1
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Landrier JF, Borel P. Identification of Genetic Polymorphisms Associated with Interindividual Variability of Vitamin A Concentration in Adipose Tissue of Healthy Male Adults. J Nutr 2024; 154:3693-3703. [PMID: 39442757 DOI: 10.1016/j.tjnut.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Adipose tissue vitamin A (VA), that is, mainly retinol (RET) and its esters, comes from preformed VA and proVA carotenoids present in our food. Adipose tissue VA acts as hormonal cue maintaining essential aspects of adipocyte biology, which includes fat mobilization and catabolism, energy balance, and glucose homeostasis, and it is thus of particular interest to study its determinants, including genetic ones. OBJECTIVES This study aimed to identify genetic variations associated with adipose tissue VA concentration. METHODS Forty-two healthy male adults received, in a randomized crossover design, 3 test meals. Periumbilical adipose tissue samples were collected on 6 occasions, that is, at fast and 8 h after consumption of each meal. RET concentration was measured in both plasma and the adipose tissue following saponification. Participants were genotyped using whole-genome microarrays. A total of 1305 single nucleotide polymorphism (SNPs) in or near 27 candidate genes were included for univariate analysis. Partial least squares (PLS) regression was carried out to find the best combination of SNPs associated with the interindividual variability in adipose tissue RET concentration. RESULTS Adipose tissue RET concentration was not associated with plasma RET concentrations (r = -0.184, P = 0.28). Interindividual variability of adipose tissue RET concentration was high (coefficient of variation = 62%). Twenty-nine SNPs were significantly (P < 0.05) associated with adipose tissue RET concentration and a PLS regression model identified 16 SNPs as explanatory variables of this concentration. The SNPs were in or near peroxisome proliferator activated receptor gamma, retinoid X receptor alpha, signaling receptor and transporter of retinol, cluster of differentiation 36, free fatty acid receptor 4, aldehyde dehydrogenase 1 family member A1, monoglyceride lipase, diacylglycerol O-acyltransferase 2, and polycystic kidney disease 1-like 2. CONCLUSIONS A combination of 16 SNPs has been associated with the interindividual of adipose tissue VA concentration in humans. This trial was registered at clinicaltrials.gov as NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Department of Science and Technology-Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Direction générale de la recherche et de l'innovation, Paris, France
| | | | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | | | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France.
| |
Collapse
|
2
|
Abstract
Retinoic acid (RA) is a metabolite of vitamin A and is essential for development and growth as well as cellular metabolism. Through genomic and nongenomic actions, RA regulates a variety of physiological functions. Dysregulation of RA signaling is associated with many diseases. Targeting RA signaling has been proven valuable to human health. All-trans retinoic acid (AtRA) and anthracycline-based chemotherapy are the standard treatment of acute promyelocytic leukemia (APL). Both human and animal studies have shown a significant relationship between RA signaling and the development and progression of nonalcoholic fatty liver disease (NAFLD). In this review article, we will first summarize vitamin A metabolism and then focus on the role of RA signaling in NAFLD. AtRA inhibits the development and progression of NAFLD via regulating lipid metabolism, inflammation, thermogenesis, etc.
