1
|
Jayasankar G, Koilpillai J, Narayanasamy D. A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties. Adv Pharm Bull 2024; 14:278-301. [PMID: 39206408 PMCID: PMC11347731 DOI: 10.34172/apb.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery of diagnostic drugs via nanobubbles (NBs) has shown to be an emerging field of study. Due to their small size, NBs may more easily travel through constricted blood vessels and precisely target certain bodily parts. NB is considered the major treatment for cancer treatment and other diseases which are difficult to diagnose. The field of NBs is dynamic and continues to grow as researchers discover new properties and seek practical applications in various fields. The predominant usage of NBs in novel drug delivery is to enhance the bioavailability, and controlled drug release along with imaging properties NBs are important because they may change interfacial characteristics including surface force, lubrication, and absorption. The quick diffusion of gas into the water was caused by a hypothetical film that was stimulated and punctured by a strong acting force at the gas/water contact of the bubble. In this article, various prominent aspects of NBs have been discussed, along with the long-acting nature, and the theranostical aspect which elucidates the potential marketed drugs along with clinical trial products. The article also covers quality by design aspects, different production techniques that enable method-specific therapeutic applications, increasing the floating time of the bubble, and refining its properties to enhance the prepared NB's quality. NB containing both analysis and curing properties makes it special from other nano-carriers. This work includes all the possible methods of preparing NB, its application, all marketed drugs, and products in clinical trials.
Collapse
Affiliation(s)
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institution of Science and Technology, Kattankulathur, Chengalpattu, India
| |
Collapse
|
2
|
Zhang Y, Dang Y, Huang M, Ma Y, Zhang D, Wang X. Development of bioactive and ultrasound-responsive microdroplets for preventing ovariectomy (OVX)-induced osteoporosis. J Mater Chem B 2023; 11:11344-11356. [PMID: 37990947 DOI: 10.1039/d3tb01726e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
As a common bone disease in the elderly population, osteoporosis-related bone loss and bone structure deterioration represent a major public health problem. Therapeutic strategies targeting excessive osteoclast formation are frequently used for osteoporosis treatment; however, potential side effects have been recorded. Here, we have developed a novel therapeutic strategy using microdroplets (MDs) encapsulated with NFATc1-siRNA and investigated the role of bioactive MDs-NFATc1 biocompatibility in RAW 264.7 macrophages and human mesenchymal stem cells (hBMSCs), respectively. Its role in regulating osteoclast differentiation and formation was also investigated in vitro. We first fabricated MDs with spherical morphology along with a well-defined core-shell structure. The ultrasound-responsive study demonstrated time-dependent responsive structural changes following ultrasound stimulation. The internalization study into unstimulated macrophages, inflammatory macrophages, and hBMSCs indicated good delivery efficiency. Furthermore, the results from the MTT assay, the live/dead assay, and the cellular morphological analysis further indicated good biocompatibility of our bioactive MDs-NFATc1. Following MDs-NFATc1 treatment, the number of osteoclasts was greatly reduced, indicating their inhibitory effect on osteoclastogenesis and osteoclast formation. Subsequently, osteoporotic rats that underwent ovariectomy (OVX) were used for the in vivo studies. The rats treated with MDs-NFATc1 exhibited significant resistance to bone loss induced by OVX. In conclusion, our results demonstrate that MDs-NFATc1 could become an important regulator in osteoclast differentiation and functions, thus having potential applications in osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Hygiene Toxicology, Zunyi Medical University, Zunyi, 563000 Guizhou, China
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Yi Dang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China.
| | - Maodi Huang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China.
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China.
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China.
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China.
