1
|
Little M, Ortlund EA. Structure, function, and lipid sensing activity in the thioesterase superfamily. Biochem Soc Trans 2024; 52:1565-1577. [PMID: 39140379 PMCID: PMC12004282 DOI: 10.1042/bst20230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Lipid synthesis and transport are essential for energy, production of cell membrane, and cell signaling. Acyl-CoA thioesterases (ACOTs) function to regulate intracellular levels of fatty acyl-CoAs through hydrolysis. Two members of this family, ACOT11 and ACOT12, contain steroidogenic acute regulatory related lipid transfer domains, which typically function as lipid transport or regulatory domains. This work reviews ACOT11 and ACOT12 structures and functions, and the potential role of the START domains in lipid transfer activity and the allosteric regulation of catalytic activity.
Collapse
Affiliation(s)
- Molly Little
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
2
|
Yuan Q, Zhang X, Yang X, Zhang Q, Wei X, Ding Z, Chen J, Hua H, Huang D, Xu Y, Wang X, Gao C, Liu S, Zhang H. Knockdown of ACOT4 alleviates gluconeogenesis and lipid accumulation in hepatocytes. Heliyon 2024; 10:e27618. [PMID: 38495177 PMCID: PMC10940928 DOI: 10.1016/j.heliyon.2024.e27618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Acyl-CoA thioesterase 4 (ACOT4) has been reported to be related to acetyl-CoA carboxylase activity regulation; However, its exact functions in liver lipid and glucose metabolism are still unclear. Here, we discovered explored the regulatory roles of ACOT4 in hepatic lipid and glucose metabolism in vitro. We found that the expression level of ACOT4 was significantly increased in the hepatic of db/db and ob/ob mice as well as obese mice fed a high fat diet. Adenovirus-mediated overexpression of ACOT4 promoted gluconeogenesis and high-glucose/high-insulin-induced lipid accumulation and impaired insulin sensitivity in primary mouse hepatocytes, whereas ACOT4 knockdown notably suppressed gluconeogenesis and decreased the triglycerides accumulation in hepatocytes. Furthermore, ACOT4 knockdown increased insulin-induced phosphorylation of AKT and GSK-3β in primary mouse hepatocytes. Mechanistically, we found that upregulation of ACOT4 expression inhibited AMP-activated protein kinase (AMPK) activity, and its knockdown had the opposite effect. However, activator A769662 and inhibitor compound C of AMPK suppressed the impact of the change in ACOT4 expression on AMPK activity. Our data indicated that ACOT4 is related to hepatic glucose and lipid metabolism, primarily via the regulation of AMPK activity. In conclusion, ACOT4 is a potential target for the therapy of non-alcoholic fatty liver (NAFLD) and type 2 diabetes.
Collapse
Affiliation(s)
- Qianqian Yuan
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiaonan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Zhimin Ding
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajie Chen
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dake Huang
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yongxia Xu
- Department of Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiuyun Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shengxiu Liu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230022, Anhui, China
| |
Collapse
|
3
|
High Expression of ACOT2 Predicts Worse Overall Survival and Abnormal Lipid Metabolism: A Potential Target for Acute Myeloid Leukemia. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2669114. [PMID: 36193167 PMCID: PMC9525752 DOI: 10.1155/2022/2669114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Acyl-CoA thioesterase (ACOT) plays a considerable role in lipid metabolism, which is closely related to the occurrence and development of cancer, nevertheless, its role has not been fully elucidated in acute myeloid leukemia (AML). To explore the role of ACOT2 in AML and to provide a potential therapeutic target for AML, the expression pattern of ACOT was investigated based on the TNMplot, Gene Expression Profiling Interactive Analysis (GEPIA), and Cancer Cell Line Encyclopedia (CCLE) database, and diagnostic value, prognostic value, and clinical phenotype of ACOT were explored based on data from The Cancer Genome Atlas (TCGA). Functional annotation and enrichment analysis of the common targets between ACOT2 coexpressed and AML-related genes were further performed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) analyses. The protein-protein interaction (PPI) network of ACOT2 coexpressed genes and functional ACOT2-related metabolites association network were constructed based on GeneMANIA and Human Metabolome Database. Among ACOTs, ACOT2 was highly expressed in AML compared to normal control subjects according to TNMplot, GEPIA, and CCLE database, which was significantly associated with poor overall survival (OS) in AML (
). Moreover, ACOT2 exhibited excellent diagnostic efficiency for AML (AUC: 1.000) and related to French-American-British (FAB) classification and cytogenetics. GO, KEGG, and GSEA analyses of 71 common targets between ACOT2 coexpressed and AML-related genes revealed that ACOT2 is closely related to ACOT1, ACOT4, enoyl-acyl carrier protein reductase, mitochondrial (MECR), puromycin-sensitive aminopeptidase (NPEPPS), SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), and long-chain fatty acid-CoA ligase 1 (ACSL1) in PPI network, and plays a significant role in lipid metabolism, that is, involved in fatty acid elongation and biosynthesis of unsaturated fatty acids. Collectively, the increase of ACOT2 may be an important characteristic of worse OS and abnormal lipid metabolism, suggesting that ACOT2 may become a potential therapeutic target for AML.