Collapse
Affiliation(s)
- Fathima N Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| |
Collapse
|
3
|
Wang B, Du M. Increasing adipocyte number and reducing adipocyte size: the role of retinoids in adipose tissue development and metabolism. Crit Rev Food Sci Nutr 2023; 64:10608-10625. [PMID: 37427553 PMCID: PMC10776826 DOI: 10.1080/10408398.2023.2227258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The rising prevalence of obesity is a grave public health threat. In response to excessive energy intake, adipocyte hypertrophy impairs cellular function and leads to metabolic dysfunctions while de novo adipogenesis leads to healthy adipose tissue expansion. Through burning fatty acids and glucose, the thermogenic activity of brown/beige adipocytes can effectively reduce the size of adipocytes. Recent studies show that retinoids, especially retinoic acid (RA), promote adipose vascular development which in turn increases the number of adipose progenitors surrounding the vascular vessels. RA also promotes preadipocyte commitment. In addition, RA promotes white adipocyte browning and stimulates the thermogenic activity of brown/beige adipocytes. Thus, vitamin A is a promising anti-obesity micronutrient.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Yoo HS, Cockrum MA, Napoli JL. Cyp26a1 supports postnatal retinoic acid homeostasis and glucoregulatory control. J Biol Chem 2023; 299:104669. [PMID: 37011860 PMCID: PMC10176252 DOI: 10.1016/j.jbc.2023.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Considerable evidence confirms the importance of Cyp26a1 to all-trans-retinoic acid (RA) homeostasis during embryogenesis. In contrast, despite its presence in postnatal liver as a potential major RA catabolizing enzyme and its acute sensitivity to induction by RA, some data suggested that Cyp26a1 contributes only marginally to endogenous RA homeostasis postnatally. We report reevaluation of a conditional Cyp26a1 knockdown in the postnatal mouse. The current results show that Cyp26a1 mRNA in WT mouse liver increases 16-fold upon refeeding after a fast, accompanied by an increased rate of RA elimination and a 41% decrease in the RA concentration. In contrast, Cyp26a1 mRNA in the refed homozygotic knockdown reached only 2% of its extent in WT during refeeding, accompanied by a slower rate of RA catabolism and no decrease in liver RA, relative to fasting. Refed homozygous knockdown mice also had decreased Akt1 and 2 phosphorylation and pyruvate dehydrogenase kinase 4 (Pdk4) mRNA and increased glucokinase (Gck) mRNA, glycogen phosphorylase (Pygl) phosphorylation, and serum glucose, relative to WT. Fasted homozygous knockdown mice had increased glucagon/insulin relative to WT. These data indicate that Cyp26a1 participates prominently in moderating the postnatal liver concentration of endogenous RA and contributes essentially to glucoregulatory control.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, UC-Berkeley, Berkeley, California, USA
| | - Michael A Cockrum
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, UC-Berkeley, Berkeley, California, USA
| | - Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, UC-Berkeley, Berkeley, California, USA.
| |
Collapse
|
5
|
Yu H, Raza SHA, Pan Y, Cheng G, Mei C, Zan L. Integrative Analysis of Blood Transcriptomics and Metabolomics Reveals Molecular Regulation of Backfat Thickness in Qinchuan Cattle. Animals (Basel) 2023; 13:ani13061060. [PMID: 36978600 PMCID: PMC10044415 DOI: 10.3390/ani13061060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
A crucial goal of reducing backfat thickness (BFT) is to indirectly improve feed conversion efficiency. This phenotype has been reported in certain papers; however, the molecular mechanism has yet to be fully revealed. Two extreme BFT groups, consisting of four Qinchuan cattle, were chosen for this study. We performed metabolite and transcriptome analyses of blood from cattle with a high BFT (H-BFT with average = 1.19) and from those with a low BFT (L-BFT with average = 0.39). In total, 1106 differentially expressed genes (DEGs) and 86 differentially expressed metabolites (DEMs) were identified in the extreme trait. In addition, serum ceramide was strongly correlated with BFT and could be used as a potential biomarker. Moreover, the most notable finding was that the functional genes (SMPD3 and CERS1) and metabolite (sphingosine 1-phosphate (S1P)) were filtered out and significantly enriched in the processes related to the sphingolipid metabolism. This investigation contributed to a better understanding of the subcutaneous fat depots in cattle. In general, our results indicated that the sphingolipid metabolism, involving major metabolites (serum ceramide and S1P) and key genes (SMPD3 and CERS1), could regulate BFT through blood circulation.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Yueting Pan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
- National Beef Cattle Improvement Center, Xianyang 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
- National Beef Cattle Improvement Center, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
6
|
Vitamin A: A Key Inhibitor of Adipocyte Differentiation. PPAR Res 2023; 2023:7405954. [PMID: 36776154 PMCID: PMC9908342 DOI: 10.1155/2023/7405954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Inhibiting adipocyte differentiation, the conversion of preadipocytes to mature functional adipocytes, might represent a new approach to treating obesity and related metabolic disorders. Peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding protein α are two master coregulators controlling adipogenesis both in culture and in vivo. Many recent studies have confirmed the relationship between retinoic acid (RA) and the conversion of embryonic stem cells into adipocytes; however, these studies have shown that RA potently blocks the differentiation of preadipocytes into mature adipocytes. Nevertheless, the functional role of RA in early tissue development and stem cell differentiation, including in adipose tissue, remains unclear. This study highlights transcription factors that block adipocyte differentiation and maintain preadipocyte status, focusing on those controlled by RA. However, some of these novel adipogenesis inhibitors have not been validated in vivo, and their mechanisms of action require further clarification.
