1
|
Zannini L, Cardano M, Liberi G, Buscemi G. R-loops and impaired autophagy trigger cGAS-dependent inflammation via micronuclei formation in Senataxin-deficient cells. Cell Mol Life Sci 2024; 81:339. [PMID: 39120648 PMCID: PMC11335261 DOI: 10.1007/s00018-024-05380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Senataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes. Such cGAS-positive micronuclei are characterized by defective membrane envelope and are particularly abundant in cycling cells lacking Senataxin, but not after exposure to a DNA breaking agent or in absence of the tumor suppressor BRCA1 protein, a partner of Senataxin in R-loop removal. Micronuclei with a discontinuous membrane are normally cleared by autophagy, a process that we show is impaired in Senataxin-deficient cells. The formation of Senataxin-dependent inflamed micronuclei is promoted by the persistence of nuclear R-loops stimulated by the DSIF transcription elongation complex and the engagement of EXO1 nuclease activity on nuclear DNA. Coherently, high levels of EXO1 result in poor prognosis in a subset of tumors lacking Senataxin expression. Hence, R-loop homeostasis impairment, together with autophagy failure and unscheduled EXO1 activity, elicits innate immune response through micronuclei formation in cells lacking Senataxin.
Collapse
Affiliation(s)
- Laura Zannini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy
| | - Miriana Cardano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy.
| | - Giacomo Buscemi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy.
| |
Collapse
|
2
|
Cardillo TM, Zalath MB, Arrojo R, Sharkey RM, Govindan SV, Chang CH, Goldenberg DM. Sacituzumab govitecan plus platinum-based chemotherapy mediates significant antitumor effects in triple-negative breast, urinary bladder, and small-cell lung carcinomas. Oncotarget 2024; 15:144-158. [PMID: 38386805 PMCID: PMC10883684 DOI: 10.18632/oncotarget.28559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Sacituzumab govitecan (SG) is an antibody-drug conjugate composed of an anti-Trop-2-directed antibody conjugated with the topoisomerase I inhibitory drug, SN-38, via a proprietary hydrolysable linker. SG has received United States Food and Drug Administration (FDA) approval to treat metastatic triple-negative breast cancer (TNBC), unresectable locally advanced or metastatic hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer, and accelerated approval for metastatic urothelial cancer. We investigated the utility of combining SG with platinum-based chemotherapeutics in TNBC, urinary bladder carcinoma (UBC), and small-cell lung carcinoma (SCLC). SG plus carboplatin or cisplatin produced additive growth-inhibitory effects in vitro that trended towards synergy. Immunoblot analysis of cell lysates suggests perturbation of the cell-cycle and a shift towards pro-apoptotic signaling evidenced by an increased Bax to Bcl-2 ratio and down-regulation of two anti-apoptotic proteins, Mcl-1 and survivin. Significant antitumor effects were observed with SG plus carboplatin in mice bearing TNBC or SCLC tumors compared to all controls (P < 0.0062 and P < 0.0017, respectively) and with SG plus cisplatin in UBC and SCLC tumor-bearing animals (P < 0.0362 and P < 0.0001, respectively). These combinations were well tolerated by the animals. Combining SG with platinum-based chemotherapeutics demonstrates the benefit in these indications and warrants further clinical investigation.
