1
|
Shao L, González-Cardenete MA, Prieto-Garcia JM. In Vitro Cytotoxic Effects of Ferruginol Analogues in Sk-MEL28 Human Melanoma Cells. Int J Mol Sci 2023; 24:16322. [PMID: 38003511 PMCID: PMC10671721 DOI: 10.3390/ijms242216322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ferruginol is a promising abietane-type antitumor diterpene able to induce apoptosis in SK-Mel-28 human malignant melanoma. We aim to increase this activity by testing the effect of a small library of ferruginol analogues. After a screening of their antiproliferative activity (SRB staining, 48 h) on SK-Mel-28 cells the analogue 18-aminoferruginol (GI50 ≈ 10 µM) was further selected for mechanistic studies including induction of apoptosis (DAPI staining, p < 0.001), changes in cell morphology associated with the treatment (cell shrinkage and membrane blebbing), induction of caspase-3/7 activity (2.5 at 48 h, 6.5 at 72 h; p < 0.0001), changes in the mitochondrial membrane potential (not significant) and in vitro effects on cell migration and cell invasion (Transwell assays, not significant). The results were compared to those of the parent molecule (ferruginol, GI50 ≈ 50 µM, depolarisation of mitochondrial membrane p < 0.01 at 72 h; no caspases 3/7 activation) and paclitaxel (GI50 ≈ 10 nM; caspases 3/7 activation p < 0.0001) as a reference drug. Computational studies of the antiproliferative activity of 18-aminoferruginol show a consistent improvement in the activity over ferruginol across a vast majority of cancer cells in the NCI60 panel. In conclusion, we demonstrate here that the derivatisation of ferruginol into 18-aminoferruginol increases its antiproliferative activity five times in SK-MEL-28 cells and changes the apoptotic mechanism of its parent molecule, ferruginol.
Collapse
Affiliation(s)
- Luying Shao
- School of Pharmacy, University College London, London WC1E 6HX, UK;
| | - Miguel A. González-Cardenete
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain;
| | - Jose M. Prieto-Garcia
- School of Pharmacy, University College London, London WC1E 6HX, UK;
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UX, UK
| |
Collapse
|
2
|
García C, Bernardes CES, Piedade MF, Fumagalli G, Colombo E, Díaz-Lanza AM, Reis CP, Correia I, Ascensão L, Passarella D, da Piedade MEM, Rijo P. Dehydroroyleanone as a Building Block for a Drug Delivery Platform Based on Self-Assembled Nanoparticles: Structural Studies and Chemical Modification. ACS OMEGA 2022; 7:44180-44186. [PMID: 36506152 PMCID: PMC9730763 DOI: 10.1021/acsomega.2c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
6,7-Dehydroroyleanone (DHR) is a caspase-induced cytotoxic abietane diterpene, frequently found on Plectranthus spp. A pharmaceutical formulation consisting of a DHR-squalene conjugate was synthesized and analyzed by different techniques such as scanning electron microscopy (SEM). The facile production of the dispersion of DHR-squalene conjugate nanoparticles in phosphate buffer (pH 7.4) suggests that this nanodelivery platform may be an effective system to improve the solubility and bioavailability of DHR, so that therapeutical systemic levels may be achieved.
