1
|
Henschel L, de Lima M, Fagundes F, Horlem T, Zazula M, Naliwaiko K, Fernandes L. Clenbuterol and metformin ameliorate cachexia parameters, but only clenbuterol reduces tumor growth via lipid peroxidation in Walker 256 tumor-bearing rats. Braz J Med Biol Res 2025; 58:e14060. [PMID: 39907424 PMCID: PMC11793141 DOI: 10.1590/1414-431x2024e14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/07/2024] [Indexed: 02/06/2025] Open
Abstract
Cancer is the second leading cause of death worldwide. Cancer cachexia is a multifactorial catabolic syndrome responsible for almost one third of cancer-related deaths. Drug repurposing has been used in oncological research and drugs like clenbuterol and metformin seem to be reasonable candidates in the context of cancer cachexia, because the former is a β2-agonist that stimulates muscle gain and the latter has anti-inflammatory properties. The aim of this study was to assess the effects of a short-term treatment with metformin and clenbuterol, isolated or combined, on tumor growth and cancer cachexia parameters in Walker 256 tumor-bearing rats, a model of cancer cachexia. To this end, Wistar rats were separated into 8 groups and 4 of them were injected with Walker 256 tumor cells (W groups). Control (C) and W groups received the following treatments: metformin (M), clenbuterol (Cb), or metformin combined with clenbuterol (MCb). Body and tumor weight, metabolic parameters, and oxidative damage in the tumor were assessed. Compared to the C group, the W group showed body weight loss, hypoglycemia, hyperlactatemia, and hypertriacylglycerolemia. None of the treatments could reverse body weight loss, although they reversed the alterations of the assessed plasma metabolic parameters. Surprisingly, only clenbuterol alone reduced tumor weight. Hydrogen peroxide production and lipid peroxidation in tumor tissue was increased in this group. In conclusion, metformin and clenbuterol ameliorated metabolic cachexia parameters in Walker tumor-bearing rats, but only clenbuterol reduced the tumor weight, probably, through a lipid peroxidation-dependent cell death.
Collapse
Affiliation(s)
- L.D.V. Henschel
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - M.E.R. de Lima
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - F.C. Fagundes
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - T. Horlem
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - M.F. Zazula
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - K. Naliwaiko
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - L.C. Fernandes
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
2
|
Saavedra LPJ, Piovan S, Moreira VM, Gonçalves GD, Ferreira ARO, Ribeiro MVG, Peres MNC, Almeida DL, Raposo SR, da Silva MC, Barbosa LF, de Freitas Mathias PC. Epigenetic programming for obesity and noncommunicable disease: From womb to tomb. Rev Endocr Metab Disord 2024; 25:309-324. [PMID: 38040983 DOI: 10.1007/s11154-023-09854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.
Collapse
Affiliation(s)
- Lucas Paulo Jacinto Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Silvano Piovan
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Veridiana Mota Moreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Gessica Dutra Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maria Natália Chimirri Peres
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Douglas Lopes Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Scarlett Rodrigues Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Mariane Carneiro da Silva
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Letícia Ferreira Barbosa
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Paulo Cezar de Freitas Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
3
|
Gedik Ö, Doğan R, Babademez MA, Karataş E, Aydın MŞ, Koçyiğit A, Eşrefoğlu M, Özturan O. Therapeutic effects of metformin for noise induced hearing loss. Am J Otolaryngol 2020; 41:102328. [PMID: 31732304 DOI: 10.1016/j.amjoto.2019.102328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to investigate the healing effect of metformin on noise induced hearing loss (NIHL) by measuring audiological, biochemical and histological parameters. MATERIALS AND METHODS 32 rats were divided into four groups (Group 1: Noise, Group 2: Noise + Metformin, Grup 3: Metformin, Grup 4: Control). Broadband noise was applied to Group 1 and Group 2 after basal measurements. Measuring audiological (distortion product otoacoustic emission (DPOAE) and Auditory Brainstem Response (ABR)), biochemical (total antioxidant status (TAS), total oxidant status (TOS), oxidative status index (OSI), DNA damage, IL-1 beta, IL-6, TNF alfa, HSF-1 and COX-2) and histological parameters. RESULTS Group 2 had significant decreases in ABR thresholds on day 7 and day 14 compared to day 1. DPOAE values of Group 2 on the 7th and 14th days were significantly higher than the post-noise levels. DNA damage, TOS and OSI values of Group 1 were significantly higher than the other groups. The Cox-2 value of Group 1 was higher than all other groups. The HSF-1 value of Group 2 was significantly higher than that of Group 1. In terms of IL-1 Beta, IL-6 and TNF-alpha values, there was no significant difference between groups 2, 3 and 4 and these values were significantly lower than group 1. In histopathological results of our study, no significant difference was found between the groups being exposed to noise and the control group. CONCLUSION This study showed that early period of Metformin treatment has therapeutic effect on NIHL.
Collapse
|
4
|
Moreira VM, da Silva Franco CC, Prates KV, Gomes RM, de Moraes AMP, Ribeiro TA, Martins IP, Previate C, Pavanello A, Matiusso CCI, Almeida DL, Francisco FA, Malta A, Tófolo LP, da Silva Silveira S, Saavedra LPJ, Machado K, da Silva PHO, Fabrício GS, Palma-Rigo K, de Souza HM, de Fátima Silva F, Biazi GR, Pereira TS, Vieira E, Miranda RA, de Oliveira JC, da Costa Lima LD, Rinaldi W, Ravanelli MI, de Freitas Mathias PC. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats. Front Physiol 2018; 9:465. [PMID: 29867528 PMCID: PMC5953341 DOI: 10.3389/fphys.2018.00465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.
Collapse
Affiliation(s)
- Veridiana Mota Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physical Education, State University of Maringá, Maringá, Brazil
- Department of Physical Education, Ingá University Center, UNINGÁ, Maringá, Brazil
| | | | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Ana Maria Praxedes de Moraes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Douglas Lopes Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Flávio Andrade Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physical Education, State University of Maringá, Maringá, Brazil
- Department of Physical Education, Biomedical Sciences Faculty of Cacoal, Cacoal, Brazil
| | - Sandra da Silva Silveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Katia Machado
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Paulo Henrique Olivieri da Silva
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physical Education, State University of Maringá, Maringá, Brazil
| | - Gabriel S. Fabrício
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | | | | | - Taís Susane Pereira
- Laboratory of Microorganisms Genetics and Mutagenesis, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Elaine Vieira
- Post-Graduate Program of Physical Education, Catholic University of Brasília, Águas Claras, Brazil
| | - Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luiz Delmar da Costa Lima
- Superior School of Physical Education and Physical Therapy of Goiás State, State University of Goiás, Goiânia, Brazil
| | - Wilson Rinaldi
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physical Education, State University of Maringá, Maringá, Brazil
| | | | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| |
Collapse
|