Collapse
Affiliation(s)
- Thomas M. Cardillo
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Maria B. Zalath
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Roberto Arrojo
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Robert M. Sharkey
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Serengulam V. Govindan
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Chien-Hsing Chang
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - David M. Goldenberg
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- Current address: Center for Molecular Medicine and Immunology, Mendham, NJ 07945, USA; E-mail,
- At the time the work was conducted, this author was Chairman and Chief Scientific Officer of Immunomedics, Inc., which he founded in 1982
| |
Collapse
|
3
|
Wang M, Phan S, Hayes BH, Discher DE. Genetic heterogeneity in p53-null leukemia increases transiently with spindle assembly checkpoint inhibition and is not rescued by p53. Chromosoma 2024; 133:77-92. [PMID: 37256347 PMCID: PMC10828900 DOI: 10.1007/s00412-023-00800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Chromosome gains or losses often lead to copy number variations (CNV) and loss of heterozygosity (LOH). Both quantities are low in hematologic "liquid" cancers versus solid tumors in data of The Cancer Genome Atlas (TCGA) that also shows the fraction of a genome affected by LOH is ~ one-half of that with CNV. Suspension cultures of p53-null THP-1 leukemia-derived cells conform to these trends, despite novel evidence here of genetic heterogeneity and transiently elevated CNV after perturbation. Single-cell DNAseq indeed reveals at least 8 distinct THP-1 aneuploid clones with further intra-clonal variation, suggesting ongoing genetic evolution. Importantly, acute inhibition of the mitotic spindle assembly checkpoint (SAC) produces CNV levels that are typical of high-CNV solid tumors, with subsequent cell death and down-selection to novel CNV. Pan-cancer analyses show p53 inactivation associates with aneuploidy, but leukemias exhibit a weaker trend even though p53 inactivation correlates with poor survival. Overexpression of p53 in THP-1 does not rescue established aneuploidy or LOH but slightly increases cell death under oxidative or confinement stress, and triggers p21, a key p53 target, but without affecting net growth. Our results suggest that factors other than p53 exert stronger pressures against aneuploidy in liquid cancers, and identifying such CNV suppressors could be useful across liquid and solid tumor types.
Collapse
Affiliation(s)
- Mai Wang
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven Phan
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brandon H Hayes
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Cardano M, Magni M, Alfieri R, Chan SY, Sabbioneda S, Buscemi G, Zannini L. Sex specific regulation of TSPY-Like 2 in the DNA damage response of cancer cells. Cell Death Dis 2023; 14:197. [PMID: 36918555 PMCID: PMC10015022 DOI: 10.1038/s41419-023-05722-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Females have a lower probability to develop somatic cancers and a better response to chemotherapy than males. However, the reasons for these differences are still not well understood. The X-linked gene TSPY-Like 2 (TSPYL2) encodes for a putative tumor suppressor protein involved in cell cycle regulation and DNA damage response (DDR) pathways. Here, we demonstrate that in unstressed conditions TSPYL2 is maintained at low levels by MDM2-dependent ubiquitination and proteasome degradation. Upon genotoxic stress, E2F1 promotes TSPYL2 expression and protein accumulation in non-transformed cell lines. Conversely, in cancer cells, TSPYL2 accumulates only in females or in those male cancer cells that lost the Y-chromosome during the oncogenic process. Hence, we demonstrate that while TSPYL2 mRNA is induced in all the tested tumor cell lines after DNA damage, TSPYL2 protein stability is increased only in female cancer cells. Indeed, we found that TSPYL2 accumulation, in male cancer cells, is prevented by the Y-encoded protein SRY, which modulates MDM2 protein levels. In addition, we demonstrated that TSPYL2 accumulation is required to sustain cell growth arrest after DNA damage, possibly contributing to protect normal and female cancer cells from tumor progression. Accordingly, TSPYL2 has been found more frequently mutated in female-specific cancers. These findings demonstrate for the first time a sex-specific regulation of TSPYL2 in the DDR of cancer cells and confirm the existence of sexual dimorphism in DNA surveillance pathways.
Collapse
Affiliation(s)
- Miriana Cardano
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Martina Magni
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong-Kong, Hong-Kong SAR, China
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Giacomo Buscemi
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Laura Zannini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy.
| |
Collapse
|
5
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
6
|
Wang L, Xu X, Teng M, Zhao G, Lei A. Coping with DNA Double-Strand Breaks via ATM Signaling Pathway in Bovine Oocytes. Int J Mol Sci 2020; 21:ijms21238892. [PMID: 33255251 PMCID: PMC7727702 DOI: 10.3390/ijms21238892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
As a common injury almost all cells face, DNA damage in oocytes—especially double-strand breaks (DSBs), which occur naturally during the first meiosis phase (meiosis I) due to synaptic complex separation—affects the fertilization ability of oocytes, instead of causing cancer (as in somatic cells). The mechanism of oocytes to effectively repair DSB damage has not yet been clearly studied, especially considering medically induced DSBs superimposed on naturally occurring DSBs in meiosis I. It was found that maturation rates decreased or increased, respectively corresponding with overexpression or interference of p21 in bovine oocytes. At the same time, the maturation rate of bovine oocytes decreased with a gradual increase in Zeocin dose, and the p21 expression in those immature oocytes changed significantly with the gradual increase in Zeocin dose (same as increased DSB intensity). Same as p21, the variation trend of ATM expression was consistent with the gradual increase in Zeocin dose. Furthermore, the oocytes demonstrated tolerance to DSBs during meiosis I, while the maturation rates decreased when the damage exceeded a certain threshold; according to which, it may be that ATM regulates the p53–p21 pathway to affect the completion of meiosis. In addition, nonhomologous recombination and cumulus cells are potentially involved in the process by which oocytes respond to DSB damage.