Collapse
Affiliation(s)
- Catarina García
- CBIOS—Universidade
Lusófona’s Research Center for Biosciences & Health
Technologies, 1749-024Lisboa, Portugal
- Departamento
de Ciencias Biomédicas (Área de Farmacología;
Nuevos A̅gentes Antitumorales, Acción Tóxica Sobre
Células Leucémicas, Facultad de Farmacia, Universidad de Alcalá de Henares, Ctra. Madrid-Barcelona km. 33,600, 28805Alcalá de Henares, Madrid, España
| | - Carlos E. S. Bernardes
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade
de Ciências, Universidade de Lisboa, 1749-016Lisboa, Portugal
| | - M. Fátima
M. Piedade
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade
de Ciências, Universidade de Lisboa, 1749-016Lisboa, Portugal
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, 1049-001Lisboa, Portugal
| | - Gaia Fumagalli
- Dipartimento
di Chimica, Università Degli Studi
di Milano, Via Golgi 19, 20133Milano, Italy
| | - Eleonora Colombo
- Dipartimento
di Chimica, Università Degli Studi
di Milano, Via Golgi 19, 20133Milano, Italy
| | - Ana M. Díaz-Lanza
- Departamento
de Ciencias Biomédicas (Área de Farmacología;
Nuevos A̅gentes Antitumorales, Acción Tóxica Sobre
Células Leucémicas, Facultad de Farmacia, Universidad de Alcalá de Henares, Ctra. Madrid-Barcelona km. 33,600, 28805Alcalá de Henares, Madrid, España
| | - Catarina P. Reis
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, 1649-003Lisboa, Portugal
- Instituto
de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016Lisboa, Portugal
| | - Isabel Correia
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, 1049-001Lisboa, Portugal
| | - Lia Ascensão
- Centro
de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016Lisbon, Portugal
| | - Daniele Passarella
- Dipartimento
di Chimica, Università Degli Studi
di Milano, Via Golgi 19, 20133Milano, Italy
| | - Manuel E. Minas da Piedade
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade
de Ciências, Universidade de Lisboa, 1749-016Lisboa, Portugal
| | - Patrícia Rijo
- CBIOS—Universidade
Lusófona’s Research Center for Biosciences & Health
Technologies, 1749-024Lisboa, Portugal
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, 1649-003Lisboa, Portugal
| |
Collapse
|
3
|
Saraiva N, Nicolai M, Martins M, Almeida N, Gusmini M, Maurício EM, Duarte MP, Gonçalves M, Baby AR, Fernandes A, Rosado C. Impact of Portuguese propolis on keratinocyte proliferation, migration and ROS protection: Significance for applications in skin products. Int J Cosmet Sci 2022; 44:333-342. [PMID: 35462442 DOI: 10.1111/ics.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Propolis has been used since antiquity, but recent reports of its biological properties hint that it could be employed as a topical pharmaceutical and cosmetic ingredient. This work aims to probe the action of Portuguese propolis extracts on skin cells, providing mechanistic insights into its mode of action and preliminarily assessing its applicability as a skin repair ingredient. METHODS The total phenolic content of propolis extracts was measured by the Folin Ciocalteu method. The cytotoxic effect of propolis extracts in human keratinocytes was determined and non-cytotoxic concentrations of the extracts were used to study the impact on collective cell migration, cell cycle and intracellular ROS levels. RESULTS o significant impact was observed in collective cell migration, but one of the extracts mildly increased G2 phase while reducing the % of sub-G1 at a non-cytotoxic concentration. The two extracts with higher phenolic content strongly prevented intracellular cellular ROS accumulation upon exposure to TBHP. Collectively, these results indicate that the putative beneficial effects of propolis extracts in skin repair may not be attributable to induction of collective cell migration but could be partially ascribed to the protection from oxidative stress, which could act in synergy with its well-known antimicrobial activity. CONCLUSION These data support the applicability of this material in topical and cosmetic formulations and further in vivo assays should be conducted to fully characterize its efficacy and safety.
Collapse
Affiliation(s)
- Nuno Saraiva
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Marisa Nicolai
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Marta Martins
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Nuno Almeida
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Matteo Gusmini
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Elisabete Muchagato Maurício
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal.,Elisa Câmara, Lda, Cosmética Natural, São Domingos de Rana, Portugal
| | - Maria Paula Duarte
- MEtRICs/DCTB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Margarida Gonçalves
- MEtRICs/DCTB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Catarina Rosado
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| |
Collapse
|
4
|
