1
|
Doknic M, Stojanovic M, Markovic A. Transition Period and Young Adulthood in Patients with Childhood Onset Growth Hormone Deficiency (COGHD): Impact of Growth Hormone Replacement on Bone Mass and Body Composition. Int J Mol Sci 2024; 25:10313. [PMID: 39408643 PMCID: PMC11476696 DOI: 10.3390/ijms251910313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
The aim of this review article is to highlight the consequences of COGHD after the end of linear growth on bone mass and body composition and the opposing beneficial effects of continuing GH replacement in the transition period and young adults. The role of growth hormone in the period of late adolescence and young adulthood is well established, mainly in achieving peak bone mass and a favorable body composition, characterized by muscle mass increase and fat mass reduction. Patients with childhood onset growth hormone deficiency (COGHD), after reaching the adult height, have a reduced bone mineral density and muscle mass with increased fat mass compared to healthy controls. Inadequate body composition is a predictor for cardiovascular risk, while low bone mass in early youth hallmarks the risk of osteoporosis and bone fractures in later life. Cessation of growth hormone replacement (GHr) after completion of growth will lead to delayed peak bone mass and unbalanced body composition with increased abdominal fat deposits. According to numerous clinical studies monitoring the effects of GH treatment on the physical and psychological status of patients with persistent GHD after completion of growth, we suggest continuing this treatment between 16 and 25 years of age. It is advised that GHr in the transition period be administered in intermediate doses between those for the pediatric population and those for the adult population. Usual daily GHr doses are between 0.3 and 0.5 mg but need to be individually optimized, with the aim of maintaining IGF-I in the age-specific normal range.
Collapse
Affiliation(s)
- Mirjana Doknic
- Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Beograd, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Stojanovic
- Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Beograd, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Markovic
- Department of Endocrinology, Internal Medicine Clinic, University Clinical Centre of the Republic of Srpska, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| |
Collapse
|
2
|
Garmes HM. Special features on insulin resistance, metabolic syndrome and vascular complications in hypopituitary patients. Rev Endocr Metab Disord 2024; 25:489-504. [PMID: 38270844 DOI: 10.1007/s11154-023-09872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
Pituitary hormone deficiency, hypopituitarism, is a dysfunction resulting from numerous etiologies, which can be complete or partial, and is therefore heterogeneous. This heterogeneity makes it difficult to interpret the results of scientific studies with these patients.Adequate treatment of etiologies and up-to-date hormone replacement have improved morbidity and mortality rates in patients with hypopituitarism. As GH replacement is not performed in a reasonable proportion of patients, especially in some countries, it is essential to understand the known consequences of GH replacement in each subgroup of patients with this heterogeneous dysfunction.In this review on hypopituitarism, we will address some particularities regarding insulin resistance, which is no longer common in these patients with hormone replacement therapy based on current guidelines, metabolic syndrome and its relationship with changes in BMI and body composition, and to vascular complications that need to be prevented taking into account the individual characteristics of each case to reduce mortality rates in these patients.
Collapse
Affiliation(s)
- Heraldo M Garmes
- Endocrinology Division, Department of Clinical Medicine, Faculdade de Ciências Médicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Universidade Estadual de Campinas. Rua Tessália Vieira de Camargo, 126, Barão Geraldo, CEP 13083-887, Campinas, São Paulo, Brasil.