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, 563000 Guizhou, China
| |
Collapse
|
3
|
Purohit MP, Roy KS, Xiang Y, Yu BJ, Azadian MM, Muwanga G, Hart AR, Taoube AK, Lopez DG, Airan RD. Acoustomechanically activatable liposomes for ultrasonic drug uncaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563690. [PMID: 37961368 PMCID: PMC10634775 DOI: 10.1101/2023.10.23.563690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ultrasound-activatable drug-loaded nanocarriers enable noninvasive and spatiotemporally-precise on-demand drug delivery throughout the body. However, most systems for ultrasonic drug uncaging utilize cavitation or heating as the drug release mechanism and often incorporate relatively exotic excipients into the formulation that together limit the drug-loading potential, stability, and clinical translatability and applicability of these systems. Here we describe an alternate strategy for the design of such systems in which the acoustic impedance and osmolarity of the internal liquid phase of a drug-loaded particle is tuned to maximize ultrasound-induced drug release. No gas phase, cavitation, or medium heating is necessary for the drug release mechanism. Instead, a non-cavitation-based mechanical response to ultrasound mediates the drug release. Importantly, this strategy can be implemented with relatively common pharmaceutical excipients, as we demonstrate here by implementing this mechanism with the inclusion of a few percent sucrose into the internal buffer of a liposome. Further, the ultrasound protocols sufficient for in vivo drug uncaging with this system are achievable with current clinical therapeutic ultrasound systems and with intensities that are within FDA and society guidelines for safe transcranial ultrasound application. Finally, this current implementation of this mechanism should be versatile and effective for the loading and uncaging of any therapeutic that may be loaded into a liposome, as we demonstrate for four different drugs in vitro, and two in vivo. These acoustomechanically activatable liposomes formulated with common pharmaceutical excipients promise a system with high clinical translational potential for ultrasonic drug uncaging of myriad drugs of clinical interest.
Collapse
Affiliation(s)
| | - Kanchan Sinha Roy
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
| | - Yun Xiang
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
| | - Brenda J. Yu
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
- Biophysics Program, Stanford University, Stanford, CA, 94305 USA
| | - Matine M. Azadian
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
- Neurosciences Program, Stanford University, Stanford, CA, 94305 USA
| | - Gabriella Muwanga
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
- Neurosciences Program, Stanford University, Stanford, CA, 94305 USA
| | - Alex R. Hart
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305 USA
| | - Ali K. Taoube
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
| | - Diego Gomez Lopez
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN 37235 USA
| | - Raag D. Airan
- Department of Radiology, Stanford University, Stanford, CA, 94305 USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305 USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305 USA
| |
Collapse
|
4
|
Pasupathy R, Pandian P, Selvamuthukumar S. Nanobubbles: A Novel Targeted Drug Delivery System. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Xiong R, Xu RX, Huang C, De Smedt S, Braeckmans K. Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 2021; 50:5746-5776. [PMID: 33972972 DOI: 10.1039/c9cs00839j] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive nanobubbles have received increased attention for their application in spatial and temporal resolution of diagnostic techniques and therapies, particularly in multiple imaging methods, and they thus have significant potential for applications in the field of biomedicine. This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel applications. Properties of both internal- and external-stimuli responsive nanobubbles are highlighted and discussed considering the potential features required for biomedical applications. Furthermore, the methods used for synthesis and characterization of nanobubbles are outlined. Finally, novel biomedical applications are proposed alongside the advantages and shortcomings inherent to stimuli-responsive nanobubbles.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China and Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China.
| | - Stefaan De Smedt
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Fernandes DA, Fernandes DD, Malik A, Gomes GNW, Appak-Baskoy S, Berndl E, Gradinaru CC, Kolios MC. Multifunctional nanoparticles as theranostic agents for therapy and imaging of breast cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 218:112110. [PMID: 33865007 DOI: 10.1016/j.jphotobiol.2020.112110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022]
Abstract
Over the last decade, there has been significant developments in nanotechnology, in particular for combined imaging and therapeutic applications (theranostics). The core or shell of nanoemulsions (NEs) can be loaded with various therapeutic agents, including drugs with low solubility for effective treatment, or various imaging agents for specific imaging modalities (e.g., MRI, fluorescence). In this work, perfluorohexane (PFH) NEs were synthesized for theranostic applications and were coupled to silica coated gold nanoparticles (scAuNPs) to increase the generation of PFH bubbles upon laser induced vaporization (i.e., optical droplet vaporization). The localized heat generated from the absorption properties of these nanoparticles (used to provide photoacoustic signals) can also be used to treat cancer without significantly damaging nearby healthy tissues. The theranostic potential of these PFH-NEs for contrast imaging of tumors and as a drug-delivery vehicle for therapeutic purposes were demonstrated for both in vitro and in vivo systems using a combination of photoacoustic, ultrasound and fluorescence imaging modalities. The ability of PFH-NEs to couple with scAuNPs, attach to the membranes of cancer cells and internalize within cancer cells, are encouraging for targeted chemotherapeutic applications for directly inducing cancer cell death via vaporization in clinical settings.
