1
|
Zhang R, Kanki K. Glycolytic inhibition by resveratrol facilitates chondrocyte survival under glucose-deprived conditions and improves the viability of 3D-cultured cartilage tissue. J Biosci Bioeng 2025:S1389-1723(25)00106-9. [PMID: 40413115 DOI: 10.1016/j.jbiosc.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Decreased cell viability resulting from severe nutrient deprivation is a major obstacle in three-dimensional (3D) tissue construction. Therefore, technical improvements that prevent cell death in the core region of cell aggregates are desired for the development of large, thick tissues. We focused on the anti-glycolytic effects of resveratrol (RSV), a polyphenol known as a caloric restriction mimetic, and investigated its cytoprotective effects under glucose-deprived conditions in two-dimensional (2D) and 3D-cell culture systems using rat chondrocytes. In 2D culture, the low-glucose (LG, 0.5 mg/mL) condition caused time- and dose-dependent cell death in chondrocytes, whereas co-treatment with 50 μM RSV significantly restored cell viability under glucose deprivation. In RSV-treated cells, the expression levels of glycolytic genes (GLUT1, PKM, and LDHA) and glucose uptake were significantly downregulated, and phospho-AMPK levels were upregulated, indicating energy stress. RSV treatment restored the expression of extracellular matrix genes (COL1A1 and COL2A1), which were downregulated under the LG condition, and augmented the pro-chondrogenic effect of TGF-β1 and ascorbic acid. In a 3D-culture model, spheroids constructed with RSV-pretreated chondrocytes had a more viable core region than dimethyl-sulfoxide-treated control spheroids. TGF-β-induced cartilage maturation led these spheroids to develop larger and more viable tissues than control spheroids. These results suggested that glycolytic inhibition by RSV decreased chondrocyte glucose usage, thereby preventing cell death caused by glucose deprivation. Our findings provide useful information for improving cell viability under hyponutrition conditions and can be applied to 3D tissue construction.
Collapse
Affiliation(s)
- Rui Zhang
- Graduate School of Science and Engineering, Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Keita Kanki
- Graduate School of Science and Engineering, Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
2
|
Lashgari NA, Roudsari NM, Momtaz S, Niazi Shahraki F, Zandi N, Pazoki B, Farzaei MH, Ghasemi M, Abdollahi M, Abdolghaffari AH. Systematic Review on Herbal Preparations for Controlling Visceral Hypersensitivity in Functional Gastrointestinal Disorders. Curr Pharm Biotechnol 2024; 25:1632-1650. [PMID: 38258770 DOI: 10.2174/0113892010261502231102040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Visceral hypersensitivity (VH) is an overreaction of the gastrointestinal (GI) tract to various stimuli and is characterized by hyperalgesia and/or allodynia. VH contributes to the etiology of many GI dysfunctions, particularly irritable bowel syndrome (IBS). Although the exact mechanisms underlying VH are yet to be found, inflammation and oxidative stress, psychosocial factors, and sensorimotor alterations may play significant roles in it. OBJECTIVE In this review, we provide an overview of VH and its pathophysiological function in GI disorders. Adverse effects of synthetic drugs may make herbal agents a good candidate for pain management. Therefore, in this review, we will discuss the efficacy of herbal agents in the management of VH with a focus on their anti-inflammatory and antioxidant potentials. METHODS Data were extracted from clinical and animal studies published in English between 2004 and June, 2020, which were collected from PubMed, Google Scholar, Scopus, and Cochrane Library. RESULTS Overall, Radix, Melissia, Glycyrrhizae, Mentha, and Liquorice were the most efficient herbals for VH management in IBS and dyspepsia, predominantly through modulation of the mRNA expression of transient receptor potential vanilloid type-1 (TRPV1) and suppression of 5- hydroxytryptamine 3 (5-HT3) or the serotonin receptors. CONCLUSION Considering the positive effects of herbal formulations in VH management, further research on novel herbal and/or herbal/chemical preparations is warranted.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Pharmacology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Faezeh Niazi Shahraki
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Benyamin Pazoki
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA 01655, USA
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E. Phosphodiesterase-4 Inhibition in Parkinson's Disease: Molecular Insights and Therapeutic Potential. Cell Mol Neurobiol 2023; 43:2713-2741. [PMID: 37074485 PMCID: PMC11410141 DOI: 10.1007/s10571-023-01349-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Clinicians and researchers are exploring safer and novel treatment strategies for treating the ever-prevalent Parkinson's disease (PD) across the globe. Several therapeutic strategies are used clinically for PD, including dopamine replacement therapy, DA agonists, MAO-B blockers, COMT blockers, and anticholinergics. Surgical interventions such as pallidotomy, particularly deep brain stimulation (DBS), are also employed. However, they only provide temporal and symptomatic relief. Cyclic adenosine monophosphate (cAMP) is one of the secondary messengers involved in dopaminergic neurotransmission. Phosphodiesterase (PDE) regulates cAMP and cGMP intracellular levels. PDE enzymes are subdivided into families and subtypes which are expressed throughout the human body. PDE4 isoenzyme- PDE4B subtype is overexpressed in the substantia nigra of the brain. Various studies have implicated multiple cAMP-mediated signaling cascades in PD, and PDE4 is a common link that can emerge as a neuroprotective and/or disease-modifying target. Furthermore, a mechanistic understanding of the PDE4 subtypes has provided perceptivity into the molecular mechanisms underlying the adverse effects of phosphodiesterase-4 inhibitors (PDE4Is). The repositioning and development of efficacious PDE4Is for PD have gained much attention. This review critically assesses the existing literature on PDE4 and its expression. Specifically, this review provides insights into the interrelated neurological cAMP-mediated signaling cascades involving PDE4s and the potential role of PDE4Is in PD. In addition, we discuss existing challenges and possible strategies for overcoming them.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| |
Collapse
|
4
|
Zaki ES, Sayed RH, Saad MA, El-Yamany MF. Roflumilast ameliorates ovariectomy-induced depressive-like behavior in rats via activation of AMPK/mTOR/ULK1-dependent autophagy pathway. Life Sci 2023:121806. [PMID: 37257579 DOI: 10.1016/j.lfs.2023.121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
AIMS Roflumilast, a well-known phosphodiesterase-4 (PDE-4) inhibitor, possess an anti-inflammatory activity with approved indications in chronic obstructive pulmonary disease. This study aimed to evaluate the neuroprotective role of roflumilast in ovariectomy (OVX)-induced depressive-like behavior in female rats and to shed light on a potential autophagy enhancing effect. MAIN METHODS Rats were randomly divided into four groups: sham, OVX, OVX + roflumilast (1 mg/kg, p.o), and OVX + roflumilast + chloroquine (CQ) (50 mg/kg, i.p). Drugs were administered for 4 weeks starting 2 weeks after OVX. KEY FINDINGS Roflumilast improved the depressive-like behaviors observed in OVX rats as evidenced by decreasing both forced swimming and open field immobility times while, increasing % sucrose preference and number of open field crossed squares. Histopathological analysis provides further evidence of roflumilast's beneficial effects, demonstrating that roflumilast ameliorated the neuronal damage caused by OVX. Roflumilast antidepressant potential was mediated via restoring hippocampal cAMP and BDNF levels as well as down-regulating PDE4 expression. Moreover, roflumilast revealed anti-inflammatory and anti-apoptotic effects via hindering TNF-α level and diminishing Bax/Bcl2 ratio. Roflumilast restored the autophagic function via up-regulation of p-AMPK, p-ULK1, Beclin-1 and LC3II/I expression, along with downregulation of P62 level and p-mTOR protein expression. The autophagy inhibitor CQ was used to demonstrate the suggested pathway. SIGNIFICANCE The present study revealed that roflumilast showed an anti-depressant activity in OVX female rats via turning on AMPK/mTOR/ULK1-dependent autophagy pathway; and neurotrophic, anti-inflammatory, and anti-apoptotic activities. Roflumilast could offer a more secure alternative to hormone replacement therapy for postmenopausal depression treatment.
Collapse
Affiliation(s)
- Eman S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Muhammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Kazmi I, Al-Abbasi FA, Afzal M, Nadeem MS, Altayb HN, Gupta G. Phosphodiesterase-4 Inhibitor Roflumilast-Mediated Protective Effect in Sepsis-Induced Late-Phase Event of Acute Kidney Injury: A Narrative Review. Pharmaceuticals (Basel) 2022; 15:ph15070899. [PMID: 35890197 PMCID: PMC9315747 DOI: 10.3390/ph15070899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Severe infections such as viral, bacterial, or fungal sepsis can cause an inflammatory response in the host, leading to organ failure and septic shock—phosphodiesterase-4 (PDE-4) inhibiting related agents from suppressing cyclic adenosine monophosphate (cAMP) degradation. Regulatory organisations have approved some substances in this category to reduce the risk of chronic obstructive pulmonary disease (COPD) exacerbations in patients with chronic bronchitis and a history of COPD exacerbations. Roflumilast has been shown to alleviate inflammatory responses, thus regulating airway inflammation. Additionally, roflumilast therapy dramatically enhanced B-cell lymphoma 2 (Bcl-2) expression, an anti-apoptotic marker lowered in septic animals. Previous research has indicated that roflumilast may help reverse sepsis-induced liver and lung harm, but whether it is also effective in reversing sepsis-induced renal impairment remains unknown. Therefore, this review determines whether roflumilast protects against renal dysfunction, inflammatory response, and apoptosis in sepsis-induced kidney damage. Additionally, we discussed the molecular mechanism through which roflumilast exerts its protective effect to uncover a possible treatment agent for sepsis-induced renal impairment.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
- Correspondence:
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
6
|