Antão AR, Bangay G, Domínguez-Martín EM, Díaz-Lanza AM, Ríjo P. Plectranthus ecklonii Benth: A Comprehensive Review Into its Phytochemistry and Exerted Biological Activities. Front Pharmacol 2021; 12:768268. [PMID: 34916943 PMCID: PMC8670309 DOI: 10.3389/fphar.2021.768268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Ethnopharmacological Relevance: Plectranthus genus (Lamiaceae family) contain several species with acknowledged ethnopharmacological uses, such as, for gastrointestinal and respiratory-related problems, due to their anti-inflammatory, antibacterial and antifungal properties. The bioactivity of isolated medicinal compounds from this genus justifies the increased interest in recent times for species of Plectranthus, placing them in the spotlight for natural product drug development. Aim of the study: To the best of our knowledge, this is the first review on the biological activities of Plectranthus ecklonii Benth. As such, the aim of this review was three-fold: 1) to summarize the chemical compounds isolated from P. ecklonii; 2) to collate the biological activities and mechanisms of action of these compounds from in vitro studies; and 3) to evaluate the documented uses and potential applications of this species, in order to postulate on the direction of pharmaceutical uses of this species. Materials and methods: An extensive database retrieval was performed using the electronic databases Web of Science, PubMed, Google Scholar and ScienceDirect. The search criteria consisted of the keywords "Plectranthus ecklonii", "Plectranthus ecklonii + review", "Plectranthus ecklonii + diterpenes" or "Plectranthus ecklonii + abietanes", "ecklonii + parviflorone D", searched individually and as combinations. Eligibility criteria were set out and titles in English, Portuguese and Spanish were reviewed, with all references included dating from 1970 to 2021. A total of 169 papers were selected and included. Chemical structures were drawn using ChemDraw 20.0, CID numbers were searched in PubChem and the PRISMA diagram was created using PowerPoint 2012. Results: To date, a total of 28 compounds have been isolated from P. ecklonii, including diterpenes, triterpenes, flavonoids, and hydroxycinnamic acids. Most focused on the antimicrobial action of its constituents, although compounds have demonstrated other bioactivities, namely antioxidant, anti-inflammatory and antitumor. The most recent studies emphasize the diterpenoids, particularly parviflorone D, with the help of nanotechnology. Conclusions: The widespread ethnobotanical and traditional uses of P. ecklonii can be scientifically justified by a range of biological activities, demonstrated by isolated secondary metabolites. These bioactivities showcase the potential of this species in the development of economically important active pharmaceutical ingredients, particularly in anticancer therapy.
Collapse
Affiliation(s)
- Ana Ribeirinha Antão
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Gabrielle Bangay
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Eva María Domínguez-Martín
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Ana María Díaz-Lanza
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Patrícia Ríjo
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
5
|
Ntungwe E, Domínguez-Martín EM, Bangay G, Garcia C, Guerreiro I, Colombo E, Saraiva L, Díaz-Lanza AM, Rosatella A, Alves MM, Reis CP, Passarella D, Rijo P. Self-Assembly Nanoparticles of Natural Bioactive Abietane Diterpenes. Int J Mol Sci 2021; 22:ijms221910210. [PMID: 34638551 PMCID: PMC8508833 DOI: 10.3390/ijms221910210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Different approaches have been reported to enhance penetration of small drugs through physiological barriers; among them is the self-assembly drug conjugates preparation that shows to be a promising approach to improve activity and penetration, as well as to reduce side effects. In recent years, the use of drug-conjugates, usually obtained by covalent coupling of a drug with biocompatible lipid moieties to form nanoparticles, has gained considerable attention. Natural products isolated from plants have been a successful source of potential drug leads with unique structural diversity. In the present work three molecules derived from natural products were employed as lead molecules for the synthesis of self-assembled nanoparticles. The first molecule is the cytotoxic royleanone 7α-acetoxy-6β-hydroxyroyleanone (Roy, 1) that has been isolated from hairy coleus (Plectranthus hadiensis (Forssk.) Schweinf). ex Sprenger leaves in a large amount. This royleanone, its hemisynthetic derivative 7α-acetoxy-6β-hydroxy-12-benzoyloxyroyleanone (12BzRoy, 2) and 6,7-dehydroroyleanone (DHR, 3), isolated from the essential oil of thicket coleus (P. madagascariensis (Pers.) Benth.) were employed in this study. The royleanones were conjugated with squalene (sq), oleic acid (OA), and/or 1-bromododecane (BD) self-assembly inducers. Roy-OA, DHR-sq, and 12BzRoy-sq conjugates were successfully synthesized and characterized. The cytotoxic effect of DHR-sq was previously assessed on three human cell lines: NCI-H460 (IC50 74.0 ± 2.2 µM), NCI-H460/R (IC50 147.3 ± 3.7 µM), and MRC-5 (IC50 127.3 ± 7.3 µM), and in this work Roy-OA NPs was assayed against Vero-E6 cells at different concentrations (0.05, 0.1, and 0.2 mg/mL). The cytotoxicity of DHR-sq NPs was lower when compared with DHR alone in these cell lines: NCI-H460 (IC50 10.3 ± 0.5 µM), NCI-H460/R (IC50 10.6 ± 0.4 µM), and MRC-5 (IC5016.9 ± 0.5 µM). The same results were observed with Roy-OA NPs against Vero-E6 cells as was found to be less cytotoxic than Roy alone in all the concentrations tested. From the obtained DLS results, 12BzRoy-sq assemblies were not in the nano range, although Roy-OA NP assemblies show a promising size (509.33 nm), Pdl (0.249), zeta potential (−46.2 mV), and spherical morphology from SEM. In addition, these NPs had a low release of Roy at physiological pH 7.4 after 24 h. These results suggest the nano assemblies can act as prodrugs for the release of cytotoxic lead molecules.