Collapse
Affiliation(s)
- Lili Wang
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Xiaolei Xu
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Mingming Teng
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China;
| | - Anmin Lei
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
- Correspondence: ; Tel./Fax: +86-029-87080068
| |
Collapse
|
7
|
Koyano T, Namba M, Kobayashi T, Nakakuni K, Nakano D, Fukushima M, Nishiyama A, Matsuyama M. The p21 dependent G2 arrest of the cell cycle in epithelial tubular cells links to the early stage of renal fibrosis. Sci Rep 2019; 9:12059. [PMID: 31427681 PMCID: PMC6700145 DOI: 10.1038/s41598-019-48557-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022] Open
Abstract
Renal fibrosis is accompanied by the progression of chronic kidney disease. Despite a number of past and ongoing studies, our understanding of the underlying mechanisms remains elusive. Here we explored the progression of renal fibrosis using a mouse model of unilateral ureter obstruction. We found that in the initial stage of damage, where extracellular matrix was not yet deposited, proximal tubular cells arrested at G2 of the cell cycle. Further analyses indicated that the cyclin-dependent kinase inhibitor p21 is partially involved in the G2 arrest after the damage. A newly produced monoclonal antibody against p21 revealed that levels of p21 were sharply upregulated in response to the damage during the initial stage but dropped toward the later stage. To investigate the requirement of p21 for the progression of renal fibrosis, we constructed the novel p21 deficient mice by i-GONAD method. Compared with wild-type mice, p21 deficient mice showed exacerbation of the fibrosis. Thus we propose that during the initial stage of the renal damage, tubular cells arrest in G2 partially depending on p21, thereby safeguarding kidney functions.
Collapse
Affiliation(s)
- Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Kyomi Nakakuni
- Shigei Medical Research Hospital, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, 1750-1 Ikenobe, Miki-cho, Kagawa, 761-0793, Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.,Shigei Medical Research Hospital, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, 1750-1 Ikenobe, Miki-cho, Kagawa, 761-0793, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.
| |
Collapse
|
8
|
TSPYL2 is a novel regulator of SIRT1 and p300 activity in response to DNA damage. Cell Death Differ 2018; 26:918-931. [PMID: 30050056 DOI: 10.1038/s41418-018-0168-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/13/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023] Open
Abstract
Protein acetylation and deacetylation events are finely regulated by lysine-acetyl-transferases and lysine-deacetylases and constitute an important tool for the activation or inhibition of specific cellular pathways. One of the most important lysine-acetyl-transferases is p300, which is involved in the regulation of gene expression, cell growth, DNA repair, differentiation, apoptosis, and tumorigenesis. A well-known target of p300 is constituted by the tumor suppressor protein p53, which plays a critical role in the maintenance of genomic stability and whose activity is known to be controlled by post-translational modifications, among which acetylation. p300 activity toward p53 is negatively regulated by the NAD-dependent deacetylase SIRT1, which deacetylates p53 preventing its transcriptional activation and the induction of p53-dependent apoptosis. However, the mechanisms responsible for p53 regulation by p300 and SIRT1 are still poorly understood. Here we identify the nucleosome assembly protein TSPY-Like 2 (TSPYL2, also known as TSPX, DENTT, and CDA1) as a novel regulator of SIRT1 and p300 function. We demonstrate that, upon DNA damage, TSPYL2 inhibits SIRT1, disrupting its association with target proteins, and promotes p300 acetylation and activation, finally stimulating p53 acetylation and p53-dependent cell death. Indeed, in response to DNA damage, cells silenced for TSPYL2 were found to be defective in p53 activation and apoptosis induction and these events were shown to be dependent on SIRT1 and p300 function. Collectively, our results shed new light on the regulation of p53 acetylation and activation and reveal a novel TSPYL2 function with important implications in cancerogenesis.