Collapse
Affiliation(s)
- Donald A Fernandes
- Department of Chemistry & Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada.
| | - Dennis D Fernandes
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Aimen Malik
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Sila Appak-Baskoy
- Department of Chemistry & Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Elizabeth Berndl
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada; Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada; Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
7
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
8
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
9
|
Thomas RG, Jonnalagadda US, Kwan JJ. Biomedical Applications for Gas-Stabilizing Solid Cavitation Agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10106-10115. [PMID: 31045378 DOI: 10.1021/acs.langmuir.9b00795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For over a decade, advancements in ultrasound-enhanced drug delivery strategies have demonstrated remarkable success in providing targeted drug delivery for a broad range of diseases. In order to achieve enhanced drug delivery, these strategies harness the mechanical effects from bubble oscillations (i.e., cavitation) of a variety of exogenous cavitation agents. Recently, solid cavitation agents have emerged due to their capacity for drug-loading and sustained cavitation duration. Unlike other cavitation agents, solid cavitation agents stabilize gaseous bubbles on hydrophobic surface cavities. Thus, the design of these particles is crucial. In this Review, we provide an overview of the different designs for solid cavitation agents such as nanocups, nanocones, and porous structures, as well as the current status of their development. Considering the numerous advantages of solid cavitation agents, we anticipate further innovations for this new type of cavitation agent across a broad range of biomedical applications.
Collapse
Affiliation(s)
- Reju G Thomas
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore , 637459
| | - Umesh S Jonnalagadda
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore , 637459
| | - James J Kwan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore , 637459
| |
Collapse
|
10
|
Nguyen K, Pan HY, Haworth K, Mahoney E, Mercado-Shekhar KP, Lin CY, Zhang Z, C Park Y. Multiple-Exposure Drug Release from Stable Nanodroplets by High-Intensity Focused Ultrasound for a Potential Degenerative Disc Disease Treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:160-169. [PMID: 30482711 PMCID: PMC6290355 DOI: 10.1016/j.ultrasmedbio.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
The combination of simvastatin and CF680 dye encapsulated by stable nanodroplets has been developed as a drug delivery carrier. Simvastatin has previously been found to be a potential degenerative disc disease treatment. Multiple exposures of the nanodroplets to high-intensity focused ultrasound induced release of simvastatin. Each ultrasound exposure yielded a consistent concentration of the drug and dye released. B-mode ultrasound image analysis data and cavitation data clearly indicated the release mechanism is phase transition of the liquid nanodroplets into gas bubbles. The nanodroplets were stably stored in ex vivo rabbit spinal discs for at least 14 days, and the contents responded to ultrasound exposure on demand. Lastly, nucleus pulposus cells harvested from rabbit spine discs and exposed to media with nanodroplets exhibited a decrease in cell viability (85%) relative to the cells only (96.7%) at 24 h, but no difference at 48 h. Thus, the system may be a potential degenerative disc disease treatment.
Collapse
Affiliation(s)
- Khoi Nguyen
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hsuan-Yeh Pan
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin Haworth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Eric Mahoney
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Chia-Ying Lin
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zhe Zhang
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yoonjee C Park
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
11
|
Tamarov K, Sviridov A, Xu W, Malo M, Andreev V, Timoshenko V, Lehto VP. Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35234-35243. [PMID: 28921952 DOI: 10.1021/acsami.7b11007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The current contrast agents utilized in ultrasound (US) imaging are based on microbubbles which suffer from a short lifetime in systemic circulation. The present study introduces a new type of contrast agent for US imaging based on bioresorbable Janus nanoparticles (NPs) that are able to generate microbubbles in situ under US radiation for extended time. The Janus NPs are based on porous silicon (PSi) that was modified via a nanostopper technique. The technique was exploited to prepare PSi NPs which had hydrophobic pore walls (inner face), while the external surfaces of the NPs (outer face) were hydrophilic. As a consequence, when dispersed in an aqueous solution, the Janus NPs contained a substantial amount of air trapped in their nanopores. The specific experimental setup was developed to prove that these nano air seeds were indeed acting as nuclei for microbubble growth during US radiation. Using the setup, the cavitation thresholds of the Janus NPs were compared to their completely hydrophilic counterparts by detecting the subharmonic signals from the microbubbles. These experiments and the numerical simulations of the bubble dynamics demonstrated that the Janus NPs generated microbubbles with a radii of 1.1 μm. Furthermore, the microbubbles generated by the NPs were detected with a conventional medical ultrasound imaging device. Long systemic circulation time was ensured by grafting the NPs with two different PEG polymers, which did not affect adversely the microbubble generation. The present findings represent an important landmark in the development of ultrasound contrast agents which possess the properties for both diagnostics and therapy.
