1
|
Bae I, Kim BH. Drug release control and anti-inflammatory effect of biodegradable polymer surface modified by gas phase chemical functional reaction. Biomed Mater 2024; 19:025045. [PMID: 38364287 DOI: 10.1088/1748-605x/ad2a38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
The plasma technique has been widely used to modify the surfaces of materials. The purpose of this study was to evaluate the probability of controlling the prednisolone delivery velocity on a polylactic acid (PLA) surface modified by plasma surface treatment. Surface modification of PLA was performed at a low-pressure radio frequency under conditions of 100 W power, 50 mTorr chamber pressure, 100-200 sccm of flow rate, and Ar, O2, and CH4gases. The plasma surface-modified PLA was characterized using scanning emission microscope, x-ray photoelectron spectroscopy (XPS), and contact angle measurements.In vitroevaluations were performed to determine cellular response, drug release behavior, and anti-inflammatory effects. The PLA surface morphology was changed to a porous structure (with a depth of approximately 100 μm) and the surface roughness was also significantly increased. The XPS results demonstrated higher oxygenized carbon contents than those in the non-treated PLA group. The prednisolone holding capacity increased and the release was relatively prolonged in the surface-modified PLA group compared to that in the non-treated PLA group. In addition, cell migration and proliferation significantly increased after PLA treatment alone. The activity of cytokines such as cyclooxygenase-2 (COX-2), tumor necrosis factor-a (TNF-α), interleukin (IL-1β), and IL-6 were considerably reduced in the plasma-treated and prednisolone holding group. Taken together, surface-modified PLA by plasma can provide an alternative approach to conventional physicochemical approaches for sustained anti-inflammatory drug release.
Collapse
Affiliation(s)
- Inho Bae
- Convergence Research Center for Treatment of Oral Soft Tissue Disease (MRC), Chosun University, 2 Chosundae 4-gil, Dong-gu, Gwangju 61452, Republic of Korea
| | - Byung-Hoon Kim
- Convergence Research Center for Treatment of Oral Soft Tissue Disease (MRC), Chosun University, 2 Chosundae 4-gil, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Trivedi R, Minglani VV, El-Gazzar AM, Batiha GES, Mahmoud MH, Patel M, Patel M. Optimization of Pramipexole-Loaded In Situ Thermosensitive Intranasal Gel for Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:172. [PMID: 38399387 PMCID: PMC10891972 DOI: 10.3390/ph17020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of the present work was to develop and optimize an intranasal in situ gel of Pramipexole dihydrochloride for enhanced drug delivery, better patient acceptability, and possible proper treatment of Parkinson's disease. Preliminary studies were performed to select formulation components and identify key variables affecting the formulation. The optimization of the in situ gelling system of Pramipexole dihydrochloride was achieved by applying 32 full factorial design using Design-Expert® software (Stat-Ease 9.0.6 version) and taking concentrations of Poloxamer 407 (X1) and HPMC K4M (X2) as independent variables. The gelling temperature, gel strength, and percentage of drug diffused after 8 h were taken as dependent variables. The software provided an optimized formulation, with 16.50% of X1 and 0.2% of X2 with the highest desirability. An in vivo drug retention time study was performed for the optimized formulation in Wistar rats. The results of the optimization process demonstrated that the selected gel formulation exhibited desirable characteristics, including gelation near body temperature, good gel strength, suitable viscosity, and sustained drug release. The optimized formulation displayed significantly higher drug retention, lasting about 5 h, versus the plain poloxamer gel formulation. Hence, it was concluded that the optimized formulation will remain affixed at the site of application for a significant time after intranasal administration and consequently sustain the release of the drug. The optimized formulation was found to be stable during the stability studies. The developed dosage form may improve patient compliance, enhance nasal drug residence, and offer sustained drug release. However, further clinical studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Rushi Trivedi
- Babaria Institute of Pharmacy, Varnama, Vadodara 391240, Gujarat, India;
| | - Vahid Vikram Minglani
- Department of Pharmaceutics, School of Pharmacy, Parul University, Vadodara 391760, Gujarat, India;
| | - Ahmed M. El-Gazzar
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 5424041, Egypt;
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| | - Meenakshi Patel
- Department of Pharmaceutics, School of Pharmacy, Faculty of Pharmacy and Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
3
|
Vecchi CF, Said dos Santos R, Bassi da Silva J, Bruschi ML. Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:503-516. [PMID: 35800135 PMCID: PMC9194495 DOI: 10.3762/bjnano.13.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Microneedles (MNs) are a means to break the protective skin barrier in a minimally invasive way. By creating temporary micropores, they make biologically active agents available in the skin layers. Propolis (PRP) is a gum resin with a complex chemical composition, produced by bees Apis mellifera L. and showing several therapeutic properties (i.e., antibacterial, antiviral, antifungal, anti-inflammatory, healing, and immunomodulatory properties). The administration of PRP extracts by conventional routes has some disadvantages, such as running off over the skin in liquid or emulsion form. When taken orally, the extracts have a strong and unpleasant taste. The aim of this work was to fabricate and characterize microneedles containing polyvinyl alcohol, polyvinylpyrrolidone, poloxamer P407, and an ethanolic or glycolic extract of PRP. Also, the obtained structures were microscopically and mechanically characterized. The results of the mechanical analysis showed that formulations containing 3% of P407 presented the highest compression values in a hard surface, which was also confirmed by the height and base values of the morphological analysis and by the microscopy images. It was possible to design MNs and select the best formulations for future tests. MNs containing an ethanolic extract of PRP showed to be better structured than MNs containing a glycolic extract of PRP. The MNs obtained in these studies proved to be a promising platform for the topical application of PRP.