Collapse
|
4
|
Blomme A, Peter C, Mui E, Rodriguez Blanco G, An N, Mason LM, Jamieson LE, McGregor GH, Lilla S, Ntala C, Patel R, Thiry M, Kung SHY, Leclercq M, Ford CA, Rushworth LK, McGarry DJ, Mason S, Repiscak P, Nixon C, Salji MJ, Markert E, MacKay GM, Kamphorst JJ, Graham D, Faulds K, Fazli L, Gleave ME, Avezov E, Edwards J, Yin H, Sumpton D, Blyth K, Close P, Murphy DJ, Zanivan S, Leung HY. THEM6-mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Mol Med 2022; 14:e14764. [PMID: 35014179 PMCID: PMC8899912 DOI: 10.15252/emmm.202114764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.
Collapse
Affiliation(s)
| | | | - Ernest Mui
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Ning An
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | | | - Lauren E Jamieson
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Grace H McGregor
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Chara Ntala
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Marc Thiry
- GIGA‐NeurosciencesUnit of Cell and Tissue BiologyUniversity of LiègeLiègeBelgium
| | - Sonia H Y Kung
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Marine Leclercq
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | | | - Linda K Rushworth
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Susan Mason
- CRUK Beatson InstituteGarscube EstateGlasgowUK
| | | | - Colin Nixon
- CRUK Beatson InstituteGarscube EstateGlasgowUK
| | - Mark J Salji
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Elke Markert
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Jurre J Kamphorst
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Duncan Graham
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Karen Faulds
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Ladan Fazli
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Martin E Gleave
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Edward Avezov
- UK Dementia Research Institute at University of CambridgeDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joanne Edwards
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Huabing Yin
- School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Karen Blyth
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Pierre Close
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | - Daniel J Murphy
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Sara Zanivan
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Hing Y Leung
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| |
Collapse
|
5
|
Mohr AE, Reiss RA, Beaudet M, Sena J, Naik JS, Walker BR, Sweazea KL. Short-term high fat diet alters genes associated with metabolic and vascular dysfunction during adolescence in rats: a pilot study. PeerJ 2021; 9:e11714. [PMID: 34285833 PMCID: PMC8274493 DOI: 10.7717/peerj.11714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Diet-induced metabolic dysfunction precedes multiple disease states including diabetes, heart disease, and vascular dysfunction. The critical role of the vasculature in disease progression is established, yet the details of how gene expression changes in early cardiovascular disease remain an enigma. The objective of the current pilot project was to evaluate whether a quantitative assessment of gene expression within the aorta of six-week old healthy male Sprague-Dawley rats compared to those exhibiting symptoms of metabolic dysfunction could reveal potential mediators of vascular dysfunction. METHODS RNA was extracted from the aorta of eight rats from a larger experiment; four animals fed a high-fat diet (HFD) known to induce symptoms of metabolic dysfunction (hypertension, increased adiposity, fasting hyperglycemia) and four age-matched healthy animals fed a standard chow diet (CHOW). The bioinformatic workflow included Gene Ontology (GO) biological process enrichment and network analyses. RESULTS The resulting network contained genes relevant to physiological processes including fat and protein metabolism, oxygen transport, hormone regulation, vascular regulation, thermoregulation, and circadian rhythm. The majority of differentially regulated genes were downregulated, including several associated with circadian clock function. In contrast, leptin and 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) were notably upregulated. Leptin is involved in several major energy balance signaling pathways and Hmgcs2 is a mitochondrial enzyme that catalyzes the first reaction of ketogenesis. CONCLUSION Together, these data describe changes in gene expression within the aortic wall of HFD rats with early metabolic dysfunction and highlight potential pathways and signaling intermediates that may impact the development of early vascular dysfunction.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Rebecca A. Reiss