Collapse
Affiliation(s)
- Konstantin Tamarov
- M.V. Lomonosov Moscow State University , Faculty of Physics, 119991 Moscow, Russia
- University of Eastern Finland , Department of Applied Physics, 70211 Kuopio, Finland
| | - Andrey Sviridov
- M.V. Lomonosov Moscow State University , Faculty of Physics, 119991 Moscow, Russia
| | - Wujun Xu
- University of Eastern Finland , Department of Applied Physics, 70211 Kuopio, Finland
| | - Markus Malo
- University of Eastern Finland , Department of Applied Physics, 70211 Kuopio, Finland
| | - Valery Andreev
- M.V. Lomonosov Moscow State University , Faculty of Physics, 119991 Moscow, Russia
| | - Victor Timoshenko
- M.V. Lomonosov Moscow State University , Faculty of Physics, 119991 Moscow, Russia
| | - Vesa-Pekka Lehto
- University of Eastern Finland , Department of Applied Physics, 70211 Kuopio, Finland
| |
Collapse
|
12
|
Niu C, Wang L, Wang Z, Xu Y, Hu Y, Peng Q. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models. Sci Rep 2017; 7:43408. [PMID: 28262671 PMCID: PMC5338257 DOI: 10.1038/srep43408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.
Collapse
Affiliation(s)
- Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhigang Wang
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400010, China
| | - Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qinghai Peng
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
13
|
Methods for Generation and Detection of Nonstationary Vapor Nanobubbles Around Plasmonic Nanoparticles. Methods Mol Biol 2017. [PMID: 28150203 DOI: 10.1007/978-1-4939-6646-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Laser pulse-induced vapor nanobubbles are nonstationary nanoevents that offer a broad range of applications, especially in the biomedical field. Plasmonic (usually gold) nanoparticles have the highest energy efficacy of the generation of vapor nanobubbles and such nanobubbles were historically named as plasmonic nanobubbles. Below we review methods (protocols) for generating and detecting plasmonic nanobubbles in liquids. The biomedical applications of plasmonic nanobubbles include in vivo and in vitro detection and imaging, gene transfer, micro-surgery, drug delivery, and other diagnostic, therapeutic, and theranostic applications.
Collapse
|
14
|
Abstract
In recent decades ultrasound-guided delivery of drugs loaded on nanocarriers has been the focus of increasing attention to improve therapeutic treatments. Ultrasound has often been used in combination with microbubbles, micron-sized spherical gas-filled structures stabilized by a shell, to amplify the biophysical effects of the ultrasonic field. Nanometer size bubbles are defined nanobubbles. They were designed to obtain more efficient drug delivery systems. Indeed, their small sizes allow extravasation from blood vessels into surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Additionally, nanobubbles might be endowed with improved stability and longer residence time in systemic circulation. This review will describe the physico-chemical properties of nanobubbles, the formulation parameters and the drug loading approaches, besides potential applications as a therapeutic tool.