Sapuleni J, Szymanska M, Meidan R. Diverse actions of sirtuin-1 on ovulatory genes and cell death pathways in human granulosa cells. Reprod Biol Endocrinol 2022; 20:104. [PMID: 35840944 PMCID: PMC9284863 DOI: 10.1186/s12958-022-00970-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human granulosa-lutein cells (hGLCs) amply express sirtuin-1 (SIRT1), a NAD + -dependent deacetylase that is associated with various cellular functions. SIRT1 was shown to elevate cAMP on its own and additively with human chorionic gonadotropin (hCG), it is therefore interesting to examine if SIRT1 affects other essential hGLC functions. METHODS Primary hGLCs, obtained from the follicular aspirates of women undergoing IVF and SV40-transfected, immortalized hGLCs (SVOG cells), were used. Primary cells were treated with SIRT1 specific activator SRT2104, as well as hCG or their combination. Additionally, siRNA-targeting SIRT1 construct was used to silence endogenous SIRT1 in SVOG cells. PTGS2, EREG, VEGFA and FGF2 expression was determined using quantitative polymerase chain reaction (qPCR). Apoptotic and necroptotic proteins were determined by specific antibodies in western blotting. Cell viability/apoptosis was determined by the XTT and flow cytometry analyses. Data were analyzed using student t-test or Mann-Whitney U test or one-way ANOVA followed by Tukey HSD post hoc test. RESULTS In primary and immortalized hGLCs, SRT2104 significantly upregulated key ovulatory and angiogenic genes: PTGS2, EREG, FGF2 and VEGFA, these effects tended to be further augmented in the presence of hCG. Additionally, SRT2104 dose and time-dependently decreased viable cell numbers. Flow cytometry of Annexin V stained cells confirmed that SIRT1 reduced live cell numbers and increased late apoptotic and necrotic cells. Moreover, we found that SIRT1 markedly reduced anti-apoptotic BCL-XL and MCL1 protein levels and increased cleaved forms of pro-apoptotic proteins caspase-3 and PARP. SIRT1 also significantly induced necroptotic proteins RIPK1 and MLKL. RIPK1 inhibitor, necrostatin-1 mitigated SIRT1 actions on RIPK1 and MLKL but also on cleaved caspase-3 and PARP and in accordance on live and apoptotic cells, implying a role for RIPK1 in SIRT1-induced cell death. SIRT1 silencing produced inverse effects on sorted cell populations, anti-apoptotic, pro-apoptotic and necroptotic proteins, corroborating SIRT1 activation. CONCLUSIONS These findings reveal that in hGLCs, SIRT1 enhances the expression of ovulatory and angiogenic genes while eventually advancing cell death pathways. Interestingly, these seemingly contradictory events may have occurred in a cAMP-dependent manner.
Collapse
Affiliation(s)
- Jackson Sapuleni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
| | - Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel.
| |
Collapse
|
7
|
Dong XL, Wang YH, Xu J, Zhang N. The protective effect of the PDE-4 inhibitor rolipram on intracerebral haemorrhage is associated with the cAMP/AMPK/SIRT1 pathway. Sci Rep 2021; 11:19737. [PMID: 34611179 PMCID: PMC8492710 DOI: 10.1038/s41598-021-98743-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Rolipram specifically inhibits phosphodiesterase (PDE) 4, thereby preventing inactivation of the intracellular second messenger cyclic adenosine monophosphate (cAMP). Rolipram has been shown to play a neuroprotective role in some central nervous system (CNS) diseases. However, the role of PDE4 and the potential protective effect of rolipram on the pathophysiological process of intracerebral haemorrhage (ICH) are still not entirely clear. In this study, a mouse model of ICH was established by the collagenase method. Rolipram reduced brain oedema, blood–brain barrier (BBB) leakage, neuronal apoptosis and inflammatory cytokine release and improved neurological function in our mouse model of ICH. Moreover, rolipram increased the levels of cAMP and silent information regulator 1 (SIRT1) and upregulated the phosphorylation of AMP-activated protein kinase (AMPK). Furthermore, these effects of rolipram could be reversed by the SIRT1 inhibitor sirtinol. In conclusion, rolipram can play a neuroprotective role in the pathological process of ICH by activating the cAMP/AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Xiao-Liu Dong
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurorehabilitation, Tangshan People's Hospital, Tangshan, 063000, China
| | - Yan-Hui Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
8
|
Potent PDE4 inhibitor activates AMPK and Sirt1 to induce mitochondrial biogenesis. PLoS One 2021; 16:e0253269. [PMID: 34138962 PMCID: PMC8211267 DOI: 10.1371/journal.pone.0253269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor. Activation of AMPK leads to a number of metabolic benefits, including improved mitochondrial function in skeletal muscle and lowering of serum glucose levels in type-2 diabetes models. However, direct activation of AMPK leads to cardiac enlargement, and an alternative strategy that activates AMPK without affecting the heart is needed. Inhibition of phosphodiesterase 4 (PDE4), which is poorly expressed in the human heart, activates AMPK in other tissues. In a screen to identify novel PDE4 inhibitors, we discovered compound CBU91, which is 5-10 fold more potent than rolipram, the best characterized PDE4 inhibitor. CBU91, like rolipram, is able to activate AMPK and Sirt1 and increase mitochondrial function in myotubes. These findings suggest that activation of AMPK in myotubes is a general property of PDE4 inhibition and that PDE4 inhibition may activate AMPK in metabolically relevant tissues without affecting the heart.
