1
|
Wang A, Mizejewski GJ, Zhang C. Growth inhibitory peptides: a potential novel therapeutic approach to cancer treatment. Eur J Pharmacol 2025; 996:177554. [PMID: 40147579 DOI: 10.1016/j.ejphar.2025.177554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Cancer remains a major global public health concern, with considerable interest in exploring biological molecules for cancer treatment and prevention. Growth inhibitory peptide (GIP), a promising new class of biological therapeutics, has drawn attention for its distinct anti-tumor properties. Derived from human alpha-fetoprotein (HAFP), this synthetic 34-amino-acid peptide has demonstrated substantial anti-tumor effects across various cancer cell lines, effectively inhibiting tumor cell proliferation, migration, and metastasis. Studies reveal that GIP mediates its effects through a range of mechanisms, including interactions with G protein-coupled receptors (GPCRs), anti-cell adhesion activities, inhibition of cell spreading and metastatic processes, morphological alterations, platelet aggregation inhibition, immune enhancement, cell membrane disruption, ion channel blockade, and cell cycle arrest. While GIP has exhibited promising anti-tumor activity in both in vitro and in vivo models, further investigation is essential to advance its development as a therapeutic drug, particularly regarding pharmacokinetics, safety profiles, storage stability, and clinical efficacy.
Collapse
Affiliation(s)
- Aixin Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - G J Mizejewski
- Division of Translational Medicine, Molecular Diagnostics Laboratory, Wadsworth Center, New York State Department of Health Biggs Laboratory, Empire State Plaza Albany, NY 12237, USA
| | - Chao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
2
|
Zaccariotto GDC, Bistaffa MJ, Zapata AMM, Rodero C, Coelho F, Quitiba JVB, Lima L, Sterman R, Cardoso VMDO, Zucolotto V. Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation. ACS NANO 2025. [PMID: 40202241 DOI: 10.1021/acsnano.4c15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cancer immunotherapy has transformed the landscape of oncological treatment by employing various strategies to teach the immune system to eliminate tumors. Among these, cancer nanovaccines are an emerging strategy that utilizes nanotechnology to enhance immune activation in response to tumor antigens. This review addresses the principles behind the different technologies in this field aimed at generating a robust and effective immune response. The diversity of strategies adopted for the design of nanovaccines is discussed, including the types of active agents, nanocarriers, their functionalizations, and the incorporation of adjuvants. Furthermore, strategies to optimize nanoparticle formulations to enhance the antigen presentation, target immune cells, and organs and promote strong and durable antitumor responses are explored. Finally, we analyze the current state of clinical application, highlighting ongoing clinical trials and the future potential of cancer nanovaccines. The insights presented in this review aim to guide future research and development efforts in the field, contributing to the advancement of more effective and targeted nanovaccines in the fight against cancer.
Collapse
Affiliation(s)
- Gabriel de Camargo Zaccariotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Angelica Maria Mazuera Zapata
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Camila Rodero
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Fernanda Coelho
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - João Victor Brandão Quitiba
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Lorena Lima
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Raquel Sterman
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | | | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| |
Collapse
|
3
|
Xue B, Li R, Cheng Z, Zhou X. High-Affinity Peptides for Target Protein Screened in Ultralarge Virtual Libraries. ACS CENTRAL SCIENCE 2024; 10:2111-2118. [PMID: 39634215 PMCID: PMC11613273 DOI: 10.1021/acscentsci.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
High-throughput virtual screening (HTVS) has emerged as a pivotal strategy for identifying high-affinity peptides targeting functional proteins, which are crucial for diagnostic and therapeutic applications. In the HTVS of peptides, expanding the library capacity to enhance peptide sequence diversity, thereby screening out excellent affinity peptide candidates, remains a significant challenge. This study presents a de novo design strategy that leverages directed mutation driven HTVS to evolve vast virtual libraries and screen peptides with ultrahigh affinities for various target proteins. Utilizing a computer-generated library of 104 random 15-mer peptide scaffolds, we employed a self-developed algorithm for parallelized HTVS with Autodock Vina. The top 1% of designs underwent random mutations at a rate of 20% for six generations, theoretically expanding the library to 1014 members. This approach was applied to various protein targets, including a tumor marker (alpha fetoprotein, AFP) and virus surface proteins (SARS-CoV-2 RBD and norovirus P-domain). Starting from the same 104 random 15-mer peptide library, peptides with high affinities in the nanomolar range for three protein targets were successfully identified. The energy-saving and high-efficient design strategy presents new opportunities for the cost-effective development of more effective high-affinity peptides for various environmental and health applications.