Collapse
|
9
|
Cooperation of Nutlin-3a and a Wip1 inhibitor to induce p53 activity. Oncotarget 2017; 7:31623-38. [PMID: 27183917 PMCID: PMC5077964 DOI: 10.18632/oncotarget.9302] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Targeting the Mdm2 oncoprotein by drugs has the potential of re-establishing p53 function and tumor suppression. However, Mdm2-antagonizing drug candidates, e. g. Nutlin-3a, often fail to abolish cancer cell growth sustainably. To overcome these limitations, we inhibited Mdm2 and simultaneously a second negative regulator of p53, the phosphatase Wip1/PPM1D. When combining Nutlin-3a with the Wip1 inhibitor GSK2830371 in the treatment of p53-proficient but not p53-deficient cells, we observed enhanced phosphorylation (Ser 15) and acetylation (Lys 382) of p53, increased expression of p53 target gene products, and synergistic inhibition of cell proliferation. Surprisingly, when testing the two compounds individually, largely distinct sets of genes were induced, as revealed by deep sequencing analysis of RNA. In contrast, the combination of both drugs led to an expression signature that largely comprised that of Nutlin-3a alone. Moreover, the combination of drugs, or the combination of Nutlin-3a with Wip1-depletion by siRNA, activated p53-responsive genes to a greater extent than either of the compounds alone. Simultaneous inhibition of Mdm2 and Wip1 enhanced cell senescence and G2/M accumulation. Taken together, the inhibition of Wip1 might fortify p53-mediated tumor suppression by Mdm2 antagonists.
Collapse
|
10
|
Zhang F, Shen M, Yang L, Yang X, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer. Cancer Biol Ther 2017; 18:606-615. [PMID: 28686074 DOI: 10.1080/15384047.2017.1345391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the cisplatin-resistance of lung cancer.
Collapse
Affiliation(s)
- Fuquan Zhang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Mingjing Shen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Li Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Xiaodong Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Ying Tsai
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Peter C Keng
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yongbing Chen
- b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Soo Ok Lee
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yuhchyau Chen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| |
Collapse
|
11
|
Su Z, Yang H, Zhao M, Wang Y, Deng G, Chen R. MicroRNA-92a Promotes Cell Proliferation in Cervical Cancer via Inhibiting p21 Expression and Promoting Cell Cycle Progression. Oncol Res 2017; 25:137-145. [PMID: 28081742 PMCID: PMC7840834 DOI: 10.3727/096504016x14732772150262] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-92a (miR-92a) generally plays a promoting role in human cancers, but the underlying mechanism in cervical cancer remains unclear. Here we studied the expression and clinical significance of miR-92a in cervical cancer, as well as the regulatory mechanism in the proliferation of cervical cancer cells. Our data indicated that miR-92a was significantly upregulated in cervical cancer tissues compared to their matched adjacent nontumor tissues (ANTs), and the increased miR-92a levels were significantly associated with a higher grade, lymph node metastasis, and advanced clinical stage in cervical cancer. In vitro study revealed that inhibition of miR-92a led to a significant reduction in the proliferation of HeLa cells via induction of cell cycle arrest at the G1 stage. In contrast, overexpression of miR-92a markedly promoted the proliferation of HeLa cells by promoting cell cycle progression. Further investigation revealed that miR-92a has a negative effect on protein levels, but not the mRNA levels, of p21 in HeLa cells, suggesting that p21 is a direct target of miR-92a. Overexpression of p21 eliminated the promoting effects of miR-92a on the proliferation and cell cycle progression of HeLa cells. However, knockdown of p21 reversed the suppressive effects of miR-92a downregulation on HeLa cell proliferation and cell cycle progression. Moreover, p21 was significantly downregulated in cervical cancer tissues compared to ANTs, suggesting that the increased expression of miR-92a may contribute to the decreased expression of p21, which further promotes cervical cancer growth. In conclusion, our study demonstrates that miR-92a promotes the proliferation of cervical cancer cells via inhibiting p21 expression and promoting cell cycle progression, highlighting the clinical significance of miR-92a in cervical cancer.