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, United States
| | - Monique Beaudet
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, United States
| | - Johnny Sena
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Jay S. Naik
- The Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R. Walker
- The Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Karen L. Sweazea
- College of Health Solutions & School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
6
|
Zhang L, Qiang J, Tao YF, Bao JW, Zhu HJ, He J, Xu P. Cloning of the gene encoding acyl-CoA thioesterase 11 and its functional characterization in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂) under heat stress. J Therm Biol 2020; 93:102681. [PMID: 33077108 DOI: 10.1016/j.jtherbio.2020.102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023]
Abstract
Members of the ACOT (acyl-CoA thioesterase) family hydrolyze fatty acyl-CoA to form free fatty acids (FFAs) and coenzyme A (CoA). These enzymes play important roles in fatty acid metabolism. Here, we report the cloning and functional analysis of acot11β in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂). The open reading frame of acot11β was found to be 594 bp in length, encoding 198 amino acids. We determined the transcript levels of acot11β in ten tissues of hybrid yellow catfish by qRT-PCR and found that it was highly expressed in the liver, so we chose the liver for further analysis. We determined the transcript levels of acot11β in hybrid yellow catfish under heat stress conditions, and analyzed the changes in serum biochemical parameters, liver biochemical parameters, and transcript levels of lipid metabolism-related genes. Healthy yellow catfish were subjected to heat stress at 35 °C for 96 h, and the experimental results were compared with those from fish in a control group (28 °C). The levels of glucose (GLU), total cholesterol (TC), and triglyceride (TG) in serum were significantly increased in the heat-stressed group compared with the control group (P < 0.05). Acute heat stress led to decreased liver glycogen contents, but significantly increased TC and TG contents in the liver (P < 0.05). The transcript levels of acot11β, acc, and fas were significantly reduced, while that of pparα was significantly increased in hybrid yellow catfish exposed to heat stress (P < 0.05). Our results indicate that acot11β plays an important role in regulating lipid metabolism in hybrid yellow catfish, and this metabolic process is greatly affected by temperature. These results may be useful for developing effective strategies to prevent or reduce metabolic disorders of yellow catfish caused by high temperature.
Collapse
Affiliation(s)
- Li Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi-Fan Tao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jing-Wen Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hao-Jun Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jie He
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
7
|
Bernier M, Harney D, Koay YC, Diaz A, Singh A, Wahl D, Pulpitel T, Ali A, Guiterrez V, Mitchell SJ, Kim EY, Mach J, Price NL, Aon MA, LeCouteur DG, Cogger VC, Fernandez-Hernando C, O’Sullivan J, Larance M, Cuervo AM, de Cabo R. Elucidating the mechanisms by which disulfiram protects against obesity and metabolic syndrome. NPJ Aging Mech Dis 2020; 6:8. [PMID: 32714562 PMCID: PMC7374720 DOI: 10.1038/s41514-020-0046-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
There is an unmet need and urgency to find safe and effective anti-obesity interventions. Our recent study in mice fed on obesogenic diet found that treatment with the alcohol aversive drug disulfiram reduced feeding efficiency and led to a decrease in body weight and an increase in energy expenditure. The intervention with disulfiram improved glucose tolerance and insulin sensitivity, and mitigated metabolic dysfunctions in various organs through poorly defined mechanisms. Here, integrated analysis of transcriptomic and proteomic data from mouse and rat livers unveiled comparable signatures in response to disulfiram, revealing pathways associated with lipid and energy metabolism, redox, and detoxification. In cell culture, disulfiram was found to be a potent activator of autophagy, the malfunctioning of which has negative consequences on metabolic regulation. Thus, repurposing disulfiram may represent a potent strategy to combat obesity.