Collapse
|
9
|
Chung JY, Jeong JH, Song J. Resveratrol Modulates the Gut-Brain Axis: Focus on Glucagon-Like Peptide-1, 5-HT, and Gut Microbiota. Front Aging Neurosci 2020; 12:588044. [PMID: 33328965 PMCID: PMC7732484 DOI: 10.3389/fnagi.2020.588044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a natural polyphenol that has anti-aging and anti-inflammatory properties against stress condition. It is reported that resveratrol has beneficial functions in various metabolic and central nervous system (CNS) diseases, such as obesity, diabetes, depression, and dementia. Recently, many researchers have emphasized the connection between the brain and gut, called the gut-brain axis, for treating both CNS neuropathologies and gastrointestinal diseases. Based on previous findings, resveratrol is involved in glucagon-like peptide 1 (GLP-1) secreted by intestine L cells, the patterns of microbiome in the intestine, the 5-hydroxytryptamine (5-HT) level, and CNS inflammation. Here, we review recent evidences concerning the relevance and regulatory function of resveratrol in the gut-brain axis from various perspectives. Here, we highlight the necessity for further study on resveratrol's specific mechanism in the gut-brain axis. We present the potential of resveratrol as a natural therapeutic substance for treating both neuropathology and gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, South Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
10
|
Huang J, Huang N, Xu S, Luo Y, Li Y, Jin H, Yu C, Shi J, Jin F. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J Nutr Biochem 2020; 88:108552. [PMID: 33220405 DOI: 10.1016/j.jnutbio.2020.108552] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), and Parkinson's disease (PD), are characterized by the progressive loss of the structure and function of neurons and most commonly occur in the elderly population. Microglia are resident macrophages of the central nervous system (CNS). The neuroinflammation caused by excessive microglial activation is closely related to the onset and progression of many NDs. Therefore, inhibiting excessive microglial activation is a potential drug target for controlling neuroinflammation. In recent years, natural products as modulators of microglial polarization have attracted considerable attention in the field of NDs therapy. Furthermore, resveratrol (RES) has been found to have a protective effect in NDs through the inhibition of microglial activation and the regulation of neuroinflammation. In this review, we mainly summarize the therapeutic potential of RES and its various molecular mechanisms in the treatment of NDs through the modulation of microglial activation.
Collapse
Affiliation(s)
- Juan Huang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China; School of Public Health, Zunyi Medical University, Guizhou, China
| | - Nanqu Huang
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Yong Luo
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Yan Li
- School of Public Health, Zunyi Medical University, Guizhou, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Zunyi Medical University, Guizhou, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China.
| |
Collapse
|
11
|
Naito K, Kanki K. Glycolytic inhibition by resveratrol prevents myoblast cell death caused by glucose deprivation and hypoxia; a possible application to the three-dimensional tissue construction. J Biosci Bioeng 2020; 131:90-97. [PMID: 32950383 DOI: 10.1016/j.jbiosc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 11/28/2022]
Abstract
Decreased cell viability resulting from a severe condition of nutrients deprivation and hypoxia has been the major obstacle in three-dimensional (3D) tissue construction. Therefore, technical improvement which prevents cell death caused by starvation and low oxygen is desired for the development of large, thick tissues. We focused on the anti-glycolytic effect of resveratrol (RSV), a naturally-occurring polyphenol known as a caloric restriction mimetic, and investigated its cytoprotective effect in two-dimensional (2D) and 3D-cell culture using H9c2 rat myoblast cells. Glucose deprivation by culturing with low glucose media caused time- and dose-dependent cell death in H9c2 cells. In contrast, RSV treatment at 100 μM significantly increased the cell viability by preventing cell death. RSV showed anti-glycolytic effect associated with a down-regulation of glycolytic genes (GLUT1, PKM2) and glucose uptake activity, and increased the activation of AMP-activated protein kinase (AMPK), an essential cellular energy sensor activated in the condition of energy deprivation. RSV treatment markedly improved the viability of myoblast cells cultured in a hypoxic, low glucose condition and attenuated the up-regulation of glycolytic genes by hypoxic response. In 3D-cultured model, spheroids constructed with RSV-treated cells showed improved cell viability and intact histological appearance compared with control. These results suggest that glycolytic inhibition by RSV decreases the glucose usage of myoblast cells, therefore, prevents cell death caused by nutrient deprivation and hypoxic condition. Our finding provides useful information to improve cell viability in a condition that nutrients and oxygen are low in supply, and be a possible application to the 3D-tissue construction.
Collapse
Affiliation(s)
- Kyoko Naito
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| | - Keita Kanki
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
12
|
Matencio A, Guerrero-Rubio MA, Caldera F, Cecone C, Trotta F, García-Carmona F, López-Nicolás JM. Lifespan extension in Caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. Int J Pharm 2020; 589:119862. [PMID: 32916214 DOI: 10.1016/j.ijpharm.2020.119862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
In this work, the increase of the Caenorhabditis elegans (C. elegans) lifespan extension using hyper-branched cyclodextrin-based nanosponges (CD-NS) complexing oxyresveratrol (OXY), and the possible inhibition of C. elegans phosphodiesterase type 4 (PDE4) were evaluated. The titration displacement of fluorescein was used to calculate the apparent complexation constant (KF) between CD-NS and OXY. Moreover, PDE4 was expressed in E. coli, purified and refolded in presence of cyclodextrins (CDs) to study its possible inhibition as pharmacological target of OXY. The apparent activity was characterized and the inhibitory effect of OXY on PDE4 displayed a competitive in vitro inhibition corroborated in silico. A maximum increase of the in vivo life expectancy of about 9.6% of using OXY/CD-NS complexes in comparison with the control was obtained, in contrast to the 6.5% obtained with free OXY. No effect on lifespan or toxicity with CD-NS alone was found. These results as a whole represent new opportunities to use OXY and CD-NS in lifespan products.