Collapse
|
15
|
Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:221-41. [DOI: 10.1007/978-3-319-22536-4_13] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Chang S, Si T, Zhang S, Merrick MA, Cohn DE, Xu RX. Ultrasound mediated destruction of multifunctional microbubbles for image guided delivery of oxygen and drugs. ULTRASONICS SONOCHEMISTRY 2016; 28:31-38. [PMID: 26384880 DOI: 10.1016/j.ultsonch.2015.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/18/2015] [Accepted: 06/24/2015] [Indexed: 06/05/2023]
Abstract
We synthesized multifunctional activatible microbubbles (MAMs) for ultrasound mediated delivery of oxygen and drugs with both ultrasound and fluorescence imaging guidance. Oxygen enriched perfluorocarbon (PFC) compound was encapsulated in liposome microbubbles (MBs) by a modified emulsification process. DiI dye was loaded as a model drug. The ultrasound targeted microbubble destruction (UTMD) process was guided by both ultrasonography and fluorescence imaging modalities. The process was validated in both a dialysis membrane tube model and a porcine carotid artery model. Our experiment results show that the UTMD process effectively facilitates the controlled delivery of oxygen and drug at the disease site and that the MAM agent enables ultrasound and fluorescence imaging guidance of the UTMD process. The proposed MAM agent can be potentially used for UTMD-mediated combination therapy in hypoxic ovarian cancer.
Collapse
Affiliation(s)
- Shufang Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ting Si
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; College of Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shiwu Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; College of Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mark A Merrick
- Division of Health & Rehabilitation Sciences, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - David E Cohn
- Department of Obstetrics and Gynecology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Ronald X Xu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; College of Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
17
|
Gupta R, Shea J, Scafe C, Shurlygina A, Rapoport N. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance. J Control Release 2015; 212:70-7. [PMID: 26091919 DOI: 10.1016/j.jconrel.2015.06.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/10/2015] [Accepted: 06/14/2015] [Indexed: 01/26/2023]
Abstract
The manuscript reports the side-by-side comparison of therapeutic properties of polymeric micelles and nanoemulsions generated from micelles. The effect of the structure of a hydrophobic block of block copolymer on the therapeutic efficacy, tumor recurrence, and development of drug resistance was studied in pancreatic tumor bearing mice. Mice were treated with paclitaxel (PTX) loaded poly(ethylene oxide)-co-polylactide micelles or corresponding perfluorocarbon nanoemulsions. Two structures of the polylactide block differing in a physical state of micelle cores or corresponding nanodroplet shells were compared. Poly(ethylene oxide)-co-poly(d,l-lactide) (PEG-PDLA) formed micelles with elastic amorphous cores while poly(ethylene oxide)-co-poly(l-lactide) (PEG-PLLA) formed micelles with solid crystalline cores. Micelles and nanoemulsions stabilized with PEG-PDLA copolymer manifested higher therapeutic efficacy than those formed with PEG-PLLA copolymer studied earlier. Better performance of PEG-PDLA micelles and nanodroplets was attributed to the elastic physical state of micelle cores (or droplet shells) allowing adequate rate of drug release via drug diffusion and/or copolymer biodegradation. The biodegradation of PEG-PDLA stabilized nanoemulsions was monitored by the ultrasonography of nanodroplets injected directly into the tumor; the PEG-PDLA stabilized nanodroplets disappeared from the injection site within 48h. In contrast, nanodroplets stabilized with PEG-PLLA copolymer were preserved at the injection site for weeks and months indicating extremely slow biodegradation of solid PLLA blocks. Multiple injections of PTX-loaded PEG-PDLA micelles or nanoemulsions to pancreatic tumor bearing mice resulted in complete tumor resolution. Two of ten tumors treated with either PEG-PDLA micellar or nanoemulsion formulation recurred after the completion of treatment but proved sensitive to the second treatment cycle indicating that drug resistance has not been developed. This is in contrast to the treatment with PEG-PLLA micelles or nanoemulsions where all resolved tumors quickly recurred after the completion of treatment and proved resistant to the repeated treatment. The prevention of drug resistance in tumors treated with PEG-PDLA stabilized formulations was attributed to the presence and preventive effect of copolymer unimers that were in equilibrium with PEG-PDLA micelles. PEG-PDLA stabilized nanoemulsions manifested lower hematological toxicity than corresponding micelles suggesting higher drug retention in circulation. Summarizing, micelles with elastic cores appear preferable to those with solid cores as drug carriers. Micelles with elastic cores and corresponding nanoemulsions both manifest high therapeutic efficacy, with nanoemulsions exerting lower systemic toxicity than micelles. The presence of a small fraction of micelles with elastic cores in nanoemulsion formulations is desirable for prevention of the development of drug resistance.