Collapse
Affiliation(s)
- Epole Ntungwe
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.N.); (E.M.D.-M.); (G.B.); (C.G.); (I.G.); (A.R.)
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra. A2, Km 33.100–Campus Universitario, 28805 Alcalá de Henares, Spain;
| | - Eva María Domínguez-Martín
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.N.); (E.M.D.-M.); (G.B.); (C.G.); (I.G.); (A.R.)
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra. A2, Km 33.100–Campus Universitario, 28805 Alcalá de Henares, Spain;
| | - Gabrielle Bangay
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.N.); (E.M.D.-M.); (G.B.); (C.G.); (I.G.); (A.R.)
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra. A2, Km 33.100–Campus Universitario, 28805 Alcalá de Henares, Spain;
| | - Catarina Garcia
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.N.); (E.M.D.-M.); (G.B.); (C.G.); (I.G.); (A.R.)
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra. A2, Km 33.100–Campus Universitario, 28805 Alcalá de Henares, Spain;
| | - Iris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.N.); (E.M.D.-M.); (G.B.); (C.G.); (I.G.); (A.R.)
| | - Eleonora Colombo
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (E.C.); (D.P.)
| | - Lucilia Saraiva
- LAQV-Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Ana María Díaz-Lanza
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra. A2, Km 33.100–Campus Universitario, 28805 Alcalá de Henares, Spain;
| | - Andreia Rosatella
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.N.); (E.M.D.-M.); (G.B.); (C.G.); (I.G.); (A.R.)
- iMed.ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Marta M. Alves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal;
| | - Catarina Pinto Reis
- iMed.ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (E.C.); (D.P.)
| | - Patricia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (E.N.); (E.M.D.-M.); (G.B.); (C.G.); (I.G.); (A.R.)
- iMed.ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Correspondence:
| |
Collapse
|
6
|
Engelberg S, Lin Y, Assaraf YG, Livney YD. Targeted Nanoparticles Harboring Jasmine-Oil-Entrapped Paclitaxel for Elimination of Lung Cancer Cells. Int J Mol Sci 2021; 22:1019. [PMID: 33498454 PMCID: PMC7864183 DOI: 10.3390/ijms22031019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
Selectively targeted drug delivery systems are preferable chemotherapeutic platforms, as they specifically deliver the drug cargo into tumor cells, while minimizing untoward toxic effects. However, these delivery systems suffer from insufficient encapsulation efficiency (EE), encapsulation capacity (EC), and premature drug release. Herein, we coencapsulated paclitaxel (PTX) and Jasmine oil (JO) within PEG-PCL nanoparticles (NPs), with an average diameter < 50 nm, selectively targeted to non-small cell lung cancer (NSCLC) cells, via S15-aptamer (APT) decoration. JO was selected as an "adhesive" oily core to enhance PTX entrapment, as JO and PTX share similar hydrophobicity and terpenoid structure. JO markedly enhanced EE of PTX from 23% to 87.8% and EC from 35 ± 6 to 74 ± 8 µg PTX/mg PEG-PCL. JO also markedly increased the residual amount of PTX after 69 h, from 18.3% to 65%. Moreover, PTX cytotoxicity against human NSCLC A549 cells was significantly enhanced due to the co-encapsulation with JO; the IC50 value for PTX encapsulated within JO-containing APT-NPs was 20-fold lower than that for APT-NPs lacking JO. Remarkably, JO-containing APT-NPs displayed a 6-fold more potent cell-killing, relatively to the free-drug. Collectively, these findings reveal a marked synergistic contribution of JO to the cytotoxic activity of APT-NP-based systems, for targeted PTX delivery against NSCLC, which may be readily applied to various hydrophobic chemotherapeutics.