Collapse
Affiliation(s)
- Adrián Matencio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Fabrizio Caldera
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Claudio Cecone
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
13
|
Roudsari NM, Lashgari NA, Momtaz S, Farzaei MH, Marques AM, Abdolghaffari AH. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. Daru 2019; 27:755-780. [PMID: 31273572 PMCID: PMC6895345 DOI: 10.1007/s40199-019-00284-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a well diagnosed disease, thoroughly attributed to series of symptoms criteria that embrace a broad range of abdominal complainers. Such criteria help to diagnosis the disease and can guide controlled clinical trials to seek new therapeutic agents. Accordingly, a verity of mechanisms and pathophysiological conditions including inflammation, oxidative stress, lipid peroxidation and different life styles are involved in IBS. Predictably, diverse therapeutic approaches are available and prescribed by clinicians due to major manifestations (i.e., diarrhea-predominance, constipation-predominance, abdominal pain and visceral hypersensitivity), psychological disturbances, and patient preferences between herbal treatments versus pharmacological therapies, dietary or microbiological approaches. Herein, we gathered the latest scientific data between 1973 and 2019 from databases such as PubMed, Google Scholar, Scopus and Cochrane library on relevant studies concerning beneficial effects of herbal treatments for IBS, in particular polyphenols. This is concluded that polyphenols might be applicable for preventing IBS and improving the IBS symptoms, mainly through suppressing the inflammatory signaling pathways, which nowadays are known as novel platform for the IBS management. Graphical abstract.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - André M Marques
- Oswaldo Cruz Foundation (FIOCRUZ), Institute of Technology in Pharmaceuticals (Farmanguinhos), Rio de Janeiro, RJ, Brazil
| | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
14
|
Intagliata S, Modica MN, Santagati LM, Montenegro L. Strategies to Improve Resveratrol Systemic and Topical Bioavailability: An Update. Antioxidants (Basel) 2019; 8:E244. [PMID: 31349656 PMCID: PMC6719186 DOI: 10.3390/antiox8080244] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, a great deal of attention has been paid to natural compounds due to their many biological effects. Polyphenols are a class of plant derivatives that have been widely investigated for preventing and treating many oxidative stress-related pathological conditions, such as neurodegenerative and cardiovascular diseases, cancer, diabetes mellitus and inflammation. Among these polyphenols, resveratrol (RSV) has attracted considerable interest owing to its high antioxidant and free radical scavenging activities. However, the poor water solubility and rapid metabolism of RSV lead to low bioavailability, thus limiting its clinical efficacy. After discussing the main biochemical mechanisms involved in RSV biological activities, this review will focus on the strategies attempted to improve RSV effectiveness, both for systemic and for topical administration. In particular, technological approaches involving RSV incorporation into different delivery systems such as liposomes, polymeric and lipid nanoparticles, microemulsions and cyclodextrins will be illustrated, highlighting their potential clinical applications. In addition, chemical modifications of this antioxidant aimed at improving its physicochemical properties will be described along with the results of in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | | | - Lucia Montenegro
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
15
|
Resveratrol Action on Lipid Metabolism in Cancer. Int J Mol Sci 2019; 20:ijms20112704. [PMID: 31159437 PMCID: PMC6601040 DOI: 10.3390/ijms20112704] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer diseases have the leading position in human mortality nowadays. The age of oncologic patients is still decreasing, and the entire scientific society is eager for new ways to fight against cancer. One of the most discussed issues is prevention by means of natural substances. Resveratrol is a naturally occurring plant polyphenol with proven antioxidant, anti-inflammatory, and anticancer effects. Tumor cells display specific changes in the metabolism of various lipids. Resveratrol alters lipid metabolism in cancer, thereby affecting storage of energy, cell signaling, proliferation, progression, and invasiveness of cancer cells. At the whole organism level, it contributes to the optimal metabolism extent with respect to the demands of the organism. Thus, resveratrol could be used as a preventive and anticancer agent. In this review, we focus on some of the plethora of lipid pathways and signal molecules which are affected by resveratrol during carcinogenesis.
Collapse
|
16
|
Phosphodiesterase 4B is an effective therapeutic target in colorectal cancer. Biochem Biophys Res Commun 2018; 508:825-831. [PMID: 30528730 DOI: 10.1016/j.bbrc.2018.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 01/07/2023]
Abstract
Identification of new therapeutic targets may improve the survival rate of patients with colorectal cancer (CRC). Recent studies have suggested that the level of phosphodiesterase 4B (PDE4B) is elevated in fatal/refractory diffuse large B-cell lymphoma (DLBCL), and therapeutic efficacy of a PDE4 inhibitor in B-cell lymphoma has been successfully tested in clinical settings. Here, we show that PDE4B is a potential therapeutic target in CRC. Treatment with forskolin, an activator of adenylyl cyclase (AC), increased intracellular cyclic AMP (cAMP) levels in PDE4B-low, but not PDE4B-high cells, indicating that PDE4B was a major regulator of cAMP levels in CRC cells. Furthermore, cAMP modulated the activities of AKT and AMPK in a PDE4B-dependent manner, which was associated with a marked decrease in mTOR-Myc signals and oncogenic properties of CRC cells such as anchorage-independent growth and colony formation. We found that the Myc proto-oncogene was a crucial downstream target of the AKT/mTOR and AMPK/mTOR signals that mediated cAMP-induced anti-tumor effect. A natural polyphenol resveratrol that was reported to have PDE4 inhibitory effects also showed tumor suppressive effects by inhibiting the mTOR-Myc axis. Intriguingly, we identified Myc as a transcriptional activator of PDE4B in CRC cells, which maintains the intracellular cAMP levels low and promotes cell survival. These data suggest that cAMP/PDE4B signals play a significant role in regulating the malignant phenotype of CRC cells and targeting of PDE4B should be actively pursued.