Collapse
Affiliation(s)
- Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Rafaela Said dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
4
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Pastório NFG, Vecchi CF, Said dos Santos R, Bruschi ML. Design of Mucoadhesive Strips for Buccal Fast Release of Tramadol. Pharmaceutics 2021; 13:pharmaceutics13081187. [PMID: 34452148 PMCID: PMC8399036 DOI: 10.3390/pharmaceutics13081187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
Tramadol hydrochloride is a synthetic analogue of codeine and shows activity on the central nervous system as an opioid agonist and inhibitor of serotonin and norepinephrine reuptake. It has been used for controlling moderate to severe pain. Mucoadhesive fast-dissolving films can present greater drug availability and patient acceptance when compared to the systems of peroral administration. The films were prepared using the solvent casting method with ethylcellulose, polyvinylpyrrolidone and poly(vinyl alcohol). The effect of each polymer concentration was investigated using a 2³ factorial design with repetition at the central point. The formulations were subjected to physicochemical, mechanical, ex vivo mucoadhesive and in vitro drug release profile analysis. These properties were dependent on the polymeric composition (independent factors) of each system. The optimized formulations showed good macroscopic characteristics, improved resistance to bending, rigidity, rapid swelling up to 60 s, improved mechanical and mucoadhesive characteristics, and also fast dissolving and tramadol release. The optimized formulations constitute platforms and strategies to improve the therapy of tramadol with regard to availability at the site of application, considering the necessity of rapid pain relief, and show potential for in vivo evaluation.
Collapse
|
6
|
Bielas R, Maksym P, Tarnacka M, Minecka A, Jurkiewicz K, Talik A, Geppert-Rybczyńska M, Grelska J, Mielańczyk Ł, Bernat R, Kamiński K, Paluch M, Kamińska E. Synthetic strategy matters: The study of a different kind of PVP as micellar vehicles of metronidazole. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Qureshi D, Pattanaik S, Mohanty B, Anis A, Kulikouskaya V, Hileuskaya K, Agabekov V, Sarkar P, Maji S, Pal K. Preparation of novel poly(vinyl alcohol)/chitosan lactate-based phase-separated composite films for UV-shielding and drug delivery applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03653-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Wang Y, Gou K, Guo X, Ke J, Li S, Li H. Advances in regulating physicochemical properties of mesoporous silica nanocarriers to overcome biological barriers. Acta Biomater 2021; 123:72-92. [PMID: 33454385 DOI: 10.1016/j.actbio.2021.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) with remarkable structural features have been proven to be an excellent platform for the delivery of therapeutic molecules. Biological barriers in various forms (e.g., mucosal barrier, cellular barrier, gastrointestinal barrier, blood-brain barrier, and blood-tumor barrier) present substantial obstacles for MSNs. The physicochemical parameters of MSNs are known to be effective and tunable not only for load and release of therapeutic molecules but also for their biological responsiveness that is beneficial for cells and tissues. This review innovatively provides a description of how and why physicochemical properties (e.g., particle size, morphology, surface charge, hydrophilic-hydrophobic property, and surface modification) of MSNs influence their ability to cross the biological barriers prior to reaching targeted sites. First, the structural and physiological features of biological barriers are outlined. Next, the recent progresses in the critical physicochemical parameters of MSNs are highlighted from physicochemical and biological aspects. Surface modification, as an important strategy for achieving rapid transport, is also reviewed with special attention to the latest findings of bioactive groups and molecular mechanisms. Furthermore, advanced designs of multifunction intelligent MSNs to surmount the blood-tumor barrier and to actively target tumor sites are demonstrated in detail. Lastly, the biodegradability and toxicity of MSNs are evaluated. With perspectives for their potential application and biosafety, the clues in summary might lead to drug delivery with high efficiency and provide useful knowledge for rational design of nanomaterials.
Collapse
|
9
|
Development and characterization of sublingual films for enhanced bioavailability of selegiline hydrochloride. Ther Deliv 2021; 12:159-174. [PMID: 33557601 DOI: 10.4155/tde-2020-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Low oral bioavailability of selegiline hydrochloride (SH) is primarily due to extensive first-pass metabolism and hence the need for an alternative pathway of administration. Herein, we report the development of sublingual SH films. The films were formulated with varying polymer composition (F1-F6) and evaluated for physicochemical characteristics, in vitro drug release and ex vivo permeation studies. The film F2 demonstrated satisfactory weight (10.60 mg), folding endurance (>200), drug content (11.44 mg/cm2), disintegration time (68 s), mucoadhesive strength (47.7 N/cm2), and controlled release for 30 min. The permeation studies exhibited a higher ex vivo sublingual flux than that of the plain drug. This study concludes that the SH film can provide a potential opportunity for sublingual drug delivery.
Collapse
|
10
|
Expert design and optimization of a novel buccoadhesive blend film impregnated with metformin nanoparticles. Ther Deliv 2020; 11:573-590. [PMID: 32873189 DOI: 10.4155/tde-2020-0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The purpose of this study was to design a metformin nanoparticles (NPs)-loaded buccoadhesive film for enhanced drug bioavailability. Materials & methods: The NPs were prepared and incorporated into a hydroxypropyl methylcellulose-chitosan blend film. Three levels of a three-factor, Box-Behnken design were used to evaluate the critical formulation variables. The drug permeation was also examined using sheep buccal mucosa. Results & conclusion: The results verified the formation of spherical NPs with an average size of 177.8 ± 6.42 nm and entrapment efficiency of 78.03 ± 0.23%. The optimum conditions for nanofilms were predicted to be: hydroxypropyl methylcellulose (700 mg), glycerol (50 mg) and chitosan (0.15 %w/v). The nanofilm showed a high drug permeation within 6 h. The metformin nanofilm offers an excellent opportunity for buccal drug delivery.
Collapse
|