Collapse
Affiliation(s)
- Roohi Gupta
- Department of Bioengineering, University of Utah, United States
| | - Jill Shea
- Department of Surgery, University of Utah, United States
| | - Courtney Scafe
- Department of Surgery, University of Utah, United States
| | - Anna Shurlygina
- Institute of Physiology and Fundamental Medicine, Russian Academy of Medical Sciences, Siberian Branch, Russia
| | - Natalya Rapoport
- Department of Bioengineering, University of Utah, United States.
| |
Collapse
|
18
|
Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging. J Control Release 2015; 206:153-60. [PMID: 25776738 DOI: 10.1016/j.jconrel.2015.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 11/21/2022]
Abstract
Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both drug retention and carrier diffusion parameters.
Collapse
|
19
|
Duncanson WJ, Arriaga LR, Ung WL, Kopechek JA, Porter TM, Weitz DA. Microfluidic fabrication of perfluorohexane-shelled double emulsions for controlled loading and acoustic-triggered release of hydrophilic agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13765-70. [PMID: 25340527 DOI: 10.1021/la502473w] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ability of low boiling point liquid perfluorocarbons (PFCs) to undergo a phase change from a liquid to a gas upon ultrasound irradiation makes PFC-based emulsions promising vehicles for triggered delivery of payloads. However, loading hydrophilic agents into PFC-based emulsions is difficult due to their insolubility in PFC. Here, we address this challenge by taking advantage of microfluidic technologies to fabricate double emulsions consisting of large aqueous cores and a perfluorohexane (PFH) shell, thus yielding high loading capacities for hydrophilic agents. Using this technology, we efficiently encapsulate a model hydrophilic agent within the emulsions and study its response to ultrasound irradiation. Using a combination of optical and acoustic imaging methods, we observe payload release upon acoustic vaporization of PFH. Our work demonstrates the utility of microfluidic techniques for controllably loading hydrophilic agents into PFH-based emulsions, which have great potential for acoustically triggered release.
Collapse
Affiliation(s)
- Wynter J Duncanson
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts, United States
| | | | | | | | | | | |
Collapse
|
20
|
Lukianova-Hleb EY, Ren X, Sawant RR, Wu X, Torchilin VP, Lapotko DO. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat Med 2014; 20:778-784. [PMID: 24880615 PMCID: PMC4271542 DOI: 10.1038/nm.3484] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/24/2013] [Indexed: 02/08/2023]
Abstract
Chemoradiation-resistant cancers limit treatment efficacy and safety. We show here the cancer cell-specific, on-demand intracellular amplification of chemotherapy and chemoradiation therapy via gold nanoparticle- and laser pulse-induced mechanical intracellular impact. Cancer aggressiveness promotes the clustering of drug nanocarriers and gold nanoparticles in cancer cells. This cluster, upon exposure to a laser pulse, generates a plasmonic nanobubble, the mechanical explosion that destroys the host cancer cell or ejects the drug into its cytoplasm by disrupting the liposome and endosome. The same cluster locally amplifies external X-rays. Intracellular synergy of the mechanical impact of plasmonic nanobubble, ejected drug and amplified X-rays improves the efficacy of standard chemoradiation in resistant and aggressive head and neck cancer by 100-fold in vitro and 17-fold in vivo, reduces the effective entry doses of drugs and X-rays to 2-6% of their clinical doses and efficiently spares normal cells. The developed quadrapeutics technology combines four clinically validated components and transforms a standard macrotherapy into an intracellular on-demand theranostic microtreatment with radically amplified therapeutic efficacy and specificity.