Collapse
|
17
|
Xu Y, Cui SY, Ma Q, Shi J, Yu Y, Li JX, Zheng L, Zhang Y, Si JM, Yu YC. trans-Resveratrol Ameliorates Stress-Induced Irritable Bowel Syndrome-Like Behaviors by Regulation of Brain-Gut Axis. Front Pharmacol 2018; 9:631. [PMID: 29962949 PMCID: PMC6013570 DOI: 10.3389/fphar.2018.00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a functional disorder characterized by abdominal pain and abnormalities in defecation associated with psychiatric disorders such as depression and anxiety due to the dysfunction of brain-gut axis. This study aims to determine whether trans-Resveratrol affects chronic-acute combined stress (CACS)-induced IBS-like symptoms including depression, anxiety and intestinal dysfunction. Methods: ICR male mice were exposed to the CACS for 3 weeks. trans-Resveratrol were administrated daily (2.5, 5, and 10 mg/kg, i.g.) 30 min before CACS. Behavioral tests were performed to evaluate the treatment effects of trans-Resveratrol on IBS. Hippocampus tissues were collected and processed Golgi staining and immuno-blot analysis. Ileum and colon tissues were collected and processed Hematoxylin and Eosin staining and immuno-blot analysis. Results: Administration with trans-Resveratrol before CACS for 3 weeks significantly reversed CACS-induced depression- and anxiety-like behaviors and intestinal dysfunction in mice, which implied a crucial role of trans-Resveratrol in treatment of IBS-like disorder. Furthermore, trans-Resveratrol improved hippocampal neuronal remodeling, protected ileal and colonic epithelial barrier structure against CACS insults. The further study suggested that trans-Resveratrol normalized phosphodiesterases 4A (PDE4A) expression and CREB-BDNF signaling that were disturbed by CACS. The increased pCREB and BDNF expression in the hippocampus were found, while decreased pCREB and BDNF levels were observed after treatment with trans-Resveratrol. Conclusions: The dual effects of trans-Resveratrol on stress-induced psychiatric and intestinal dysfunction may be related to normalization of PDE4A expression and subsequent pCREB-BDNF signaling in the hippocampus, ileum and colon.
Collapse
Affiliation(s)
- Ying Xu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China.,Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Su-Ying Cui
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Quan Ma
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Ying Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Jian-Xin Li
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Liang Zheng
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yi Zhang
- Departments of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jian-Min Si
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Ying-Cong Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Epigenetic Modifications Linked to T2D, the Heritability Gap, and Potential Therapeutic Targets. Biochem Genet 2018; 56:553-574. [DOI: 10.1007/s10528-018-9863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
|
19
|
The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling. Oncotarget 2017; 7:17380-92. [PMID: 26980711 PMCID: PMC4951219 DOI: 10.18632/oncotarget.8041] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/21/2016] [Indexed: 11/25/2022] Open
Abstract
Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling.
Collapse
|
20
|
Plauth A, Geikowski A, Cichon S, Wowro SJ, Liedgens L, Rousseau M, Weidner C, Fuhr L, Kliem M, Jenkins G, Lotito S, Wainwright LJ, Sauer S. Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress. Free Radic Biol Med 2016; 99:608-622. [PMID: 27515816 DOI: 10.1016/j.freeradbiomed.2016.08.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 11/22/2022]
Abstract
Resveratrol has gained tremendous interest owing to multiple reported health-beneficial effects. However, the underlying key mechanism of action of this natural product remained largely controversial. Here, we demonstrate that under physiologically relevant conditions major biological effects of resveratrol can be attributed to its generation of oxidation products such as reactive oxygen species (ROS). At low nontoxic concentrations (in general <50µM), treatment with resveratrol increased viability in a set of representative cell models, whereas application of quenchers of ROS completely truncated these beneficial effects. Notably, resveratrol treatment led to mild, Nrf2-specific gene expression reprogramming. For example, in primary epidermal keratinocytes derived from human skin this coordinated process resulted in a 1.3-fold increase of endogenously generated glutathione (GSH) and subsequently in a quantitative reduction of the cellular redox environment by 2.61mVmmol GSH per g protein. After induction of oxidative stress by using 0.78% (v/v) ethanol, endogenous generation of ROS was consequently reduced by 24% in resveratrol pre-treated cells. In contrast to the common perception that resveratrol acts mainly as a chemical antioxidant or as a target protein-specific ligand, we propose that the cellular response to resveratrol treatment is essentially based on oxidative triggering. In physiological microenvironments this molecular training can lead to hormetic shifting of cellular defense towards a more reductive state to improve physiological resilience to oxidative stress.