Collapse
Affiliation(s)
- Shira Engelberg
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (S.E.); (Y.L.)
| | - Yuexi Lin
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (S.E.); (Y.L.)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D. Livney
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Diterpenoids from Plectranthus spp. as Potential Chemotherapeutic Agents via Apoptosis. Pharmaceuticals (Basel) 2020; 13:ph13060123. [PMID: 32560101 PMCID: PMC7344685 DOI: 10.3390/ph13060123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023] Open
Abstract
Plectranthus spp. is widely known for its medicinal properties and bioactive metabolites. The cytotoxic and genotoxic properties of the four known abietane diterpenoids: 7α-Acetoxy-6β-hydroxyroyleanone (Roy), 6,7-dehydroroyleanone (Deroy), 7β,6β-dihydroxyroyleanone6 (Diroy), and Parvifloron D (Parv), isolated from P. madagascariensis (Roy, DeRoy, and Diroy) and P. ecklonii (Parv) were evaluated. The tested compounds showed cytotoxic effects against the human leukemia cell line CCRF-CEM and the lung adenocarcinoma cell line A549. All tested compounds induced apoptosis by altering the level of pro- and anti-apoptotic genes. The results show that from the tested diterpenoids, Roy and Parv demonstrated the strongest activity in both human cancer cell lines, changing the permeability mitochondrial membrane potential and reactive oxygen species (ROS) levels, and possibly inducing mtDNA or nDNA damage. In conclusion, the abietane diterpenoids tested may be used in the future as potential natural chemotherapeutic agents
Collapse
|
8
|
Abstract
Topical drug delivery has inherent advantages over other administration routes. However, the existence of stratum corneum limits the diffusion to small and lipophilic drugs. Fortunately, the advancement of nanotechnology brings along opportunities to address this challenge. Taking the unique features in size and surface chemistry, nanocarriers such as liposomes, polymeric nanoparticles, gold nanoparticles, and framework nucleic acids have been used to bring drugs across the skin barrier to epidermis and dermis layers. This article reviews the development of these formulations and focuses on their applications in the treatment of skin disorders such as acne, skin inflammation, skin infection, and wound healing. Existing hurdles and further developments are also discussed.
Collapse
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Sharon Wan Ting Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457.,National Dental Centre of Singapore, 5 Second Hospital Avenue, Singapore 168938.,Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Nicolai M, Mota J, Fernandes AS, Pereira F, Pereira P, P. Reis C, Robles Velasco MV, Baby AR, Rosado C, Rijo P. Assessment of the Potential Skin Application of Plectranthus ecklonii Benth. Pharmaceuticals (Basel) 2020; 13:ph13060120. [PMID: 32532114 PMCID: PMC7345374 DOI: 10.3390/ph13060120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022] Open
Abstract
Plectranthus ecklonii Benth. has widespread ethnobotanical use in African folk medicine for its medicinal properties in skin conditions. In this study, two different basic formulations containing P. ecklonii extracts were prepared, one in an organic solvent and the other using water. The aqueous extract only contained rosmarinic acid (RA) at 2.02 mM, and the organic extract contained RA and parvifloron D at 0.29 and 3.13 mM, respectively. RA in aqueous solution permeated skin; however, in P. ecklonii organic extract, this was not detected. Thus, P. ecklonii aqueous extract was further studied and combined with benzophenone-4, which elevated the sun protection factor (SPF) by 19.49%. No significant cytotoxic effects were observed from the aqueous extract. The Staphylococcus epidermidis strain was used to determine a minimum inhibitory concentration (MIC) value of 10 µg·mL−1. The aqueous extract inhibited the activity of acetylcholinesterase by 59.14 ± 4.97%, and the IC50 value was 12.9 µg·mL−1. The association of the P. ecklonii extract with a UV filter substantially elevated its SPF efficacy. Following the multiple bioactivities of the extract and its active substances, a finished product could be claimed as a multifunctional cosmeceutical with broad skin valuable effects, from UV protection to antiaging action.
Collapse
Affiliation(s)
- Marisa Nicolai
- CBIOS—Universidade Lusófona Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (M.N.); (J.M.); (A.S.F.); (F.P.); (P.P.); (C.R.)
| | - Joana Mota
- CBIOS—Universidade Lusófona Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (M.N.); (J.M.); (A.S.F.); (F.P.); (P.P.); (C.R.)
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (M.N.); (J.M.); (A.S.F.); (F.P.); (P.P.); (C.R.)
| | - Filipe Pereira
- CBIOS—Universidade Lusófona Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (M.N.); (J.M.); (A.S.F.); (F.P.); (P.P.); (C.R.)
| | - Paula Pereira
- CBIOS—Universidade Lusófona Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (M.N.); (J.M.); (A.S.F.); (F.P.); (P.P.); (C.R.)
- CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Catarina P. Reis
- iMed.ULisboa Research Institute for Medicines and Pharmaceutical Sciences, Universidade de Lisboa—Faculdade de Farmácia, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo BEB, 580 Lineu Prestes Av., Bloco 15, São Paulo/SP 05508-900, Brazil; (M.V.R.V.); (A.R.B.)
| | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo BEB, 580 Lineu Prestes Av., Bloco 15, São Paulo/SP 05508-900, Brazil; (M.V.R.V.); (A.R.B.)
| | - Catarina Rosado
- CBIOS—Universidade Lusófona Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (M.N.); (J.M.); (A.S.F.); (F.P.); (P.P.); (C.R.)
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; (M.N.); (J.M.); (A.S.F.); (F.P.); (P.P.); (C.R.)
- iMed.ULisboa Research Institute for Medicines and Pharmaceutical Sciences, Universidade de Lisboa—Faculdade de Farmácia, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- Correspondence:
| |
Collapse
|
10
|
Saraiva N, Costa JG, Reis C, Almeida N, Rijo P, Fernandes AS. Anti-Migratory and Pro-Apoptotic Properties of Parvifloron D on Triple-Negative Breast Cancer Cells. Biomolecules 2020; 10:biom10010158. [PMID: 31963771 PMCID: PMC7023143 DOI: 10.3390/biom10010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023] Open
Abstract
Medicinal plants are important sources of new bioactive compounds with potential anticancer activity. Parvifloron D (ParvD) is an abietane diterpenoid, isolated in high amounts from Plectranthus ecklonii Benth. Previous reports have suggested potential therapeutic properties for ParvD. ParvD has shown pro-apoptotic and cytotoxic effects in leukemia and melanoma cell lines. However, to the best of our knowledge, there are no studies in triple-negative breast cancer (TNBC) models. TNBC is a breast cancer subtype characterized by an aggressive behavior with poor clinical outcomes and weak overall therapeutic responses to the current treatment options. This work aimed at evaluating the anticancer effect of ParvD in MDA-MB-231 cells, a model of human TNBC. To obtain sufficient amounts of purified ParvD the efficiency of several extraction methods was compared. ParvD (0.1–10 µM) decreased cell viability in a concentration-dependent manner. Treatment with ParvD (5 µM) significantly increased the percentage of apoptotic nuclei and exposure to 3 µM ParvD increased the sub-G1 population. Since altered cell adherence, migration, and invasion are determinant processes for the formation of metastases, the effect of ParvD on these cellular processes was tested. Although treatment with ParvD (1 µM) had no effect on cell-substrate attachment, ParvD (1 µM) significantly reduced cell chemotaxis and invasion. This is the first report describing the proapoptotic effect of ParvD in TNBC cells. Moreover, for the first time we have shown that ParvD reduces cell motility, unraveling potential anti-metastatic properties.
Collapse
Affiliation(s)
- Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (N.S.); (J.G.C.); (C.R.); (N.A.); (P.R.)
| | - João G. Costa
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (N.S.); (J.G.C.); (C.R.); (N.A.); (P.R.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Reis
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (N.S.); (J.G.C.); (C.R.); (N.A.); (P.R.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Almeida
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (N.S.); (J.G.C.); (C.R.); (N.A.); (P.R.)
| | - Patrícia Rijo
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (N.S.); (J.G.C.); (C.R.); (N.A.); (P.R.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Sofia Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (N.S.); (J.G.C.); (C.R.); (N.A.); (P.R.)