Collapse
Affiliation(s)
| | - Xiaoyang Ren
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rupa R Sawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts, USA
| | - Xiangwei Wu
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts, USA
| | - Dmitri O Lapotko
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| |
Collapse
|
21
|
Abouelmagd SA, Hyun H, Yeo Y. Extracellularly activatable nanocarriers for drug delivery to tumors. Expert Opin Drug Deliv 2014; 11:1601-1618. [PMID: 24950343 DOI: 10.1517/17425247.2014.930434] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Nanoparticles (NPs) for drug delivery to tumors need to satisfy two seemingly conflicting requirements: they should maintain physical and chemical stability during circulation and be able to interact with target cells and release the drug at desired locations with no substantial delay. The unique microenvironment of tumors and externally applied stimuli provide a useful means to maintain a balance between the two requirements. AREAS COVERED We discuss nanoparticulate drug carriers that maintain stable structures in normal conditions but respond to stimuli for the spatiotemporal control of drug delivery. We first define the desired effects of extracellular activation of NPs and frequently used stimuli and then review the examples of extracellularly activated NPs. EXPERT OPINION Several challenges remain in developing extracellularly activatable NPs. First, some of the stimuli-responsive NPs undergo incremental changes in response to stimuli, losing circulation stability. Second, the applicability of stimuli in clinical settings is limited due to the occasional occurrence of the activating conditions in normal tissues. Third, the construction of stimuli-responsive NPs involves increasing complexity in NP structure and production methods. Future efforts are needed to identify new targeting conditions and increase the contrast between activated and nonactivated NPs while keeping the production methods simple and scalable.
Collapse
Affiliation(s)
- Sara A Abouelmagd
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Sheeran PS, Dayton PA. Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects. SCIENTIFICA 2014; 2014:579684. [PMID: 24991447 PMCID: PMC4058811 DOI: 10.1155/2014/579684] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/02/2014] [Indexed: 05/12/2023]
Abstract
Over the past two decades, perfluorocarbon (PFC) droplets have been investigated for biomedical applications across a wide range of imaging modalities. More recently, interest has increased in "phase-change" PFC droplets (or "phase-change" contrast agents), which can convert from liquid to gas with an external energy input. In the field of ultrasound, phase-change droplets present an attractive alternative to traditional microbubble agents for many diagnostic and therapeutic applications. Despite the progress, phase-change PFC droplets remain far from clinical implementation due to a number of challenges. In this review, we survey our recent work to enhance the performance of phase-change agents for ultrasound through a variety of techniques in order to provide increased efficacy in therapeutic applications of ultrasound and enable previously unexplored applications in diagnostic and molecular imaging.
Collapse
Affiliation(s)
- Paul S. Sheeran
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
- *Paul A. Dayton:
| |
Collapse
|
23
|
Cheng X, Li H, Chen Y, Luo B, Liu X, Liu W, Xu H, Yang X. Ultrasound-triggered phase transition sensitive magnetic fluorescent nanodroplets as a multimodal imaging contrast agent in rat and mouse model. PLoS One 2013; 8:e85003. [PMID: 24391983 PMCID: PMC3877337 DOI: 10.1371/journal.pone.0085003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385±5.0 nm with PDI of 0.169±0.011. The TEM and microscopy imaging showed that the DiR-SPIO-NDs existed as core-shell spheres, and DiR and SPIO nanoparticles dispersed in the shell or core. The MTT and hemolysis studies demonstrated that the nanodroplets were biocompatible and safe. Moreover, the proposed nanodroplets exhibited significant ultrasound-triggered phase transition property under clinical diagnostic ultrasound irradiation due to the vaporization of PFP inside. Meanwhile, the high stability and R2 relaxivity of the DiR-SPIO-NDs suggested its applicability in MRI. The in vivo T2-weighted images of MRI and fluorescence images both showed that the image contrast in liver and spleen of rats and mice model were enhanced after the intravenous injection of DiR-SPIO-NDs. Furthermore, the ultrasound imaging (US) in mice tumor as well as MRI and fluorescence imaging in liver of rats and mice showed that the DiR-SPIO-NDs had long-lasting contrast ability in vivo. These in vitro and in vivo findings suggested that DiR-SPIO-NDs could potentially be a great MRI/US/fluorescence multimodal imaging contrast agent in the diagnosis of liver tissue diseases.