| |
Collapse
|
3
|
Coulter AA, Greenway FL, Zhang D, Ghosh S, Coulter CR, James SL, He Y, Cusimano LA, Rebello CJ. Naringenin and β-carotene convert human white adipocytes to a beige phenotype and elevate hormone- stimulated lipolysis. Front Endocrinol (Lausanne) 2023; 14:1148954. [PMID: 37143734 PMCID: PMC10153092 DOI: 10.3389/fendo.2023.1148954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Naringenin, a peroxisome proliferator-activated receptor (PPAR) activator found in citrus fruits, upregulates markers of thermogenesis and insulin sensitivity in human adipose tissue. Our pharmacokinetics clinical trial demonstrated that naringenin is safe and bioavailable, and our case report showed that naringenin causes weight loss and improves insulin sensitivity. PPARs form heterodimers with retinoic-X-receptors (RXRs) at promoter elements of target genes. Retinoic acid is an RXR ligand metabolized from dietary carotenoids. The carotenoid β-carotene reduces adiposity and insulin resistance in clinical trials. Our goal was to examine if carotenoids strengthen the beneficial effects of naringenin on human adipocyte metabolism. Methods Human preadipocytes from donors with obesity were differentiated in culture and treated with 8µM naringenin + 2µM β-carotene (NRBC) for seven days. Candidate genes involved in thermogenesis and glucose metabolism were measured as well as hormone-stimulated lipolysis. Results We found that β-carotene acts synergistically with naringenin to boost UCP1 and glucose metabolism genes including GLUT4 and adiponectin, compared to naringenin alone. Protein levels of PPARα, PPARγ and PPARγ-coactivator-1α, key modulators of thermogenesis and insulin sensitivity, were also upregulated after treatment with NRBC. Transcriptome sequencing was conducted and the bioinformatics analyses of the data revealed that NRBC induced enzymes for several non-UCP1 pathways for energy expenditure including triglyceride cycling, creatine kinases, and Peptidase M20 Domain Containing 1 (PM20D1). A comprehensive analysis of changes in receptor expression showed that NRBC upregulated eight receptors that have been linked to lipolysis or thermogenesis including the β1-adrenergic receptor and the parathyroid hormone receptor. NRBC increased levels of triglyceride lipases and agonist-stimulated lipolysis in adipocytes. We observed that expression of RXRγ, an isoform of unknown function, was induced ten-fold after treatment with NRBC. We show that RXRγ is a coactivator bound to the immunoprecipitated PPARγ protein complex from white and beige human adipocytes. Discussion There is a need for obesity treatments that can be administered long-term without side effects. NRBC increases the abundance and lipolytic response of multiple receptors for hormones released after exercise and cold exposure. Lipolysis provides the fuel for thermogenesis, and these observations suggest that NRBC has therapeutic potential.
Collapse
Affiliation(s)
- Ann A. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Frank L. Greenway
- Clinical Trials, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Dachuan Zhang
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Adjunct Faculty, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Cathryn R. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sarah L. James
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Yanlin He
- Brain Glycemic and Metabolism Control, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Luke A. Cusimano
- Cusimano Plastic and Reconstructive Surgery, Baton Rouge, LA, United States
| | - Candida J. Rebello
- Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
4
|
Zou X, Wang S, Zhang P, Lu L, Zou H. Quantitative Proteomics and Weighted Correlation Network Analysis of Tear Samples in Adults and Children With Diabetes and Dry Eye. Transl Vis Sci Technol 2020; 9:8. [PMID: 33344052 PMCID: PMC7718812 DOI: 10.1167/tvst.9.13.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Diabetics are more prone to suffer from dry eye (DE). The ages of diabetes are decreasing, so ocular surface status in younger generations is worthy of attention. We used tandem mass tag (TMT)–labeled proteomics and weighted correlation network analysis (WGCNA) to identify differentially expressed proteins in the tear proteome of adults and children with diabetic DE. Methods Study subjects were divided into six groups of 10, including three groups each for adults and children. The adult groups included diabetics with DE (A), diabetics without DE (B), and normal controls (C); the corresponding groups of children were identified as (D), (E), and (F). DE tests were performed on all subjects. We extracted total proteins and labeled them with TMTs for analysis. WGCNA was used to recognize hub genes. Results Tear film function was poorer in patients with diabetic DE. In adults, 1922 proteins were identified, and WGCNA analysis revealed three hub genes related to diabetic DE. For children, 2709 proteins were identified, and WGCNA analysis identified one hub gene related to diabetic DE. Kyoto Encyclopedia of Genes and Genomes analysis found similarities among metabolic pathways involved in differential expression of proteins in adult and child tear samples. Conclusions The pathogenesis of diabetic DE was highly similar in adults and children. The differentially expressed tear proteins in type 2 diabetes of adults and children was associated with inflammation, immune factors, and lipid metabolism. Translational Relevance Our findings found high similarities in the pathogenesis of diabetic DE in adults and children.