- Correspondence:
| |
Collapse
|
11
|
Santos-Rebelo A, Kumar P, Pillay V, Choonara YE, Eleutério C, Figueira M, Viana AS, Ascensão L, Molpeceres J, Rijo P, Correia I, Amaral J, Solá S, Rodrigues CMP, Gaspar MM, Reis CP. Development and Mechanistic Insight into the Enhanced Cytotoxic Potential of Parvifloron D Albumin Nanoparticles in EGFR-Overexpressing Pancreatic Cancer Cells. Cancers (Basel) 2019; 11:cancers11111733. [PMID: 31694306 PMCID: PMC6895893 DOI: 10.3390/cancers11111733] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, with an extremely poor prognosis. The development of more effective therapies is thus imperative. Natural origin compounds isolated from Plectranthus genus, such as parvifloron D (PvD), have cytotoxic and antiproliferative activity against human tumour cells. However, PvD is a very low water-soluble compound, being nanotechnology a promising alternative strategy to solve this problem. Therefore, the aim of this study was to optimize a nanosystem for preferential delivery of PvD to pancreatic tumour cells. Albumin nanoparticles (BSA NPs) were produced through a desolvation method. Glucose cross-linking and bioactive functionalization profiles of BSA platform were elucidated and analysed using static lattice atomistic simulations in vacuum. Using the optimized methodology, PvD was encapsulated (yield higher than 80%) while NPs were characterized in terms of size (100–400 nm) and morphology. Importantly, to achieve a preferential targeting to pancreatic cancer cells, erlotinib and cetuximab were attached to the PvD-loaded nanoparticle surface, and their antiproliferative effects were evaluated in BxPC3 and Panc-1 cell lines. Erlotinib conjugated NPs presented the highest antiproliferative effect toward pancreatic tumour cells. Accordingly, cell cycle analysis of the BxPC3 cell line showed marked accumulation of tumour cells in G1-phase and cell cycle arrest promoted by NPs. As a result, erlotinib conjugated PvD-loaded BSA NPs must be considered a suitable and promising carrier to deliver PvD at the tumour site, improving the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ana Santos-Rebelo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.S.-R.); (P.R.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra. A2 km 33,600 Campus Universitario, 28871 Alcalá de Henares, Spain;
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Carla Eleutério
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
| | - Mariana Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
| | - Ana S. Viana
- CQB, CQE, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal;
| | - Lia Ascensão
- CESAM, Universidade de Lisboa, Faculdade de Ciências, Campo Grande 1749-016 Lisboa, Portugal;
| | - Jesús Molpeceres
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra. A2 km 33,600 Campus Universitario, 28871 Alcalá de Henares, Spain;
| | - Patrícia Rijo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.S.-R.); (P.R.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Departamento de Engenharia Química, Universidade de Lisboa,1049-001 Lisboa, Portugal;
| | - Joana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Catarina Pinto Reis
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
- IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-946-400; Fax: +351-217-946-470
| |
Collapse
|
12
|
Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG, Fernandes AS. The SOD Mimic MnTnHex-2-PyP 5+ Reduces the Viability and Migration of 786-O Human Renal Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100490. [PMID: 31627290 PMCID: PMC6826590 DOI: 10.3390/antiox8100490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
Clear-cell renal carcinoma (ccRCC) is the most common type of renal cancer. The importance of oxidative stress in the context of this disease has been described, although there is only little information concerning the role of superoxide dismutase (SOD) enzymes. The importance of SOD in different pathological conditions promoted the development of SOD mimics (SODm). As such, manganese(III) porphyrins can mimic the natural SOD enzymes and scavenge different reactive oxygen species (ROS), thus modulating the cellular redox status. In this study, the exposure of 786-O human renal cancer cells to MnTnHex-2-PyP5+ (MnP), a very promising SODm, led to a concentration and time-dependent decrease in cell viability and in the cell proliferation indices, as well as to an increase in apoptosis. No relevant effects in terms of micronuclei formation were observed. Moreover, the exposure to MnP resulted in a concentration-dependent increase in intracellular ROS, presumably due to the generation of H2O2 by the inherent redox mechanisms of MnP, along with the limited ability of cancer cells to detoxify this species. Although the MnP treatment did not result in a reduction in the collective cell migration, a significant decrease in chemotactic migration was observed. Overall, these results suggest that MnP has a beneficial impact on reducing renal cancer cell viability and migration and warrant further studies regarding SODm-based therapeutic strategies against human renal cancer.
Collapse
Affiliation(s)
- João G Costa
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno Saraiva
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana S Fernandes
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| |
Collapse
|
13
|
Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems. Pharmaceutics 2019; 11:E22. [PMID: 30625999 PMCID: PMC6359642 DOI: 10.3390/pharmaceutics11010022] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Theranostics has emerged in recent years to provide an efficient and safer alternative in cancer management. This review presents an updated description of nanotheranostic formulations under development for skin cancer (including melanoma), head and neck, thyroid, breast, gynecologic, prostate, and colon cancers, brain-related cancer, and hepatocellular carcinoma. With this focus, we appraised the clinical advantages and drawbacks of metallic, polymeric, and lipid-based nanosystems, such as low invasiveness, low toxicity to the surrounding healthy tissues, high precision, deeper tissue penetration, and dosage adjustment in a real-time setting. Particularly recognizing the increased complexity and multimodality in this area, multifunctional hybrid nanoparticles, comprising different nanomaterials and functionalized with targeting moieties and/or anticancer drugs, present the best characteristics for theranostics. Several examples, focusing on their design, composition, imaging and treatment modalities, and in vitro and in vivo characterization, are detailed herein. Briefly, all studies followed a common trend in the design of these theranostics modalities, such as the use of materials and/or drugs that share both inherent imaging (e.g., contrast agents) and therapeutic properties (e.g., heating or production reactive oxygen species). This rationale allows one to apparently overcome the heterogeneity, complexity, and harsh conditions of tumor microenvironments, leading to the development of successful targeted therapies.