Collapse
Affiliation(s)
- Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Dylan Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW 2042 Australia
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461 USA
| | - Abhishek Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Devin Wahl
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Ageing and Alzheimer’s Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Ageing and Alzheimer’s Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139 Australia
| | - Ahmed Ali
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Vince Guiterrez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Sarah J. Mitchell
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Eun-Young Kim
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
- Functional Genomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - John Mach
- Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, Sydney, NSW 2064 Australia
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Miguel A. Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - David G. LeCouteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Ageing and Alzheimer’s Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139 Australia
| | - Victoria C. Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Ageing and Alzheimer’s Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139 Australia
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - John O’Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW 2042 Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461 USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| |
Collapse
|
8
|
Ginsberg HN. Selective Trafficking of Fatty Acids in the Liver: Add Them2 to the List of Influencers. Hepatology 2019; 70:462-464. [PMID: 31155742 DOI: 10.1002/hep.30800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/29/2019] [Indexed: 12/07/2022]
Affiliation(s)
- Henry N Ginsberg
- Vagelos College of Physicians and Surgeons of Columbia University, New York, NY
| |
Collapse
|
9
|
Diessler S, Jan M, Emmenegger Y, Guex N, Middleton B, Skene DJ, Ibberson M, Burdet F, Götz L, Pagni M, Sankar M, Liechti R, Hor CN, Xenarios I, Franken P. A systems genetics resource and analysis of sleep regulation in the mouse. PLoS Biol 2018; 16:e2005750. [PMID: 30091978 PMCID: PMC6085075 DOI: 10.1371/journal.pbio.2005750] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022] Open
Abstract
Sleep is essential for optimal brain functioning and health, but the biological substrates through which sleep delivers these beneficial effects remain largely unknown. We used a systems genetics approach in the BXD genetic reference population (GRP) of mice and assembled a comprehensive experimental knowledge base comprising a deep "sleep-wake" phenome, central and peripheral transcriptomes, and plasma metabolome data, collected under undisturbed baseline conditions and after sleep deprivation (SD). We present analytical tools to interactively interrogate the database, visualize the molecular networks altered by sleep loss, and prioritize candidate genes. We found that a one-time, short disruption of sleep already extensively reshaped the systems genetics landscape by altering 60%-78% of the transcriptomes and the metabolome, with numerous genetic loci affecting the magnitude and direction of change. Systems genetics integrative analyses drawing on all levels of organization imply α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and fatty acid turnover as substrates of the negative effects of insufficient sleep. Our analyses demonstrate that genetic heterogeneity and the effects of insufficient sleep itself on the transcriptome and metabolome are far more widespread than previously reported.
Collapse
Affiliation(s)
- Shanaz Diessler
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Maxime Jan
- Center for Integrative Genomics, University of Lausanne, Switzerland
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Nicolas Guex
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benita Middleton
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Debra J. Skene
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Mark Ibberson
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Frederic Burdet
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lou Götz
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martial Sankar
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Robin Liechti
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Charlotte N. Hor
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne, Switzerland
- Vital-IT Systems Biology Division, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Switzerland
| |
Collapse
|
10
|
Steensels S, Ersoy BA. Fatty acid activation in thermogenic adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:79-90. [PMID: 29793055 DOI: 10.1016/j.bbalip.2018.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/10/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Channeling carbohydrates and fatty acids to thermogenic tissues, including brown and beige adipocytes, have garnered interest as an approach for the management of obesity-related metabolic disorders. Mitochondrial fatty acid oxidation (β-oxidation) is crucial for the maintenance of thermogenesis. Upon cellular fatty acid uptake or following lipolysis from triglycerides (TG), fatty acids are esterified to coenzyme A (CoA) to form active acyl-CoA molecules. This enzymatic reaction is essential for their utilization in β-oxidation and thermogenesis. The activation and deactivation of fatty acids are regulated by two sets of enzymes called acyl-CoA synthetases (ACS) and acyl-CoA thioesterases (ACOT), respectively. The expression levels of ACS and ACOT family members in thermogenic tissues will determine the substrate availability for β-oxidation, and consequently the thermogenic capacity. Although the role of the majority of ACS and ACOT family members in thermogenesis remains unclear, recent proceedings link the enzymatic activities of ACS and ACOT family members to metabolic disorders and thermogenesis. Elucidating the contributions of specific ACS and ACOT family members to trafficking of fatty acids towards thermogenesis may reveal novel targets for modulating thermogenic capacity and treating metabolic disorders.