Collapse
Affiliation(s)
- Boyuan Xue
- Center
for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruixue Li
- Center
for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhao Cheng
- Center
for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- Center
for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Pak VN, Sherman IA. Comprehensive approach to cancer immunotherapy - Simultaneous targeting of myeloid-derived suppressor cells and cancer cells with AFP conjugates. Crit Rev Oncol Hematol 2024; 200:104407. [PMID: 38834093 DOI: 10.1016/j.critrevonc.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
The immune system plays a pivotal role in combating diseases, including cancer, with monocytes emerging as key regulators of immune response dynamics. This article describes a novel strategy for cancer treatment centered on depleting myeloid-derived suppressor cells (MDSCs), to enhance the overall immune response while simultaneously targeting cancer cells directly. Alpha-fetoprotein (AFP) is an oncofetal protein that plays an important role in delivering nutrients to immature monocytes, embryonic, and cancer cells in a targeted manner. AFP can be repurposed, making it a vehicle for delivering toxins, rather than nutrients to kill cancer cells and deplete MDSCs in the tumor microenvironment (TME). Depleting monocytes not only stimulates the immune system but also improves the lymphocyte-to-monocyte ratio (LMR), often low in cancer patients. AFP combined with cytotoxic drugs, offers dual benefit-immune stimulation and targeted chemotherapy. Studies in xenograft models demonstrated high efficacy and safety of AFP-toxin conjugates, surpassing conventional targeted chemotherapy. Such conjugates have also been reported to provide superior efficacy and safety in cancer patients compared to chemotherapy. This approach, using AFP conjugated with toxins, either covalently or non-covalently, presents a safe and highly effective option for cancer immuno/chemotherapy.
Collapse
Affiliation(s)
- Vladimir N Pak
- Omega Alpha Pharmaceuticals Inc., 795 Pharmacy Avenue, Toronto, On, M1L 3K2 Canada
| | - Igor A Sherman
- Alpha Cancer Technologies Inc., MaRS Discovery District, South Tower 200 - 101 College St., Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
5
|
Liu K, Wu C, Zhu M, Xu J, Lin B, Lin H, Liu Z, Li M. Structural characteristics of alpha-fetoprotein, including N-glycosylation, metal ion and fatty acid binding sites. Commun Biol 2024; 7:505. [PMID: 38678117 PMCID: PMC11055904 DOI: 10.1038/s42003-024-06219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Alpha-fetoprotein (AFP), a serum glycoprotein, is expressed during embryonic development and the pathogenesis of liver cancer. It serves as a clinical tumor marker, function as a carcinogen, immune suppressor, and transport vehicle; but the detailed AFP structural information has not yet been reported. In this study, we used single-particle cryo-electron microscopy(cryo-EM) to analyze the structure of the recombinant AFP obtained a 3.31 Å cryo-EM structure and built an atomic model of AFP. We observed and identified certain structural features of AFP, including N-glycosylation at Asn251, four natural fatty acids bound to distinct domains, and the coordination of metal ions by residues His22, His264, His268, and Asp280. Furthermore, we compared the structural similarities and differences between AFP and human serum albumin. The elucidation of AFP's structural characteristics not only contributes to a deeper understanding of its functional mechanisms, but also provides a structural basis for developing AFP-based drug vehicles.
Collapse
Affiliation(s)
- Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan, PR China
| | - Cang Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan, PR China
| | - Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan, PR China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, 570023, Hainan, PR China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan, PR China
| | - Haifeng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, 570023, Hainan, PR China
| | - Zhongmin Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, 571199, Hainan, PR China.
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China.
- Institution of Tumor, Hainan Medical College, Haikou, 570102, Hainan, PR China.
| |
Collapse
|
6
|
Trojan A, Lone YC, Briceno I, Trojan J. Anti-Gene IGF-I Vaccines in Cancer Gene Therapy: A Review of a Case of Glioblastoma. Curr Med Chem 2024; 31:1983-2002. [PMID: 38031775 DOI: 10.2174/0109298673237968231106095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines. METHODOLOGY The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal. RESULTS This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors. CONCLUSION The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.