Collapse
Affiliation(s)
- Xinrong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China.,Department of Ophthalmology, Fengcheng Hospital, Fengxian District, Shanghai, China
| | - Shanshan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhang
- Department of Ophthalmology, Gonghui Hospital, Jingan District, Shanghai, China
| | - Lina Lu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Haidong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Zou X, Zhang P, Xu Y, Lu L, Zou H. Quantitative Proteomics and Weighted Correlation Network Analysis of Tear Samples in Type 2 Diabetes Patients Complicated with Dry Eye. Proteomics Clin Appl 2020; 14:e1900083. [PMID: 31951085 DOI: 10.1002/prca.201900083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/30/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Diabetic patients are more likely to experience dry eye (DE). TMT-based proteomics and WGCNA are used to identify the differentially expressed proteins in tear proteome of type 2 diabetes with DE. The aim is to provide a molecular basis for exploring possible mechanisms underlying the pathogenesis of diabetic DE. EXPERIMENTAL DESIGN Subjects are divided into four groups (ten in each): type 2 diabetes with DE; type 2 diabetes without DE; non-diabetes with DE and normal controls. All subjects undergo DE tests. Total proteins are extracted and quantitatively labeled with TMT, then analyzed using liquid chromatography-mass spectrometry. WGCNA is used to identify the hub genes. Finally, differentially expressed proteins are validated by ELISA. RESULTS A total of 1922 proteins are identified, of which 1814 contain quantitative information. Ultimately, 650 of these proteins yield quantitative values. WGCNA performed on these 650 proteins reveal four distinct hub genes of diabetic DE. CONCLUSIONS AND CLINICAL RELEVANCE DE is associated with the differential expression of tear proteins in type 2 diabetes. Inflammation, immune factors, and lipid metabolism may play a role in the development of diabetic DE. LTF, LYZ, ZAG, and DNAJC3 have the potential to be the biomarkers of DE in diabetes.
Collapse
Affiliation(s)
- Xinrong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, 200040, China.,Department of Ophthalmology, Fengcheng Hospital, Fengxian District, Shanghai, 201411, China
| | - Pei Zhang
- Department of Ophthalmology, Gonghui Hospital, Jingan District, Shanghai, 200041, China
| | - Yi Xu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Lina Lu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Haidong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
6
|
Garmes HM, Castillo AR. Insulin signaling in the whole spectrum of GH deficiency. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:582-591. [PMID: 31939483 PMCID: PMC10522230 DOI: 10.20945/2359-3997000000188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/12/2019] [Indexed: 11/23/2022]
Abstract
GH is one of the insulin counterregulatory hormones which acts in the opposite way to insulin, increasing the glucose production by the liver and kidneys and decreasing glucose uptake from peripheral tissues, thus being a hyperglycemic hormone. When in excess, as in acromegaly, it induces glucose intolerance and diabetes. As expected, patients with GH deficiency (GHD) have hypoglycemia, especially in early childhood, but as GH is also a lipolytic hormone, these patients are becoming obese with higher percentages of body fat. Although obesity in general is directly related to insulin resistance, in patients with GH secretion disorders this relationship may be altered. In acromegaly there is a decrease in fat mass with worsening insulin sensitivity and mice with isolated GHD are characterized by greater insulin sensitivity despite excess fat mass. In humans with GHD, body composition shows increased body fat and decreased free fat mass, but the results regarding insulin sensitivity are still controversial in these patients. These discrepant results regarding insulin sensitivity in patients with GHD suggest the existence of other variables influencing these results. In the present review, we will try to follow the path of the different researches conducted on this subject, both in animal and human models, with the goal of understanding the current knowledge of insulin sensitivity across the spectrum of GHD. Arch Endocrinol Metab. 2019;63(6):582-91.