Collapse
Affiliation(s)
- Sandra Steensels
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Baran A Ersoy
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
11
|
Goh LL, Lee Y, Tan ES, Lim JSC, Lim CW, Dalan R. Patient with multiple acyl-CoA dehydrogenase deficiency disease and ETFDH mutations benefits from riboflavin therapy: a case report. BMC Med Genomics 2018; 11:37. [PMID: 29615056 PMCID: PMC5883299 DOI: 10.1186/s12920-018-0356-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/26/2018] [Indexed: 12/03/2022] Open
Abstract
Background Lipid storage myopathy (LSM) is a diverse group of lipid metabolic disorders with great variations in the clinical phenotype and age of onset. Classical multiple acyl-CoA dehydrogenase deficiency (MADD) is known to occur secondary to mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene. Whole exome sequencing (WES) with clinical correlations can be useful in identifying genomic alterations for targeted therapy. Case presentation We report a patient presented with severe muscle weakness and exercise intolerance, suggestive of LSM. Diagnostic testing demonstrated lipid accumulation in muscle fibres and elevated plasma acyl carnitine levels. Exome sequencing of the proband and two of his unaffected siblings revealed compound heterozygous mutations, c.250G > A (p.Ala84Thr) and c.770A > G (p.Tyr257Cys) in the ETFDH gene as the probable causative mutations. In addition, a previously unreported variant c.1042C > T (p.Arg348Trp) in ACOT11 gene was found. This missense variant was predicted to be deleterious but its association with lipid storage in muscle is unclear. The diagnosis of MADD was established and the patient was treated with riboflavin which resulted in rapid clinical and biochemical improvement. Conclusions Our findings support the role of WES as an effective tool in the diagnosis of highly heterogeneous disease and this has important implications in the therapeutic strategy of LSM treatment. Electronic supplementary material The online version of this article (10.1186/s12920-018-0356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liuh Ling Goh
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yingshan Lee
- Department of Endocrinology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ee Shien Tan
- Department of Paediatrics, Genetics Services, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - James Soon Chuan Lim
- Biochemical Genetics and National Expanded Newborn Screening, Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Chia Wei Lim
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| |
Collapse
|
12
|
Abstract
Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride-rich very low-density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1-22, 2018.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
13
|
Hung JY, Chiang SR, Liu KT, Tsai MJ, Huang MS, Shieh JM, Yen MC, Hsu YL. Overexpression and proliferation dependence of acyl-CoA thioesterase 11 and 13 in lung adenocarcinoma. Oncol Lett 2017; 14:3647-3656. [PMID: 28927126 DOI: 10.3892/ol.2017.6594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
The metabolites of fatty acyl-Coenzyme A (CoA) and metabolic enzymes contribute to lipid biosynthesis, signal transduction, and gene transcription. Previous studies have indicated that elevated concentrations of specific free fatty acids in the plasma and overexpression of specific fatty acyl-CoA metabolic enzymes are observed in patients with lung adenocarcinoma. However, there are >30 enzymes in this metabolic network and have been fully investigated. In the present study, the expression levels of enzymes in the acyl-CoA synthetase (ACS) and acyl-CoA thioesterase (ACOT) families were analyzed from six microarray expression datasets that were collected from Gene Expression Omnibus. Compared with adjacent non-tumor lung tissue, lung adenocarcinoma tissue exhibited significantly higher ACOT11 and ACOT13 expression. Kaplan-Meier plotter database analysis demonstrated that high levels of ACOT11 and ACOT13 were associated with a worse overall survival rate. The proliferation of the lung adenocarcinoma cell lines CL1-0 and CL1-5 was inhibited when ACOT11 and ACOT13 were downregulated by short hairpin RNA. Although ACOT11 and ACOT13 knockdown did not significantly affect the total amount of intracellular and medium-free fatty acids, ACOT11 and ACOT13 knockdown-mediated growth inhibition was rescued by the addition of fatty acids. In conclusion, ACOT11 and ACOT13 were upregulated in clinical specimens of lung adenocarcinoma, which may contribute to increased cell proliferation through the increased availability of fatty acids. The metabolites of the two enzymes may be critical for development of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Shyh-Ren Chiang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Kuan-Ting Liu
- School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Shyan Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Jiunn-Min Shieh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
14
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of C21orf59 and ATG2A as novel determinants of renal function-related traits in Japanese by exome-wide association studies. Oncotarget 2017; 8:45259-45273. [PMID: 28410202 PMCID: PMC5542184 DOI: 10.18632/oncotarget.16696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