Collapse
Affiliation(s)
- Zhiying Su
- Department of Gynecology, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| | - Hua Yang
- Department of Obstetrics and Gynecology VIP, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| | - Min Zhao
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Xiamen UniversityXiamen, FujianP.R. China
| | - Yanlong Wang
- Department of Gynecology, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| | - Guoyi Deng
- Department of Gynecology, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| | - Ruixin Chen
- Department of Gynecology, Xiamen Maternal and Child Health Care HospitalXiamen, FujianP.R. China
| |
Collapse
|
12
|
Restelli M, Magni M, Ruscica V, Pinciroli P, De Cecco L, Buscemi G, Delia D, Zannini L. A novel crosstalk between CCAR2 and AKT pathway in the regulation of cancer cell proliferation. Cell Death Dis 2016; 7:e2453. [PMID: 27809307 PMCID: PMC5260903 DOI: 10.1038/cddis.2016.359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Human CCAR2 has recently emerged as having a pivotal role in the DNA damage response, promoting apoptosis and repair of heterochromatic DNA breaks. However, less is known about the function of CCAR2 in tumor formation and cancer progression. Here, we demonstrate, for the first time, that CCAR2 loss inhibits the proliferation of cancer cells, but preserves the growth of normal cells. Investigating the mechanisms responsible for this differential effect, we found that CCAR2 depletion specifically impairs the activation of AKT pathway in cancer cells, but not in normal cells, by reducing AKT phosphorylation on Ser473. This effect is achieved through the transcriptional upregulation of TRB3 gene and accumulation of TRB3 protein, which then binds to and inhibits the phosphorylation and activation of AKT. The defective activation of AKT finally results in reduced GSK3β phosphorylation, prevention of G1/S transition and inhibition of cancer cell growth. These results establish an important role for CCAR2 in cancer cells proliferation and could shed new light on novel therapeutic strategies against cancer, devoid of detrimental side effects.
Collapse
Affiliation(s)
- Michela Restelli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Martina Magni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Vincenzo Ruscica
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Patrizia Pinciroli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Loris De Cecco
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, via Celoria 26, Milan 20133, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| |
Collapse
|
13
|
Higashiguchi M, Nagatomo I, Kijima T, Morimura O, Miyake K, Minami T, Koyama S, Hirata H, Iwahori K, Takimoto T, Takeda Y, Kida H, Kumanogoh A. Clarifying the biological significance of the CHK2 K373E somatic mutation discovered in The Cancer Genome Atlas database. FEBS Lett 2016; 590:4275-4286. [PMID: 27716909 DOI: 10.1002/1873-3468.12449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022]
Abstract
We identified CHK2 K373E as a recurrent mutation in The Cancer Genome Atlas (TCGA) database. In this study, we demonstrate that the K373E mutation disrupts CHK2 autophosphorylation as well as kinase activity, thus leading to impairment of CHK2 functions in suppressing cell proliferation and promoting cell survival after ionizing radiation. We propose that K373E impairs p53-independent induction of p21WAF1/CIP1 by CHK2. Our data implicate the K373E mutation of CHK2 in tumorigenesis.