Collapse
Affiliation(s)
- Xin Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
- College of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Huan Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunchao Chen
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binhua Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuhan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (WL); (HBX)
| | - Haibo Xu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (WL); (HBX)
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Lin CY, Pitt WG. Acoustic droplet vaporization in biology and medicine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:404361. [PMID: 24350267 PMCID: PMC3853706 DOI: 10.1155/2013/404361] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/17/2013] [Accepted: 10/03/2013] [Indexed: 01/20/2023]
Abstract
This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
25
|
Gao Y, Xie J, Chen H, Gu S, Zhao R, Shao J, Jia L. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv 2013; 32:761-77. [PMID: 24211475 DOI: 10.1016/j.biotechadv.2013.10.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
Abstract
Traditional chemotherapy used today at clinics is mainly inherited from the thinking and designs made four decades ago when the Cancer War was declared. The potency of those chemotherapy drugs on in-vitro cancer cells is clearly demonstrated at even nanomolar levels. However, due to their non-specific effects in the body on normal tissues, these drugs cause toxicity, deteriorate patient's life quality, weaken the host immunosurveillance system, and result in an irreversible damage to human's own recovery power. Owing to their unique physical and biological properties, nanotechnology-based chemotherapies seem to have an ability to specifically and safely reach tumor foci with enhanced efficacy and low toxicity. Herein, we comprehensively examine the current nanotechnology-based pharmaceutical platforms and strategies for intelligent design of new nanomedicines based on targeted drug delivery system (TDDS) for cancer metastasis treatment, analyze the pros and cons of nanomedicines versus traditional chemotherapy, and evaluate the importance that nanomaterials can bring in to significantly improve cancer metastasis treatment.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Jingjing Xie
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Haijun Chen
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China; Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Fuzhou University, Fujian 350108, China
| | - Songen Gu
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Rongli Zhao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
26
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-345. [PMID: 23504911 DOI: 10.1002/wnan.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
27
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-45. [PMID: 23504911 DOI: 10.1002/wnan.1219] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
28
|
Lukianova-Hleb EY, Lapotko DO. Experimental techniques for imaging and measuring transient vapor nanobubbles. APPLIED PHYSICS LETTERS 2012; 101:264102. [PMID: 23341688 PMCID: PMC3543368 DOI: 10.1063/1.4772958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/06/2012] [Indexed: 05/23/2023]
Abstract
Imaging and measuring transient vapor bubbles at nanoscale pose certain experimental challenges due to their reduced dimensions and lifetimes, especially in a single event experiment. Here, we analyze three techniques that employ optical scattering and acoustic detection in identifying and quantifying individual photothermally induced vapor nanobubbles (NBs) at a wide range of excitation energies. In optically transparent media, the best quantitative detection can be achieved by measuring the duration of the optical scattering time-response, while in an opaque media, the amplitude of the acoustic time-response well describes NBs in the absence of stress waves.
Collapse
Affiliation(s)
- E Y Lukianova-Hleb
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
29
|
Martz TD, Bardin D, Sheeran PS, Lee AP, Dayton PA. Microfluidic generation of acoustically active nanodroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1876-9. [PMID: 22467628 PMCID: PMC3658617 DOI: 10.1002/smll.201102418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/07/2012] [Indexed: 05/19/2023]
Abstract
A microfluidic approach for the generation of perfluorocarbon nanodroplets as the primary emulsion with diameters as small as 300-400 nm is described. The system uses a pressure-controlled delivery of all reagents and increased viscosity in the continuous phase to drive the device into an advanced tip-streaming regime, which results in generation of droplets in the sub-micrometer range. Such nanodroplets may be appropriate for emerging biomedical applications.
Collapse
Affiliation(s)
- Thomas D. Martz
- Curriculum of Applied Science & Engineering - Material Science, University of North Carolina-North Carolina State University, Chapel Hill, NC, USA
| | - David Bardin
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California, USA
| | - Paul S. Sheeran
- Joint Dept. of Biomedical Engineering, University of North Carolina-North Carolina State University, Chapel Hill, NC, USA
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California, USA
| | - Paul A. Dayton
- Joint Dept. of Biomedical Engineering, University of North Carolina-North Carolina State University, Chapel Hill, NC, USA
- Corresponding Author: Prof. Paul A. Dayton, Thomas D. Martz, and Paul S. Sheeran, 304 Taylor Hall, CB 7575, Chapel Hill, NC 27599 (USA),
| |
Collapse
|
30
|
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012; 41:2971-3010. [PMID: 22388185 PMCID: PMC3684255 DOI: 10.1039/c2cs15344k] [Citation(s) in RCA: 1181] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).
Collapse
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zeyu Xiao
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro M. Valencia
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aleksandar F. Radovic-Moreno
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|