We have performed exome-wide association studies to identify genetic variants that influence renal function-related traits or confer susceptibility to chronic kidney disease or hyperuricemia in Japanese. Exome-wide association studies for estimated glomerular filtration rate and the serum concentration of creatinine were performed with 12,565 individuals, that for the serum concentration of uric acid with 9934 individuals, and those for chronic kidney disease or hyperuricemia with 5161 individuals (3270 cases, 1891 controls) or 11,686 individuals (2045 cases, 9641 controls), respectively. The relation of genotypes of single nucleotide polymorphisms to estimated glomerular filtration rate or the serum concentrations of creatinine or uric acid was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to chronic kidney disease or hyperuricemia was examined with Fisher's exact test. The exome-wide association studies revealed that 25, seven, and six single nucleotide polymorphisms were significantly (P <1.21 × 10-6) associated with estimated glomerular filtration rate or the serum concentrations of creatinine or uric acid, respectively, and that 49 and 35 polymorphisms were significantly associated with chronic kidney disease or hyperuricemia, respectively. Subsequent multivariable logistic regression analysis with adjustment for covariates revealed that four and three single nucleotide polymorphisms were related (P < 0.05) to chronic kidney disease or hyperuricemia, respectively. Among polymorphisms identified in the present study, rs76974938 [C/T (D67N)] of C21orf59 and rs188780113 [G/A (R478C)] of ATG2A may be novel determinants of estimated glomerular filtration rate and chronic kidney disease or of the serum concentration of uric acid, respectively.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
15
|
Tillander V, Alexson SEH, Cohen DE. Deactivating Fatty Acids: Acyl-CoA Thioesterase-Mediated Control of Lipid Metabolism. Trends Endocrinol Metab 2017; 28:473-484. [PMID: 28385385 PMCID: PMC5474144 DOI: 10.1016/j.tem.2017.03.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
The cellular uptake of free fatty acids (FFA) is followed by esterification to coenzyme A (CoA), generating fatty acyl-CoAs that are substrates for oxidation or incorporation into complex lipids. Acyl-CoA thioesterases (ACOTs) constitute a family of enzymes that hydrolyze fatty acyl-CoAs to form FFA and CoA. Although biochemically and biophysically well characterized, the metabolic functions of these enzymes remain incompletely understood. Existing evidence suggests regulatory roles in controlling rates of peroxisomal and mitochondrial fatty acyl-CoA oxidation, as well as in the subcellular trafficking of fatty acids. Emerging data implicate ACOTs in the pathogenesis of metabolic diseases, suggesting that better understanding their pathobiology could reveal unique targets in the management of obesity, diabetes, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Veronika Tillander
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - Stefan E H Alexson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
16
|
Abstract
Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease.
Collapse
|
17
|
Krause K, Weiner J, Hönes S, Klöting N, Rijntjes E, Heiker JT, Gebhardt C, Köhrle J, Führer D, Steinhoff K, Hesse S, Moeller LC, Tönjes A. The Effects of Thyroid Hormones on Gene Expression of Acyl-Coenzyme A Thioesterases in Adipose Tissue and Liver of Mice. Eur Thyroid J 2015; 4:59-66. [PMID: 26601074 PMCID: PMC4640296 DOI: 10.1159/000437304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/29/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Thyroid hormones (TH) exert pleiotropic effects on glucose and lipid homeostasis. However, it is as yet unclear how TH regulate lipid storage and utilization in order to adapt to metabolic needs. Acyl-CoA thioesterases (ACOTs) have been proposed to play a regulatory role in the metabolism of fatty acids. OBJECTIVES We investigated the interaction between thyroid dysfunction and Acot expression in adipose tissues and livers of thyrotoxic and hypothyroid mice. METHODS Ten-week-old female C57BL/6NTac mice (n = 10/group) were made hyperthyroid by the application of L-thyroxine (2 µg/ml in drinking water) for 4 weeks. Hypothyroidism was induced in 10-week-old mice by feeding an iodine-free chow supplemented with 0.15% PTU for 4 weeks. We measured mRNA expression levels of Acot8, 11 and 13 in the liver and epididymal and inguinal white and brown adipose tissues (BAT). Furthermore, we investigated hepatic Acot gene expression in TRα- and TRβ-deficient mice. RESULTS We showed that the expression of Acot8, 11 and 13 is predominantly stimulated by a thyrotoxic state in the epididymal white adipose tissue. In contrast, hypothyroidism predominantly induces the expression of Acot8 in BAT in comparison with BAT of thyrotoxic and euthyroid mice (p < 0.01). However, no significant changes in Acot expression were observed in inguinal white adipose tissue. In liver, Acot gene expression is collectively elicited by a thyrotoxic state. CONCLUSIONS These data suggest that ACOTs are targets of TH and are likely to influence 3,5,3'-triiodo-L-thyronine-orchestrated mechanisms of lipid uptake, storage and utilization to adapt the regulation of metabolic demands.
