrates minimal activity on human acetylcholine receptor models (100 μM, <5% inhibition), compared to its high paralytic potency in invertebrates, PD50 = 34.2 nMol kg(-1). The non-post-translationally modified form, [Pro](2,8)[Glu](16)α-conotoxin TxIC, demonstrates differential selectivity for the α3β2 isoform of the nicotinic acetylcholine receptor with maximal inhibition of 96% and an observed IC50 of 5.4 ± 0.5 μM. Interestingly its comparative PD50 (3.6 μMol kg(-1)) in invertebrates was ~100 fold more than that of the native peptide. Differentiating α-conotoxin TxIC from other α-conotoxins is the high degree of post-translational modification (44% of residues). This includes the incorporation of γ-carboxyglutamic acid, two moieties of 4-trans hydroxyproline, two disulfide bond linkages, and C-terminal amidation. These findings expand upon the known chemical diversity of α-conotoxins and illustrate a potential driver of toxin phyla-selectivity within Conus.
Collapse
Affiliation(s)
- Zachary L. Bergeron
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Joycelyn B. Chun
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Margaret R. Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - David W. Sandall
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Steve Peigneur
- Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, Leuven, Belgium, 3000
| | - Peter Y.C. Yu
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Parashar Thapa
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Jeffrey W. Milisen
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
| | - Jan Tytgat
- Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, Leuven, Belgium, 3000
| | - Bruce G. Livett
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i, Honolulu, HI, USA, 96822
- Corresponding Author: Dr. Jon-Paul Bingham, , Fax: (808) 965-3542, Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, HI, 96822, USA
| |
Collapse
|
31
|
Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. THE JOURNAL OF PAIN 2013; 14:1255-69. [PMID: 24035349 PMCID: PMC3818391 DOI: 10.1016/j.jpain.2013.06.008] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience, including reflexive hyperalgesia measures, sensory and affective dimensions of pain, and impact of pain on function and quality of life. In this review, we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes as well as the main behavioral tests for assessing pain in each model. PERSPECTIVE Understanding animal models and outcome measures in animals will assist in translating data from basic science to the clinic.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Department of Physical Therapy and Rehabilitation Science, College of Medicine, University of Iowa, Iowa City, Iowa; Neuroscience Graduate Program, College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | |
Collapse
|
32
|
Petrel C, Hocking HG, Reynaud M, Upert G, Favreau P, Biass D, Paolini-Bertrand M, Peigneur S, Tytgat J, Gilles N, Hartley O, Boelens R, Stocklin R, Servent D. Identification, structural and pharmacological characterization of τ-CnVA, a conopeptide that selectively interacts with somatostatin sst3 receptor. Biochem Pharmacol 2013; 85:1663-71. [PMID: 23567999 DOI: 10.1016/j.bcp.2013.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 11/24/2022]
Abstract
Conopeptides are a diverse array of small linear and reticulated peptides that interact with high potency and selectivity with a large diversity of receptors and ion channels. They are used by cone snails for prey capture or defense. Recent advances in venom gland transcriptomic and venom peptidomic/proteomic technologies combined with bioactivity screening approaches lead to the identification of new toxins with original pharmacological profiles. Here, from transcriptomic/proteomic analyses of the Conus consors cone snail, we identified a new conopeptide called τ-CnVA, which displays the typical cysteine framework V of the T1-conotoxin superfamily. This peptide was chemically synthesized and its three-dimensional structure was solved by NMR analysis and compared to that of TxVA belonging to the same family, revealing very few common structural features apart a common orientation of the intercysteine loop. Because of the lack of a clear biological function associated with the T-conotoxin family, τ-CnVA was screened against more than fifty different ion channels and receptors, highlighting its capacity to interact selectively with the somatostatine sst3 receptor. Pharmacological and functional studies show that τ-CnVA displays a micromolar (Ki of 1.5μM) antagonist property for the sst3 receptor, being currently the only known toxin to interact with this GPCR subfamily.
Collapse
Affiliation(s)
- C Petrel
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|