Collapse
Affiliation(s)
- Heraldo Mendes Garmes
- Departamento de Clínica MédicaFaculdade de Ciências MédicasUniversidade Estadual de CampinasCampinasSPBrasil Divisão de Endocrinologia, Departamento de Clínica Médica, Faculdade de Ciências Médicas da Universidade Estadual de Campinas (FCM-Unicamp), Campinas, SP, Brasil
| | - Alejandro Rosell Castillo
- Departamento de Clínica MédicaFaculdade de Ciências MédicasUniversidade Estadual de CampinasCampinasSPBrasil Divisão de Endocrinologia, Departamento de Clínica Médica, Faculdade de Ciências Médicas da Universidade Estadual de Campinas (FCM-Unicamp), Campinas, SP, Brasil
| |
Collapse
|
7
|
Wulaningsih W, Proitsi P, Wong A, Kuh D, Hardy R. Metabolomic correlates of central adiposity and earlier-life body mass index. J Lipid Res 2019; 60:1136-1143. [PMID: 30885925 DOI: 10.1194/jlr.p085944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/03/2019] [Indexed: 11/20/2022] Open
Abstract
BMI is correlated with circulating metabolites, but few studies discuss other adiposity measures, and little is known about metabolomic correlates of BMI from early life. We investigated associations between different adiposity measures, BMI from childhood through adulthood, and metabolites quantified from serum using 1H NMR spectroscopy in 900 British men and women aged 60-64. We assessed BMI, waist-to-hip ratio (WHR), android-to-gynoid fat ratio (AGR), and BMI from childhood through adulthood. Linear regression with Bonferroni adjustment was performed to assess adiposity and metabolites. Of 233 metabolites, 168; 126; and 133 were associated with BMI, WHR, and AGR at age 60-64, respectively. Associations were strongest for HDL, particularly HDL particle size-e.g., there was 0.08 SD decrease in HDL diameter (95% CI: 0.07-0.10) with each unit increase in BMI. BMI-adjusted AGR or WHR were associated with 31 metabolites where there was no metabolome-wide association with BMI. We identified inverse associations between BMI at age 7 and glucose or glycoprotein at age 60-64 and relatively large LDL cholesteryl ester with postadolescent BMI gains. In summary, we identified metabolomic correlates of central adiposity and earlier-life BMI. These findings support opportunities to leverage metabolomics in early prevention of cardiovascular risk attributable to body fatness.
Collapse
Affiliation(s)
- Wahyu Wulaningsih
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom
| | - Petroula Proitsi
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom.,University College London, London WC1B 5JU, United Kingdom; and Clinical Neuroscience Institute, King's College London, London SE5 9RS, United Kingdom
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom
| |
Collapse
|
8
|
Xiao XH, Qi XY, Li JY, Wang YB, Wang YD, Liao ZZ, Yang J, Ran L, Wen GB, Liu JH. Serum zinc-α2-glycoprotein levels are elevated and correlated with thyroid hormone in newly diagnosed hyperthyroidism. BMC Endocr Disord 2019; 19:12. [PMID: 30670019 PMCID: PMC6343254 DOI: 10.1186/s12902-019-0336-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 01/09/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Zinc-α2-glycoprotein (ZAG) is a recently novel lipolytic adipokine implicated in regulation of glucose and lipid metabolism in many metabolic disorders. In vitro and animal studies suggest that thyroid hormones (TH) up-regulates ZAG production in hepatocytes. However, there is no data evaluating the possible relationship between ZAG and TH in a human model of hyperthyroidism. The objective of the present study is to assess the association of serum ZAG levels with TH and lipid profile in patients with hyperthyroidism before and after methimazole treatment. METHODS A total of 120 newly diagnosed overt hyperthyroidism and 122 healthy control subjects were recruited. Of them, 39 hyperthyroidism patients were assigned to receive methimazole treatment as follow-up study for 2 months. RESULTS The clinical consequence showed that serum ZAG levels were elevated in patients with hyperthyroidism (P < 0.01). Adjust for age, gender and BMI, serum ZAG levels were positively related with serum free T3 (FT3), free T4 (FT4) levels and negatively correlated with serum total cholesterol (TC), low density lipoprotein cholesterol (LDLC) levels in hyperthyroidism subjects (all P < 0.01). After methimazole treatment, serum ZAG levels were decreased and the decline was associated with decreased FT3, FT4 and increased TC levels (all P < 0.001). CONCLUSION We conclude that ZAG may be involved in the pathogenesis of lipid metabolism disorder in patients with hyperthyroidism. TRIAL REGISTRATION ChiCTR-ROC-17012943 . Registered 11 October 2017, retrospectively registered.
Collapse
Affiliation(s)
- Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Jiao-Yang Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Yi-Bing Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Li Ran
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Ge-Bo Wen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| |
Collapse
|
9
|
Expression and Function of Zinc-α2-Glycoprotein. Neurosci Bull 2019; 35:540-550. [PMID: 30610461 DOI: 10.1007/s12264-018-00332-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zinc-α2-glycoprotein (ZAG), encoded by the AZGP1 gene, is a major histocompatibility complex I molecule and a lipid-mobilizing factor. ZAG has been demonstrated to promote lipid metabolism and glucose utilization, and to regulate insulin sensitivity. Apart from adipose tissue, skeletal muscle, liver, and kidney, ZAG also occurs in brain tissue, but its distribution in brain is debatable. Only a few studies have investigated ZAG in the brain. It has been found in the brains of patients with Krabbe disease and epilepsy, and in the cerebrospinal fluid of patients with Alzheimer disease, frontotemporal lobe dementia, and amyotrophic lateral sclerosis. Both ZAG protein and AZGP1 mRNA are decreased in epilepsy patients and animal models, while overexpression of ZAG suppresses seizure and epileptic discharges in animal models of epilepsy, but knowledge of the specific mechanism of ZAG in epilepsy is limited. In this review, we summarize the known roles and molecular mechanisms of ZAG in lipid metabolism and glucose metabolism, and in the regulation of insulin sensitivity, and discuss the possible mechanisms by which it suppresses epilepsy.