Collapse
Affiliation(s)
- Kerstin Krause
- Division of Endocrinology and Nephrology, Department of Medicine, Leipzig, Germany
- *Kerstin Krause, Division of Endocrinology and Nephrology, Department of Medicine, University of Leipzig, Liebigstrasse 21, DE-04103 Leipzig (Germany), E-Mail
| | - Juliane Weiner
- Division of Endocrinology and Nephrology, Department of Medicine, Leipzig, Germany
| | - Sebastian Hönes
- Department of Endocrinology and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Nora Klöting
- Division of Endocrinology and Nephrology, Department of Medicine, Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany
| | - Eddy Rijntjes
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John T. Heiker
- Division of Endocrinology and Nephrology, Department of Medicine, Leipzig, Germany
| | - Claudia Gebhardt
- Division of Endocrinology and Nephrology, Department of Medicine, Leipzig, Germany
| | - Josef Köhrle
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dagmar Führer
- Department of Endocrinology and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Karen Steinhoff
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany
| | - Lars C. Moeller
- Department of Endocrinology and Metabolism, University of Duisburg-Essen, Essen, Germany
| | - Anke Tönjes
- Division of Endocrinology and Nephrology, Department of Medicine, Leipzig, Germany
| |
Collapse
|
18
|
Cooper DE, Young PA, Klett EL, Coleman RA. Physiological Consequences of Compartmentalized Acyl-CoA Metabolism. J Biol Chem 2015; 290:20023-31. [PMID: 26124277 DOI: 10.1074/jbc.r115.663260] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Meeting the complex physiological demands of mammalian life requires strict control of the metabolism of long-chain fatty acyl-CoAs because of the multiplicity of their cellular functions. Acyl-CoAs are substrates for energy production; stored within lipid droplets as triacylglycerol, cholesterol esters, and retinol esters; esterified to form membrane phospholipids; or used to activate transcriptional and signaling pathways. Indirect evidence suggests that acyl-CoAs do not wander freely within cells, but instead, are channeled into specific pathways. In this review, we will discuss the evidence for acyl-CoA compartmentalization, highlight the key modes of acyl-CoA regulation, and diagram potential mechanisms for controlling acyl-CoA partitioning.
Collapse
Affiliation(s)
| | | | - Eric L Klett
- From the Departments of Nutrition and Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
19
|
Fatty acid signaling: the new function of intracellular lipases. Int J Mol Sci 2015; 16:3831-55. [PMID: 25674855 PMCID: PMC4346929 DOI: 10.3390/ijms16023831] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/19/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.
Collapse
|
20
|
Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-Coxson D. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol 2015; 16:8. [PMID: 25651499 PMCID: PMC4301800 DOI: 10.1186/s13059-014-0569-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0569-x) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Latham JA, Chen D, Allen KN, Dunaway-Mariano D. Divergence of substrate specificity and function in the Escherichia coli hotdog-fold thioesterase paralogs YdiI and YbdB. Biochemistry 2014; 53:4775-87. [PMID: 24992697 PMCID: PMC4116150 DOI: 10.1021/bi500333m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The work described in this paper, and its companion paper (Wu, R., Latham, J. A., Chen, D., Farelli, J., Zhao, H., Matthews, K. Allen, K. N., and Dunaway-Mariano, D. (2014) Structure and Catalysis in the Escherichia coli Hotdog-fold Thioesterase Paralogs YdiI and YbdB. Biochemistry, DOI: 10.1021/bi500334v), focuses on the evolution of a pair of paralogous hotdog-fold superfamily thioesterases of E. coli, YbdB and YdiI, which share a high level of sequence identity but perform different biological functions (viz., proofreader of 2,3-dihydroxybenzoyl-holoEntB in the enterobactin biosynthetic pathway and catalyst of the 1,4-dihydoxynapthoyl-CoA hydrolysis step in the menaquinone biosynthetic pathway, respectively). In vitro substrate activity screening of a library of thioester metabolites showed that YbdB displays high activity with benzoyl-holoEntB and benzoyl-CoA substrates, marginal activity with acyl-CoA thioesters, and no activity with 1,4-dihydoxynapthoyl-CoA. YdiI, on the other hand, showed a high level of activity with its physiological substrate, significant activity toward a wide range of acyl-CoA thioesters, and minimal activity toward benzoyl-holoEntB. These results were interpreted as evidence for substrate promiscuity that facilitates YbdB and YdiI evolvability, and divergence in substrate preference, which correlates with their assumed biological function. YdiI support of the menaquinone biosynthetic pathway was confirmed by demonstrating reduced anaerobic growth of the E. coli ydiI-knockout mutant (vs wild-type E. coli) on glucose in the presence of the electron acceptor fumarate. Bioinformatic analysis revealed that a small biological range exists for YbdB orthologs (i.e., limited to Enterobacteriales) relative to that of YdiI orthologs. The divergence in YbdB and YdiI substrate specificity detailed in this paper set the stage for their structural analyses reported in the companion paper.