Collapse
Affiliation(s)
- Masayoshi Higashiguchi
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan.,Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Japan
| | - Osamu Morimura
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Takayuki Takimoto
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Japan.,Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Japan.,AMED-CREST, Osaka, Japan
| |
Collapse
|
14
|
Somnay Y, Lubner S, Gill H, Matsumura JB, Chen H. The PARP inhibitor ABT-888 potentiates dacarbazine-induced cell death in carcinoids. Cancer Gene Ther 2016; 23:348-354. [PMID: 27632933 PMCID: PMC5083201 DOI: 10.1038/cgt.2016.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
Monoagent DNA-alkylating chemotherapies like dacarbazine are among a paucity of medical treatments for advanced carcinoid tumors, but are limited by host toxicity and intrinsic chemoresistance through the base excision repair (BER) pathway via poly (ADP-ribose) polymerase (PARP). Hence, inhibitors of PARP may potentiate DNA-damaging agents by blocking BER and DNA restoration. We show that the PARP inhibitor ABT-888 (Veliparib) enhances the cytotoxic effects of dacarbazine in carcinoids. Two human carcinoid cell lines (BON and H727) treated with a combination of ABT-888 and dacarbazine resulted in synergistic growth inhibition signified by combination indices <1 on the Chou-Talalay scale. ABT-888 administered prior to varying dacarbazine doses promoted the suppression of neuroendocrine biomarkers of malignancy ASCL1 and CgA, shown by Western analysis. ATM phosphorylation and p21Waf1/Cip1 activation, indicative of DNA damage, were increased by ABT-888 when combined with dacarbazine treatment, suggesting BER pathway attenuation by ABT-888. PE Annexin V/7-AAD staining and sorting revealed a profound induction of apoptosis following combination treatment, which was further confirmed by increased PARP cleavage. These results demonstrate that ABT-888 synergizes dacarbazine treatment in carcinoids. Therefore, ABT-888 may help treat carcinoids unresponsive or refractory to mainstay therapies.
Collapse
Affiliation(s)
- Y Somnay
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - S Lubner
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - H Gill
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J B Matsumura
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - H Chen
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Surgery, University of Alabama- Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Reversine triggers mitotic catastrophe and apoptosis in K562 cells. Leuk Res 2016; 48:26-31. [PMID: 27447890 DOI: 10.1016/j.leukres.2016.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/30/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm of the hematopoietic stem cell characterized by presence of the oncoprotein BCR-ABL1, which have constitutive tyrosine kinase activity. BCR-ABL1 activation induces aurora kinase A (AURKA) and aurora kinase B (AURKB) expression, which are serine-threonine kinases that play an important function in chromosome alignment, segregation and cytokinesis during mitosis. Acquisition of resistance to tyrosine kinase inhibitors has emerged as a problem for CML patients and the identification of novel targets with an important contribution for CML phenotype is of interest. In the present study, we explored the cellular effects of reversine, an AURKA and AURKB inhibitor, in the BCR-ABL1+ K562 cells. Our results indicate that reversine reduces AURKA and AURKB expression, leads to reduction of cell viability and increased apoptosis in a dose- and time-dependent manner, as well as, induces mitotic catastrophe in K562 cells. Our preclinical study establishes that reversine presents an effective antileukemia activity against K562 cells and provide new insights on anticancer opportunities for CML.
Collapse
|
16
|
Chen R, Liu H, Cheng Q, Jiang B, Peng R, Zou Q, Yang W, Yang X, Wu X, Chen Z. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide. Biol Open 2016; 5:669-77. [PMID: 27185265 PMCID: PMC4920179 DOI: 10.1242/bio.015552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs, can induce mRNA degradation or repress translation by binding to the 3'-untranslated region (UTR) of its target mRNA. Recently, some specific miRNAs, e.g. miR-93, have been found to be involved in pathological processes by targeting some oncogenes or tumor suppressors in glioma. However, the regulatory mechanism of miR-93 in the biological behaviors and chemoresistance of glioma cells remains unclear. In the present study, in situ hybridization and real-time RT-PCR data indicated that miR-93 was significantly upregulated in glioma patients (n=43) compared with normal brain tissues (n=8). Moreover, the upregulated miR-93 level was significantly associated with the advanced malignancy. We also found that upregulation of miR-93 promoted the proliferation, migration and invasion of glioma cells, and that miR-93 was involved in the regulation of cell cycle progression by mediating the protein levels of P21, P27, P53 and Cyclin D1. P21 was further identified as a direct target of miR-93. Knockdown of P21 attenuated the suppressive effects of miR-93 inhibition on cell cycle progression and colony formation. In addition, inhibition of miR-93 enhanced the chemosensitization of glioma cells to temozolomide (TMZ). Based on these above data, our study demonstrates that miR-93, upregulated in glioma, promotes the proliferation, cell cycle progression, migration and invasion of human glioma cells and suppresses their chemosensitivity to TMZ. Therefore, miR-93 may become a promising diagnostic marker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neurosurgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, Hunan 421001, China