Collapse
|
10
|
Castillo AR, de Souza AL, Alegre SM, Atala YB, Zantut-Wittmann DE, Garmes HM. Insulin Sensitivity Is Not Decreased in Adult Patients With Hypopituitarism Without Growth Hormone Replacement. Front Endocrinol (Lausanne) 2019; 10:534. [PMID: 31447781 PMCID: PMC6692434 DOI: 10.3389/fendo.2019.00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
Decreased insulin sensitivity in patients with hypopituitarism without GH replacement (pHP-WGHR) remains conflicting in literature. It is known that these patients present a decrease in free fat mass and an increase in fat mass. Typically, these kinds of alterations in body composition are associated with a decrease in insulin sensitivity; however, there is no consensus if this association is found in pHP-WGHR. Thus, we investigated pHP-WGHR regarding insulin sensitivity by euglycemic hyperinsulinemic clamp, the gold standard method, and body composition. In a cross-sectional study, we evaluated 15 pHP-WGHR followed up in a Service of Neuroendocrinology and 15 individuals with normal pituitary function as a control group with similar age, gender and body mass index. Insulin sensitivity was evaluated by euglycemic hyperinsulinemic clamp and homeostatic model assessment insulin resistance (HOMA-IR). Kappa coefficient evaluated the agreement between these two methods. Percentage of fat mass, percentage of free fat mass, fat mass weight and free fat mass weight were assessed by electrical bioimpedance. The pHP-WGHR presented similar insulin sensitivity to control group by euglycemic hyperinsulinemic clamp, both by the M-value, (p = 0.0913) and by the area under the glucose infusion rate curve, (p = 0.0628). These patients showed lower levels of fasting glycemia (p = 0.0128), insulin (p = 0.0007), HOMA-IR (p = 0.009). HOMA-IR shows poor concordance with euglycemic hyperinsulinemic clamp (Kappa = 0.16) in pHP-WGHR, while in the control group the agreement was good (Kappa = 0.53). The pHP-WGHR presented higher values of percentage of fat mass (p = 0.0381) and lower values of percentage of free fat mass (p = 0.0464) and free fat mass weight (0.0421) than the control group. This study demonstrated that the insulin sensitivity evaluated by euglycemic hyperinsulinemic clamp in pHP-WGHR was similar to individuals with normal pituitary function, despite the pHP-WGHR presenting higher fat mass percentage. HOMA-IR was not a good method for assessing insulin sensitivity in pHP-WGHR.
Collapse
Affiliation(s)
- Alejandro Rosell Castillo
- Endocrinology Division, Department of Clinical Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Aglecio Luiz de Souza
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Sarah Monte Alegre
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Yeelen Ballesteros Atala
- Endocrinology Division, Department of Clinical Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Heraldo Mendes Garmes
- Endocrinology Division, Department of Clinical Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- *Correspondence: Heraldo Mendes Garmes
| |
Collapse
|
11
|
Konigorski S, Janke J, Drogan D, Bergmann MM, Hierholzer J, Kaaks R, Boeing H, Pischon T. Prediction of Circulating Adipokine Levels Based on Body Fat Compartments and Adipose Tissue Gene Expression. Obes Facts 2019; 12:590-605. [PMID: 31698359 PMCID: PMC6940469 DOI: 10.1159/000502117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adipokines are hormones secreted from adipose tissue (AT), and a number of them have been established as risk factors for chronic diseases. However, it is not clear whether and to what extent adiposity, gene expression, and other factors determine their circulating levels. OBJECTIVES To assess to what extent adiposity, as measured by the amount of subcutaneous AT (SAT) and visceral AT (VAT) using magnetic resonance imaging, and gene expression levels in SAT determine plasma concentrations of the adipokines adiponectin, leptin, soluble leptin receptor, resistin, interleukin 6, and fatty acid-binding protein 4 (FABP4). METHODS We performed a cross-sectional analysis of 156 participants from the EPIC Potsdam cohort study and analyzed multiple regression models and partial correlation coefficients. RESULTS For leptin and FABP4 concentrations, 81 and 45% variance were explained by SAT mass, VAT mass, and gene expression in SAT in multivariable regression models. For the remaining adipokines, AT mass and gene expression explained <16% variance of plasma concentrations. Gene expression in SAT was a less important predictor compared to AT mass. SAT mass was a better predictor than VAT mass for leptin (partial correlation r = 0.81, 95% confidence interval 0.75-0.86, vs. r = 0.58, 95% confidence interval 0.46-0.67), while differences between AT compartments were small for the other adipokines. CONCLUSIONS While plasma levels of leptin and FABP4 can be explained in a large and medium part by the amount of AT and SAT gene expression, surprisingly, these predictors explained only little variance for all other investigated adipokines.