Collapse
Affiliation(s)
- Catarina Oliveira Silva
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Jacinta Oliveira Pinho
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana Margarida Lopes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - António J Almeida
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Catarina Reis
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
- IBEB, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
14
|
Development of Parvifloron D-loaded Smart Nanoparticles to Target Pancreatic Cancer. Pharmaceutics 2018; 10:pharmaceutics10040216. [PMID: 30400382 PMCID: PMC6321128 DOI: 10.3390/pharmaceutics10040216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the eighth leading cause of cancer death worldwide. For this reason, the development of more effective therapies is a major concern for the scientific community. Accordingly, plants belonging to Plectranthus genus and their isolated compounds, such as Parvifloron D, were found to have cytotoxic and antiproliferative activities. However, Parvifloron D is a very low water-soluble compound. Thus, nanotechnology can be a promising delivery system to enhance drug solubility and targeted delivery. The extraction of Parvifloron D from P. ecklonii was optimized through an acetone ultrasound-assisted method and isolated by Flash-Dry Column Chromatography. Then, its antiproliferative effect was selectivity evaluated against different cell lines (IC50 of 0.15 ± 0.05 μM, 11.9 ± 0.7 μM, 21.6 ± 0.5, 34.3 ± 4.1 μM, 35.1 ± 2.2 μM and 32.1 ± 4.3 μM for BxPC3, PANC-1, Ins1-E, MCF-7, HaCat and Caco-2, respectively). To obtain an optimized stable Parvifloron D pharmaceutical dosage form, albumin nanoparticles were produced through a desolvation method (yield of encapsulation of 91.2%) and characterized in terms of size (165 nm; PI 0.11), zeta potential (−7.88 mV) and morphology. In conclusion, Parvifloron D can be efficiently obtained from P. ecklonii and it has shown selective cytotoxicity to pancreatic cell lines. Parvifloron D nanoencapsulation can be considered as a possible efficient alternative approach in the treatment of pancreatic cancer.
Collapse
|
15
|
Abstract
There is a growing interest for the discovery of new cancer-targeted delivery systems for drug delivery and diagnosis. A synopsis of the bibliographic data will be presented on bombesin, neurotensin, octreotide, Arg-Gly-Asp, luteinizing hormone-releasing hormone and other peptides. Many of them have reached the clinics for therapeutic or diagnostic purposes, and have been utilized as carriers of known cytotoxic agents such as doxorubicin, paclitaxel, cisplatin, methotrexate or dyes and radioisotopes. In our article, recent advances in the development of peptides as carriers of cytotoxic drugs or radiometals will be analyzed.
Collapse
|
16
|
An emerging integration between ionic liquids and nanotechnology: general uses and future prospects in drug delivery. Ther Deliv 2018; 8:461-473. [PMID: 28530146 DOI: 10.4155/tde-2017-0002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing need to develop drug-delivery systems that overcome drawbacks such as poor drug solubility/loading/release, systemic side effects and limited stability. Ionic liquids (ILs) offer many advantages and their tailoring represents a valuable tuning tool. Nano-based systems are also prized materials that prevent drug degradation, enhance their transport/distribution and extend their release. Consequently, structures containing ILs and nanoparticles (NPs) have been developed to attain synergistic effects. This overview on the properties of ILs, NPs and of their combined structures, reveals the recent advances in these areas through a review of pertinent literature. The IL-NP structures present enhanced properties and the subsequent performance upgrade proves to be useful in drug delivery, although much is yet to be done.
Collapse
|
17
|
Pautu V, Leonetti D, Lepeltier E, Clere N, Passirani C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol Res 2017; 126:31-53. [PMID: 28223185 DOI: 10.1016/j.phrs.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.
Collapse
Affiliation(s)
- Vincent Pautu
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | | | - Elise Lepeltier
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|