| | - Huan Liu
- Department of Cardiology, Nanhua Hospital Affiliated to Nanhua University, Hengyang, Hunan 421001, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Bing Jiang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qin Zou
- Department of Neurosurgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, Hunan 421001, China
| | - Wenren Yang
- Department of Neurosurgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, Hunan 421001, China
| | - Xiaosheng Yang
- Department of Neurosurgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, Hunan 421001, China
| | - Xiaobing Wu
- Department of Neurosurgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, Hunan 421001, China
| | - Zigui Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
17
|
Magni M, Ruscica V, Restelli M, Fontanella E, Buscemi G, Zannini L. CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 2016; 6:17817-31. [PMID: 26158765 PMCID: PMC4627348 DOI: 10.18632/oncotarget.4417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 01/26/2023] Open
Abstract
Cell cycle and apoptosis regulator 2 (CCAR2, formerly known as DBC1) is a nuclear protein largely involved in DNA damage response, apoptosis, metabolism, chromatin structure and transcription regulation. Upon DNA lesions, CCAR2 is phosphorylated by the apical kinases ATM/ATR and this phosphorylation enhances CCAR2 binding to SIRT1, leading to SIRT1 inhibition, p53 acetylation and p53-dependent apoptosis. Recently, we found that also the checkpoint kinase Chk2 and the proteasome activator REGγ are required for efficient CCAR2-mediated inhibition of SIRT1 and induction of p53-dependent apoptosis. Here, we report that CCAR2 is required for the repair of heterochromatic DNA lesions, as cells knock-out for CCAR2 retain, at late time-points after genotoxic treatment, abnormal levels of DNA damage-associated nuclear foci, whose timely resolution is reinstated by HP1β depletion. Conversely, repair of DNA damages in euchromatin are not affected by CCAR2 absence. We also report that the impairment in heterochromatic DNA repair is caused by defective Chk2 activation, detectable in CCAR2 ablated cells, which finally impacts on the phosphorylation of the Chk2 substrate KAP1 that is required for the induction of heterochromatin relaxation and DNA repair. These studies further extend and confirm the role of CCAR2 in the DNA damage response and DNA repair and illustrate a new mechanism of Chk2 activity regulation. Moreover, the involvement of CCAR2 in the repair of heterochromatic DNA breaks suggests a new role for this protein in the maintenance of chromosomal stability, which is necessary to prevent cancer formation.
Collapse
Affiliation(s)
- Martina Magni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Ruscica
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Current address: Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Michela Restelli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrico Fontanella
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
18
|
Hong JY, Yu SY, Kim SY, Ahn JJ, Kim Y, Kim GW, Son SW, Park JT, Hwang SY. Association analysis of toluene exposure time with high-throughput mRNA expressions and methylation patterns using in vivo samples. ENVIRONMENTAL RESEARCH 2016; 146:59-64. [PMID: 26717081 DOI: 10.1016/j.envres.2015.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
The emission of volatile organic compounds (VOCs) resulting from outdoor air pollution can contribute to major public health problems. However, there has been limited research on the health effects in humans from the inhalation of VOCs. Therefore, this study conducted an in vivo analysis of the effects of toluene, one of the most commonly used chemicals in many industries, on gene expression and methylation over time using the high-throughput technique of microarray analysis. We separated participants into three groups (control, short-term exposure, and long-term exposure) to investigate the influence of toluene exposure time on gene expression. We then comprehensively analyzed and investigated the correlation between variations in gene expression and the occurrence of methylation. Twenty-six genes were upregulated and hypomethylated, while 32 genes were downregulated and hypermethylated. The pathways of these genes were confirmed to be associated with cell survival and the immune system. Based on our findings, these genes can help predict the effects of time-dependent exposure to toluene on human health. Thus, observations from our data may have implications for the identification of biomarkers of toluene exposure.