Collapse
Affiliation(s)
- Stefan Konigorski
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany,
- Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany,
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dagmar Drogan
- AOK Research Institute (WIdO), AOK Bundesverband, Berlin, Germany
| | - Manuela M Bergmann
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Johannes Hierholzer
- Department of Diagnostic and Interventional Radiology, Clinic Ernst von Bergmann, Potsdam, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) partner site Berlin, Berlin, Germany
| |
Collapse
|
12
|
Euclydes VLV, Castro NP, Lima LR, Brito C, Ribeiro L, Simões FA, Requena G, Luzia LA, Rondó PH. Cord blood concentrations of leptin, zinc-α2-glycoprotein, and adiponectin, and adiposity gain during the first 3 mo of life. Nutrition 2018; 54:89-93. [PMID: 29758496 DOI: 10.1016/j.nut.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Adipose tissue development starts in intrauterine life and cytokines are involved in this process. Therefore, understanding the role of cytokines in the fat mass gain of infants is crucial to prevent obesity later in life. Furthermore, recent evidence indicates a sex-specific link between cytokines and adipose tissue development. The objective of this study was to assess sex-specific relationships of cord blood concentrations of the cytokines leptin, zinc-α2-glycoprotein (ZAG), and adiponectin with infant adiposity during the first 3 mo of life. METHODS This was a prospective cohort study of 104 mother-infant pairs that were selected from a maternity hospital in Sao Paulo, Brazil. Cord blood leptin, ZAG, and adiponectin were determined by enzyme-linked immunosorbent assays. The body composition of the infants was assessed monthly by air displacement plethysmography. A multiple linear regression analysis was conducted with the average fat mass gain from birth to the third month of life as the outcome and cord blood leptin, ZAG, and adiponectin as the variables of interest. RESULTS Leptin was inversely associated with fat mass gain in the first 3 mo of life (P = 0.003; adjusted R2 = 0.09). There were inverse associations of leptin (P = 0.021), ZAG (P = 0.042), and maternal body mass index (P = 0.04) with fat mass gain in girls (adjusted R2 = 0.29) but fat mass gain in boys was positively associated with gestational age (P = 0.01; adjusted R2 = 0.15). CONCLUSIONS The results of this study suggest that adiposity programming is sex-specific, which highlights the need to investigate the different metabolic mechanisms that are involved in adipogenesis.