Collapse
Affiliation(s)
- Annabell Plauth
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Anne Geikowski
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Susanne Cichon
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sylvia J Wowro
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Linda Liedgens
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Morten Rousseau
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Christopher Weidner
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Luise Fuhr
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Magdalena Kliem
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Gail Jenkins
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Silvina Lotito
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Linda J Wainwright
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; CU Systems Medicine, University of Würzburg, Josef-Schneider-Straße 2, Building D15, 97080 Würzburg, Germany; Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, BIMSB and BIH Genomics Platforms, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
21
|
Choi CH, Schoenfeld BP, Bell AJ, Hinchey J, Rosenfelt C, Gertner MJ, Campbell SR, Emerson D, Hinchey P, Kollaros M, Ferrick NJ, Chambers DB, Langer S, Sust S, Malik A, Terlizzi AM, Liebelt DA, Ferreiro D, Sharma A, Koenigsberg E, Choi RJ, Louneva N, Arnold SE, Featherstone RE, Siegel SJ, Zukin RS, McDonald TV, Bolduc FV, Jongens TA, McBride SMJ. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models. Front Behav Neurosci 2016; 10:136. [PMID: 27445731 PMCID: PMC4928101 DOI: 10.3389/fnbeh.2016.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model.
Collapse
Affiliation(s)
- Catherine H Choi
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Department of Dermatology, Dermatology Clinic, Drexel University College of MedicinePhiladelphia, PA, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Brian P Schoenfeld
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Aaron J Bell
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Joseph Hinchey
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Cory Rosenfelt
- Bolduc Laboratory, Department of Pediatrics, Center for Neuroscience, University of Alberta Edmonton, AB, Canada
| | - Michael J Gertner
- Zukin Laboratory, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Sean R Campbell
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Danielle Emerson
- Jongens Laboratory, Department of Genetics, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Paul Hinchey
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Maria Kollaros
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Neal J Ferrick
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Daniel B Chambers
- Bolduc Laboratory, Department of Pediatrics, Center for Neuroscience, University of Alberta Edmonton, AB, Canada
| | - Steven Langer
- Bolduc Laboratory, Department of Pediatrics, Center for Neuroscience, University of Alberta Edmonton, AB, Canada
| | - Steven Sust
- Siegel Laboratory, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Aatika Malik
- Jongens Laboratory, Department of Genetics, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Allison M Terlizzi
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - David A Liebelt
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - David Ferreiro
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Ali Sharma
- Zukin Laboratory, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Eric Koenigsberg
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Richard J Choi
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Natalia Louneva
- Arnold Laboratory, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Steven E Arnold
- Arnold Laboratory, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Robert E Featherstone
- Siegel Laboratory, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Steven J Siegel
- Siegel Laboratory, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - R Suzanne Zukin
- Zukin Laboratory, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Thomas V McDonald
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Francois V Bolduc
- Bolduc Laboratory, Department of Pediatrics, Center for Neuroscience, University of Alberta Edmonton, AB, Canada
| | - Thomas A Jongens
- Jongens Laboratory, Department of Genetics, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Sean M J McBride
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA; Siegel Laboratory, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
22
|
Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today 2016; 21:499-509. [DOI: 10.1016/j.drudis.2015.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023]
|
23
|
Wan D, Zhou Y, Wang K, Hou Y, Hou R, Ye X. Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull 2016; 121:255-62. [PMID: 26876758 DOI: 10.1016/j.brainresbull.2016.02.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Dysfunction of energy metabolism can be a significant and fundamental pathophysiological basis for strokes. In studies of both humans and rodents, resveratrol, a natural polyphenol, has been reported to provide protection from cerebral ischemic injury by regulating expression of silent mating type information regulation 2 homolog 1 (SIRT1). However, direct evidence demonstrating that resveratrol exerts neuroprotection from cerebral ischemia injury by decreasing energy consumption is still lacking. Therefore, the aim of this study was to elucidate the mechanisms and signaling pathways through which resveratrol regulates energy metabolism in the ischemic brain, and to identify potential targets of resveratrol. ATP levels in brain tissues were detected by high performance liquid chromatography. SIRT1 and the phosphorylation of adenosine-monophosphate-activated protein kinase (P-AMPK) expressiones were evaluated by western blot. Levels of phosphodiesterase (PDEs) and cAMP were quantitated by real-time PCR and ELISA, respectively. Results showed that resveratrol significantly reduced the harmful effects of cerebral ischemic injury in vivo. Moreover, levels of ATP, p-AMPK, SIRT1, and cAMP were increased by resveratrol and PDE inhibitors. In conclusion, our findings indicate that resveratrol provides neuroprotection by inhibiting PDEs and regulating the cAMP/AMPK/SIRT1 pathway, which reduces ATP energy consumption during ischemia.