Collapse
Affiliation(s)
- Annabelle Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- Faculty of Medicine, University of Cartagena, PO Box: 130014 Cartagena de Indias, Colombia
| | - Yu-Chun Lone
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
| | - Ignacio Briceno
- Faculty of Medicine, University of La Sabana, PO Box: 250008 Chia, Colombia
| | - Jerzy Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
- National Academy of Medicine - ANM, PO Box: 75272 Paris, France
| |
Collapse
|
7
|
Li M, Mei YX, Wen JH, Jiao YR, Pan QR, Kong XX, Li J. Hepatoid adenocarcinoma-Clinicopathological features and molecular characteristics. Cancer Lett 2023; 559:216104. [PMID: 36863507 DOI: 10.1016/j.canlet.2023.216104] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Hepatoid adenocarcinoma (HAC) is a rare, malignant, extrahepatic tumor with histologic features similar to those of hepatocellular carcinoma. HAC is most often associated with elevated alpha-fetoprotein (AFP). HAC can occur in multiple organs, including the stomach, esophagus, colon, pancreas, lungs, and ovaries. HAC differs greatly from typical adenocarcinoma in terms of its biological aggression, poor prognosis, and clinicopathological characteristics. However, the mechanisms underlying its development and invasive metastasis remain unclear. The purpose of this review was to summarize the clinicopathological features, molecular traits, and molecular mechanisms driving the malignant phenotype of HAC, in order to support the clinical diagnosis and treatment of HAC.
Collapse
Affiliation(s)
- Ming Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Yan-Xia Mei
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Ji-Hang Wen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Yu-Rong Jiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Qiang-Rong Pan
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China
| | - Xiang-Xing Kong
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China.
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Cancer, China; Cancer Center of Zhejiang University, China.
| |
Collapse
|
8
|
Wang Q, Li W, Zhang M, Zou Z, Dong X, Chen Y, Xu J, Zhu M, Li M, Lin B. α-Fetoprotein fragment synergizes with sorafenib to inhibit hepatoma cell growth and migration and promote the apoptosis. J Cell Mol Med 2022; 26:5426-5438. [PMID: 36181321 PMCID: PMC9639031 DOI: 10.1111/jcmm.17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Alpha fetoprotein (AFP) is associated with hepatocellular carcinoma (HCC) by stimulating the proliferation, metastasis and drug resistance. The application of AFP fragments to inhibit the malignant behaviours induced by AFP is a new strategy for the treatment of HCC. In an effort to design, screen and discover drugs, we attempted to express different human AFP fragments (AFP220-609 , AFP390-609 and AFP460-609 ) in a Bac-to-Bac system. We found that the AFP390-609 fragment was highly expressed in the system. Then, we assessed the bioactivity of the fragment in the human liver cancer cell line Bel7402, and the results indicated that the AFP fragment synergized with sorafenib to inhibit the hepatoma cell growth and migration and promote the apoptosis. This study provides a method to produce significant AFP fragments to screen AFP inhibitors for use in HCC therapy.
Collapse
Affiliation(s)
- Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Zijuan Zou
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
- Department of Medical Oncology, Second Affiliated HospitalHainan Medical CollegeHaikouChina
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
- Institution of TumorHainan Medical CollegeHaikouChina
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and InterventionHainan Medical CollegeHaikouChina
| |
Collapse
|
9
|
Lin B, Dong X, Wang Q, Li W, Zhu M, Li M. AFP-Inhibiting Fragments for Drug Delivery: The Promise and Challenges of Targeting Therapeutics to Cancers. Front Cell Dev Biol 2021; 9:635476. [PMID: 33898423 PMCID: PMC8061420 DOI: 10.3389/fcell.2021.635476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha fetoprotein (AFP) plays a key role in stimulating the growth, metastasis and drug resistance of hepatocellular carcinoma (HCC). AFP is an important target molecule in the treatment of HCC. The application of AFP-derived peptides, AFP fragments and recombinant AFP (AFP-inhibiting fragments, AIFs) to inhibit the binding of AFP to intracellular proteins or its receptors is the basis of a new strategy for the treatment of HCC and other cancers. In addition, AIFs can be combined with drugs and delivery agents to target treatments to cancer. AIFs conjugated to anticancer drugs not only destroy cancer cells with these drugs but also activate immune cells to kill cancer cells. Furthermore, AIF delivery of drugs relieves immunosuppression and enhances chemotherapy effects. The synergism of immunotherapy and targeted chemotherapy is expected to play an important role in enhancing the treatment effect of patients with cancer. AIF delivery of drugs will be an available strategy for the targeted treatment of cancer in the future.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
10
|