Collapse
Affiliation(s)
- John A Latham
- Department of Chemistry & Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | | | | | | |
Collapse
|
22
|
Tillander V, Arvidsson Nordström E, Reilly J, Strozyk M, Van Veldhoven PP, Hunt MC, Alexson SEH. Acyl-CoA thioesterase 9 (ACOT9) in mouse may provide a novel link between fatty acid and amino acid metabolism in mitochondria. Cell Mol Life Sci 2014; 71:933-48. [PMID: 23864032 PMCID: PMC11114068 DOI: 10.1007/s00018-013-1422-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/13/2013] [Accepted: 07/04/2013] [Indexed: 02/03/2023]
Abstract
Acyl-CoA thioesterase (ACOT) activities are found in prokaryotes and in several compartments of eukaryotes where they hydrolyze a wide range of acyl-CoA substrates and thereby regulate intracellular acyl-CoA/CoA/fatty acid levels. ACOT9 is a mitochondrial ACOT with homologous genes found from bacteria to humans and in this study we have carried out an in-depth kinetic characterization of ACOT9 to determine its possible physiological function. ACOT9 showed unusual kinetic properties with activity peaks for short-, medium-, and saturated long-chain acyl-CoAs with highest V max with propionyl-CoA and (iso) butyryl-CoA while K cat/K m was highest with saturated long-chain acyl-CoAs. Further characterization of the short-chain acyl-CoA activity revealed that ACOT9 also hydrolyzes a number of short-chain acyl-CoAs and short-chain methyl-branched CoA esters that suggest a role for ACOT9 in regulation also of amino acid metabolism. In spite of markedly different K ms, ACOT9 can hydrolyze both short- and long-chain acyl-CoAs simultaneously, indicating that ACOT9 may provide a novel regulatory link between fatty acid and amino acid metabolism in mitochondria. Based on similar acyl-CoA chain-length specificities of recombinant ACOT9 and ACOT activity in mouse brown adipose tissue and kidney mitochondria, we conclude that ACOT9 is the major mitochondrial ACOT hydrolyzing saturated C2-C20-CoA in these tissues. Finally, ACOT9 activity is strongly regulated by NADH and CoA, suggesting that mitochondrial metabolic state regulates the function of ACOT9.
Collapse
Affiliation(s)
- Veronika Tillander
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, C1-74, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Elisabet Arvidsson Nordström
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, C1-74, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Jenny Reilly
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, C1-74, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Malgorzata Strozyk
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, C1-74, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Paul P. Van Veldhoven
- Department of Cellular and Molecular Medicine, LIPIT, Campus Gasthuisberg, Katholieke Universiteit Leuven, Herestraat, Leuven, Belgium
| | - Mary C. Hunt
- Dublin Institute of Technology, School of Biological Sciences, Kevin Street, Dublin 8, Ireland
| | - Stefan E. H. Alexson
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, C1-74, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| |
Collapse
|
23
|
Kang HW, Ozdemir C, Kawano Y, LeClair KB, Vernochet C, Kahn CR, Hagen SJ, Cohen DE. Thioesterase superfamily member 2/Acyl-CoA thioesterase 13 (Them2/Acot13) regulates adaptive thermogenesis in mice. J Biol Chem 2013; 288:33376-86. [PMID: 24072708 DOI: 10.1074/jbc.m113.481408] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the acyl-CoA thioesterase (Acot) gene family hydrolyze fatty acyl-CoAs, but their biological functions remain incompletely understood. Thioesterase superfamily member 2 (Them2; synonym Acot13) is enriched in oxidative tissues, associated with mitochondria, and relatively specific for long chain fatty acyl-CoA substrates. Using Them2(-/-) mice, we have demonstrated key roles for Them2 in regulating hepatic glucose and lipid metabolism. However, reduced body weights and decreased adiposity in Them2(-/-) mice observed despite increased food consumption were not well explained. To explore a role in thermogenesis, mice were exposed to ambient temperatures ranging from thermoneutrality (30 °C) to cold (4 °C). In response to short term (24-h) exposures to decreasing ambient temperatures, Them2(-/-) mice exhibited increased adaptive responses in physical activity, food consumption, and energy expenditure when compared with Them2(+/+) mice. By contrast, genotype-dependent differences were not observed in mice that were equilibrated (96 h) at each ambient temperature. In brown adipose tissue, the absence of Them2 was associated with reduced lipid droplets, alterations in the ultrastructure of mitochondria, and increased expression of thermogenic genes. Indicative of a direct regulatory role for Them2 in heat production, cultured primary brown adipocytes from Them2(-/-) mice exhibited increased norepinephrine-mediated triglyceride hydrolysis and increased rates of O2 consumption, together with elevated expression of thermogenic genes. At least in part by regulating intracellular fatty acid channeling, Them2 functions in brown adipose tissue to suppress adaptive increases in energy expenditure.
Collapse
Affiliation(s)
- Hye Won Kang
- From the Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | |
Collapse
|