Collapse
Affiliation(s)
- Dan Wan
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Yehan Zhou
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Ke Wang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Yongying Hou
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Ruihang Hou
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Xiufeng Ye
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
24
|
Shimoda K, Kubota N, Uesugi D, Hamada H, Tanigawa M, Hamada H. Synthesis and pharmacological evaluation of glycosides of resveratrol, pterostilbene, and piceatannol. Ann N Y Acad Sci 2015; 1348:141-9. [DOI: 10.1111/nyas.12836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kei Shimoda
- Department of Chemistry; Faculty of Medicine; Oita University; Oita Japan
| | - Naoji Kubota
- Department of Chemistry; Faculty of Medicine; Oita University; Oita Japan
| | - Daisuke Uesugi
- Department of Life Science; Faculty of Science; Okayama University of Science; Okayama Japan
| | | | - Masato Tanigawa
- Department of Physics; Faculty of Medicine; Oita University; Oita Japan
| | - Hiroki Hamada
- Department of Life Science; Faculty of Science; Okayama University of Science; Okayama Japan
| |
Collapse
|
25
|
Bhullar KS, Hubbard BP. Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1209-18. [PMID: 25640851 DOI: 10.1016/j.bbadis.2015.01.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/02/2023]
Abstract
A number of small molecules with the ability to extend the lifespan of multiple organisms have recently been discovered. Resveratrol, amongst the most prominent of these, has gained widespread attention due to its ability to extend the lifespan of yeast, worms, and flies, and its ability to protect against age-related diseases such as cancer, Alzheimer's, and diabetes in mammals. In this review, we discuss the origins and molecular targets of resveratrol and provide an overview of its effects on the lifespan of simple model organisms and mammals. We also examine the unique ability of resveratrol to extend the healthy years, or healthspan, of mammals and its potential to counteract the symptoms of age-related disease. Finally, we explore the many scientific, medical, and economic challenges faced when translating these findings to the clinic, and examine potential approaches for realizing the possibility of human lifespan extension. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
26
|
Proof-of-Concept Randomized Controlled Study of Cognition Effects of the Proprietary Extract Sceletium tortuosum (Zembrin) Targeting Phosphodiesterase-4 in Cognitively Healthy Subjects: Implications for Alzheimer's Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:682014. [PMID: 25389443 PMCID: PMC4217361 DOI: 10.1155/2014/682014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/16/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
Introduction. Converging evidence suggests that PDE-4 (phosphodiesterase subtype 4) plays a crucial role in regulating cognition via the PDE-4-cAMP cascade signaling involving phosphorylated cAMP response element binding protein (CREB). Objective. The primary endpoint was to examine the neurocognitive effects of extract Sceletium tortuosum (Zembrin) and to assess the safety and tolerability of Zembrin in cognitively healthy control subjects.
Method. We chose the randomized double-blind placebo-controlled cross-over design in our study. We randomized normal healthy subjects (total n = 21) to receive either 25 mg capsule Zembrin or placebo capsule once daily for 3 weeks, in a randomized placebo-controlled 3-week cross-over design. We administered battery of neuropsychological tests: CNS Vital Signs and Hamilton depression rating scale (HAM-D) at baseline and regular intervals and monitored side effects with treatment emergent adverse events scale. Results. 21 subjects (mean age: 54.6 years ± 6.0 yrs; male/female ratio: 9/12) entered the study. Zembrin at 25 mg daily dosage significantly improved cognitive set flexibility (P < 0.032) and executive function (P < 0.022), compared with the placebo group. Positive changes in mood and sleep were found. Zembrin was well tolerated. Conclusion. The promising cognitive enhancing effects of Zembrin likely implicate the PDE-4-cAMP-CREB cascade, a novel drug target in the potential treatment of early Alzheimer's dementia. This trial is registered with ClinicalTrials.gov NCT01805518.
Collapse
|
27
|
Tikoo K, Lodea S, Karpe PA, Kumar S. Calorie restriction mimicking effects of roflumilast prevents diabetic nephropathy. Biochem Biophys Res Commun 2014; 450:1581-6. [DOI: 10.1016/j.bbrc.2014.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
28
|
Yamagata K, Tagami M, Yamori Y. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition 2014; 31:28-37. [PMID: 25466651 DOI: 10.1016/j.nut.2014.04.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/09/2014] [Accepted: 04/08/2014] [Indexed: 12/20/2022]
Abstract
Vascular endothelial cell (EC) dysfunction strongly induces development of cardiovascular and cerebrovascular diseases. Epidemiologic studies demonstrated a preventative effect of dietary polyphenols toward cardiovascular disease. In studies using cultured vascular ECs, polyphenols were recognized to regulate nitric oxide and endothelin-1 (ET-1) production. Furthermore, epigallocatechin-3-gallate inhibited the expression of adhesion molecules by a signaling pathway that is similar to that of high-density lipoprotein and involves induction of Ca(2+)/calmodulin-dependent kinase II, liver kinase B, and phosphatidylinositol 3-kinase expression. The effects of polyphenols on ECs include antioxidant activity and enhancement of the expression of several protective proteins, including endothelial nitric oxide synthase and paraoxonase 1. However, the observed effects of dietary polyphenols in vitro do not always translate to an in vivo setting. As such, there are many questions concerning their physiological mode of action. In this review, we discuss research on the effect of dietary polyphenols on cardiovascular disease and their protective effect on EC dysfunction.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University, Fujisawa, Japan; Advance Research Center on Food Function, College of Bioresource Science, Nihon University, Fujisawa, Japan.
| | - Motoki Tagami
- Department of Internal Medicine, Sanraku Hospital, Lifestyle Disease Clinic, Chiyoda-Ku, Tokyo, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|