Lin B, Wang Q, Liu K, Dong X, Zhu M, Li M. Alpha-Fetoprotein Binding Mucin and Scavenger Receptors: An Available Bio-Target for Treating Cancer. Front Oncol 2021; 11:625936. [PMID: 33718192 PMCID: PMC7947232 DOI: 10.3389/fonc.2021.625936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Alpha-fetoprotein (AFP) entrance into cancer cells is mediated by AFP receptors (AFPRs) and exerts malignant effects. Therefore, understanding the structure of AFPRs will facilitate the development of rational approaches for vaccine design, drug delivery, antagonizing immune suppression and diagnostic imaging to treat cancer effectively. Throughout the last three decades, the identification of universal receptors for AFP has failed due to their complex carbohydrate polymer structures. Here, we focused on the two types of binding proteins or receptors that may serve as AFPRs, namely, the A) mucin receptors family, and B) the scavenger family. We presented an informative review with detailed descriptions of the signal transduction, cross-talk, and interplay of various transcription factors which highlight the downstream events following AFP binding to mucin or scavenger receptors. We mainly explored the underlying mechanisms involved mucin or scavenger receptors that interact with AFP, provide more evidence to support these receptors as tumor AFPRs, and establish a theoretical basis for targeting therapy of cancer.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
11
|
URRENT CONCEPT OF THE STRUCTURAL AND FUNCTIONAL PROPERTIES OF ALFA-FETOPROTEIN AND THE POSSIBILITIES OF ITS CLINICAL APPLICATION. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper was aimed to review the literature data from native and foreign sources accumulated for 40-years period of research of the features of the molecular structure, functions, production and application of human alpha-fetoprotein (AFP), which is known as one of the most studied and increasingly demanded proteins. Results of fundamental studies performed with the use of modern methods, including various types of electrophoresis, chromatography, electron microscopy and immunoassay, in order to characterize the principal physicochemical capacities and localization of free and bound forms of AFP, as well as polypeptide structure, heterogeneity and topography of AFP receptors are highlighted here. The data on the mechanisms of AFP synthesis, its conformational features, binding sites and intracellular metabolism are also presented. The concepts of physiological functions and mechanisms of AFP transport in an organism are presented. Data on AFP isolation from the natural primary products and its production by means of recombinant and synthetic methods are shown. This review also summarizes information on the current possibilities of clinical application of AFP and the prospects for its usage in anticancer therapy for targeted delivery of chemotherapy drugs, with emphasis on the description of the recent progress in this field.
Collapse
|
12
|
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. ENVIRONMENTAL RESEARCH 2019; 176:108574. [PMID: 31299618 DOI: 10.1016/j.envres.2019.108574] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 04850, Mexico City, Mexico.
| | | | | |
Collapse
|
13
|
Li HL, Lee JR, Hahn MJ, Yang JM, Meng FG, Wu JW, Park YD. The omics based study for the role of superoxide dismutase 2 (SOD2) in keratinocytes: RNA sequencing, antibody-chip array and bioinformatics approaches. J Biomol Struct Dyn 2019; 38:2884-2897. [DOI: 10.1080/07391102.2019.1648321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hai-Long Li
- Institute of Molecular Enzymology, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Jae-Rin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myong-Joon Hahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Fan-Guo Meng
- Institute of Molecular Enzymology, Medical College of Soochow University, Suzhou, Jiangsu, PR China
- Redox Medical Center for Public Health, Soochow University, Suzhou, Jiangsu, PR China
| | - Jia-Wei Wu
- Institute of Molecular Enzymology, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Yong-Doo Park
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
14
|
He Y, Lu H, Zhang L. Serum AFP levels in patients suffering from 47 different types of cancers and noncancer diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:199-212. [PMID: 30905450 DOI: 10.1016/bs.pmbts.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein and belongs to the gene family of serum albumins. The serum AFP levels were found to be elevated in the sera of liver cancer patients in 1964 and were subsequently developed and used as a liver cancer biomarker. However, elevated serum AFP levels have been observed in patients suffering from other cancer and noncancer diseases. Up to date, a systematic comparison of the serum AFP levels in different diseases has not been reported. In current study, 66,682 clinical lab test results of serum AFP levels from healthy individuals and patients with 47 different types of diseases during the past 5 years were retrieved and analyzed. Based on the mean (SD), median, and p (-Log10p) values, we found that patients suffering from liver, breast, esophagus, cervical, pancreatic, endometrial, gastric, lung, rectum cancers in addition to noncancer diseases cirrhosis, nephrotic syndrome, and gastritis had significantly (p<0.05) increased, whereas patients suffering from multiple myeloma, Wilms' tumor, and other 22 types of noncancer diseases had significantly decreased median serum AFP levels than that of healthy controls. Moreover, patients with liver cancer, cirrhosis, lymphoma, bone fracture, and Wilms' tumor had highest mean serum AFP levels and the biggest SD values. In summary, the increased serum AFP levels were most evident but not specific for liver cancer patients. The potential clinical use of the increased or decreased serum AFP levels for other types of cancer and noncancer diseases and the molecular mechanisms behind our current findings need to be investigated.
Collapse
Affiliation(s)
- Yanli He
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Haijun Lu
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
|
16
|
Selective targeting of myeloid-derived suppressor cells in cancer patients through AFP-binding receptors. Future Sci OA 2018; 5:FSO321. [PMID: 30652015 PMCID: PMC6331696 DOI: 10.4155/fsoa-2018-0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022] Open
|