Collapse
Affiliation(s)
- Ji Young Hong
- Department of Bio-Nanotechnology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea
| | - So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea
| | - Seol Young Kim
- Department of Bio-Nanotechnology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea
| | - Jeong Jin Ahn
- Department of Bio-Nanotechnology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea
| | - Youngjoo Kim
- Department of Bio-Nanotechnology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea
| | - Gi Won Kim
- Department of Molecular & Life Science, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong-Tae Park
- Department of Occupational and Environmental Medicine, Korea University College of Medicine, Gojan 1-dong, Danwon-gu, Ansan, Gyeonggi-do, Republic of Korea
| | - Seung Yong Hwang
- Department of Bio-Nanotechnology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea; Department of Molecular & Life Science, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
19
|
Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells. DNA Repair (Amst) 2016; 37:1-11. [DOI: 10.1016/j.dnarep.2015.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022]
|
20
|
Sokolova V, Fiorino A, Zoni E, Crippa E, Reid JF, Gariboldi M, Pierotti MA. The Effects of miR-20a on p21: Two Mechanisms Blocking Growth Arrest in TGF-β-Responsive Colon Carcinoma. J Cell Physiol 2015; 230:3105-14. [PMID: 26012475 DOI: 10.1002/jcp.25051] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/19/2015] [Indexed: 12/18/2022]
Abstract
Loss of response to TGF-β is a central event in the genesis of colorectal cancer (CRC), a disease that, in the majority cases, is refractory to growth inhibition induced by this cytokine. However, inactivating mutations at receptors and transducers from the TGF-β cascade occur only in approximately half of CRCs, suggesting the involvement of additional mechanisms altering the response to the cytokine. We have recently described the amplification of the 13q31 locus, where the miR-17-92 cluster maps, associated with overexpression of its members. In this study, we address the potential role of miR-20a, from the miR-17-92 cluster, in the suppression of TGF-β cytostatic response in CRC. Using the poorly tumorigenic and TGF-β-sensitive FET cell line that expresses low miR-20a levels, we first confirmed that miR-20a downmodulated CDKN1A expression, both at mRNA and protein level, through direct binding to its 3'-UTR. We demonstrated that miR-20a significantly diminished cell response to TGF-β by preventing its delay of G1/S transition and promoting progression into cell cycle. Moreover, besides modulating CDKN1A, miR-20a blocked TGF-β-induced transactivation of its promoter without affecting the post-receptor activation of Smad3/4 effectors directly. Finally, miR-20a abrogated the TGF-β-mediated c-Myc repression, a direct inhibitor of the CDKN1A promoter activation, most likely by reducing the expression of specific MYC-regulating genes from the Smad/E2F-based core repressor complex. Our experiments indicate that miR-20a interferes with the colonic epithelium homeostasis by disrupting the regulation of Myc/p21 by TGF-β, which is essential for its malignant transformation.
Collapse
Affiliation(s)
- Viktorija Sokolova
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonio Fiorino
- Department of Predictive and Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eugenio Zoni
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Crippa
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - James F Reid
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Gariboldi
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco A Pierotti
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
21
|
Magni M, Ruscica V, Buscemi G, Kim JE, Nachimuthu BT, Fontanella E, Delia D, Zannini L. Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res 2014; 42:13150-60. [PMID: 25361978 PMCID: PMC4245943 DOI: 10.1093/nar/gku1065] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Human DBC1 (Deleted in Breast Cancer 1; KIAA1967; CCAR2) is a protein implicated in the regulation of apoptosis, transcription and histone modifications. Upon DNA damage, DBC1 is phosphorylated by ATM/ATR on Thr454 and this modification increases its inhibitory interaction with SIRT1, leading to p53 acetylation and p53-dependent apoptosis. Here, we report that the inhibition of SIRT1 by DBC1 in the DNA damage response (DDR) also depends on Chk2, the transducer kinase that is activated by ATM upon DNA lesions and contributes to the spreading of DNA damage signal. Indeed we found that inactivation of Chk2 reduces DBC1-SIRT1 binding, thus preventing p53 acetylation and DBC1-induced apoptosis. These events are mediated by Chk2 phosphorylation of the 11S proteasome activator REGγ on Ser247, which increases REGγ-DBC1 interaction and SIRT1 inhibition. Overall our results clarify the mechanisms underlying the DBC1-dependent SIRT1 inhibition and link, for the first time, Chk2 and REGγ to the ATM-DBC1-SIRT1 axis.
Collapse
Affiliation(s)
- Martina Magni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Vincenzo Ruscica
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Ja-Eun Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | - Enrico Fontanella
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|