Collapse
Affiliation(s)
- Verônica L V Euclydes
- Postgraduate Program in Applied Human Nutrition, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia P Castro
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Lourdes R Lima
- Laboratory of Immunology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Cyro Brito
- Laboratory of Immunology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Laisa Ribeiro
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Agapito Simões
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Guaraci Requena
- Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil
| | - Liania Alves Luzia
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia Helen Rondó
- Postgraduate Program in Applied Human Nutrition, University of Sao Paulo, Sao Paulo, Brazil; Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Bredella MA, Karastergiou K, Bos SA, Gerweck AV, Torriani M, Fried SK, Miller KK. GH administration decreases subcutaneous abdominal adipocyte size in men with abdominal obesity. Growth Horm IGF Res 2017; 35:17-20. [PMID: 28628810 PMCID: PMC5585040 DOI: 10.1016/j.ghir.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/06/2017] [Accepted: 06/11/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the effects of short-term GH administration on abdominal subcutaneous adipocyte size and CT attenuation in men with abdominal obesity. DESIGN 6-week, randomized, double-blind, placebo-controlled study of GH (starting dose 2μg/kg/d) vs placebo of 15 abdominally obese men (mean age: 34±6years; mean BMI: 37.7±6.1kg/m2, mean IGF-1 SDS: -1.9±0.5) who underwent abdominal subcutaneous adipose tissue (SAT) aspirations to determine adipocyte size, CTs for body composition and measures of glucose tolerance at baseline and 6weeks. GH dosing was titrated to target IGF-1 levels in the upper normal age-appropriate range. RESULTS GH administration decreased subcutaneous abdominal adipocyte size compared to placebo. Adipocyte size was positively associated with 120-min glucose and HOMA-IR and inversely associated with peak-stimulated GH and CT attenuation. CT attenuation of SAT was inversely associated with 120-min glucose and HOMA-IR and increased following GH administration. CONCLUSION In men with abdominal obesity, subcutaneous abdominal adipocyte size is positively associated with measures of impaired glucose tolerance and administration of GH at doses that raise IGF-1 levels within the normal range, decreases abdominal subcutaneous adipocyte size, suggesting that GH administration improves the health of adipose tissue. Clinical trials number: NCT00131378.
Collapse
Affiliation(s)
- Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Kalypso Karastergiou
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, 650 Albany St., EBRC 810, Boston, MA 02118, United States
| | - Stijn A Bos
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anu V Gerweck
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Martin Torriani
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Susan K Fried
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, 650 Albany St., EBRC 810, Boston, MA 02118, United States
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Loche S, Salerno M, Garofalo P, Cardinale GM, Licenziati MR, Citro G, Caruso Nicoletti M, Cappa M, Longobardi S, Maghnie M, Perrone R. Adherence in children with growth hormone deficiency treated with r-hGH and the easypod™ device. J Endocrinol Invest 2016; 39:1419-1424. [PMID: 27406716 PMCID: PMC5107197 DOI: 10.1007/s40618-016-0510-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE Poor adherence to recombinant human growth hormone (r-hGH) therapy is associated with reduced growth velocity in children with growth hormone deficiency (GHD). This twelve-month observational study was to assess adherence in r-hGH patients treated with the easypod™, an electronic, fully automated injection device designed to track the time, date and dose administered. METHODS Ninety-seven prepubertal patients receiving r-hGH therapy were included in the study from ten Italian clinical sites and 88 completed the study. To avoid possible confounding effects, only GHD patients (79/88; 89.7 % of the overall study population) were considered in the final analysis. The primary endpoint-adherence to treatment-was calculated as the proportion of injections correctly administered during the observational period out of the expected total number of injections. The relevant information, tracked by the easypod™, was collected at months 6 (V1) and 12 (V2) after baseline (V0). At study termination, adherence data were partially available from 16 patients and fully available from 53 patients. As secondary endpoints, serum IGF-1 levels, fasting serum glucose and insulin levels and key anthropometric characteristics (height, waist circumference and BMI) were also determined. RESULTS The easypod™ data showed that 56.7 % of the patients were considered to be fully (≥92 %) adherent to their treatment throughout the period V0-V2. Treatment improved stature, significantly increased IGF-1 and produced a non-significant increase in blood glucose and insulin levels. CONCLUSIONS The injection-recording system and other characteristics of easypod™ could enhance the ability of physicians to monitor adherence to r-hGH treatment.
Collapse
Affiliation(s)
- S Loche
- SSD of Pediatric Endocrinology, Pediatric Hospital Microcitemico Antonio Cao AOB Cagliari, Via Edward Jenner, 09121, Cagliari, Italy.
| | - M Salerno
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - P Garofalo
- Endocrinology Unit, AOOR Villa Sofia-Cervello, Palermo, Italy
| | - G M Cardinale
- Paediatric Division, Hospital F Ferrari, Casarano, Italy
| | - M R Licenziati
- Department of Pediatrics, AORN Santobono-Pausilipon, Naples, Italy
| | - G Citro
- Endocrinology Unit, Mother Theresa of Calcutta Territorial Specialist Centre, Potenza, Italy
| | - M Caruso Nicoletti
- Paediatric Endocrinology Service, University Hospital of Catania, Catania, Italy
| | - M Cappa
- University-Hospital Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - M Maghnie
- Department of Paediatrics, IRCCS Giannina Gaslini Institute, University of Genova, Genoa, Italy
| | | |
Collapse
|