Collapse
|
7
|
Huang D, Qian X, Chen J, Peng Y, Zhu Y. Factors and Molecular Mechanisms of Vitamin A and Childhood Obesity Relationship: A Review. J Nutr Sci Vitaminol (Tokyo) 2023; 69:157-163. [PMID: 37394420 DOI: 10.3177/jnsv.69.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Childhood obesity has become a public health concern. As the importance of vitamin A (VA) in the body has become increasingly acknowledged, there is limited clinical trial evidence to substantiate the association between VA and childhood obesity. Vitamin A deficiency (VAD) increases the risk of childhood obesity, a finding consistently reported in pregnant women. VA could regulate the adipogenic process, inflammation, oxidative stress and metabolism-related gene expression in mature adipocytes. VAD disrupts the balance of obesity-related metabolism, thus affecting lipid metabolism and insulin regulation. Conversely, VA supplementation has a major impact on efficacy in obesity, and obese individuals typically have a lower VA status than normal-weight individuals. Several studies have attempted to identify the genetic and molecular mechanisms underlying the association between VA and obesity. In this review, we summarize and discuss recent new developments focusing on retinol, retinoic acid, and RBP4 and elucidate and provide an overview of the complex interrelationships between these critical components of VA and childhood obesity. However, the causal relationship between VA status and childhood obesity remains unclear. It is also unknown whether VA supplementation improves the overall obesogenic metabolic profile.
Collapse
Affiliation(s)
- Dan Huang
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| | - Xia Qian
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| | - Jinqing Chen
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| | - Yating Peng
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| | - Yunxia Zhu
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| |
Collapse
|
8
|
Yoo HS, Rodriguez A, You D, Lee RA, Cockrum MA, Grimes JA, Wang JC, Kang S, Napoli JL. The glucocorticoid receptor represses, whereas C/EBPβ can enhance or repress CYP26A1 transcription. iScience 2022; 25:104564. [PMID: 35789854 PMCID: PMC9249609 DOI: 10.1016/j.isci.2022.104564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid (RA) counters insulin's metabolic actions. Insulin reduces liver RA biosynthesis by exporting FoxO1 from nuclei. RA induces its catabolism, catalyzed by CYP26A1. A CYP26A1 contribution to RA homeostasis with changes in energy status had not been investigated. We found that glucagon, cortisol, and dexamethasone decrease RA-induced CYP26A1 transcription, thereby reducing RA oxidation during fasting. Interaction between the glucocorticoid receptor and the RAR/RXR coactivation complex suppresses CYP26A1 expression, increasing RA's elimination half-life. Interaction between CCAAT-enhancer-binding protein beta (C/EBPβ) and the major allele of SNP rs2068888 enhances CYP26A1 expression; the minor allele restricts the C/EBPβ effect on CYP26A1. The major and minor alleles associate with impaired human health or reduction in blood triglycerides, respectively. Thus, regulating CYP26A1 transcription contributes to adapting RA to coordinate energy availability with metabolism. These results enhance insight into CYP26A1 effects on RA during changes in energy status and glucocorticoid receptor modification of RAR-regulated gene expression.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Adrienne Rodriguez
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Dongjoo You
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Rebecca A. Lee
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Michael A. Cockrum
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Jack A. Grimes
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Sona Kang
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, The University of California, Berkeley Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
10
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
11
|
Pope BD, Warren CR, Dahl MO, Pizza CV, Henze DE, Sinatra NR, Gonzalez GM, Chang H, Liu Q, Glieberman AL, Ferrier JP, Cowan CA, Parker KK. Fattening chips: hypertrophy, feeding, and fasting of human white adipocytes in vitro. LAB ON A CHIP 2020; 20:4152-4165. [PMID: 33034335 PMCID: PMC7818847 DOI: 10.1039/d0lc00508h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Adipose is a distributed organ that performs vital endocrine and energy homeostatic functions. Hypertrophy of white adipocytes is a primary mode of both adaptive and maladaptive weight gain in animals and predicts metabolic syndrome independent of obesity. Due to the failure of conventional culture to recapitulate adipocyte hypertrophy, technology for production of adult-size adipocytes would enable applications such as in vitro testing of weight loss therapeutics. To model adaptive adipocyte hypertrophy in vitro, we designed and built fat-on-a-chip using fiber networks inspired by extracellular matrix in adipose tissue. Fiber networks extended the lifespan of differentiated adipocytes, enabling growth to adult sizes. By micropatterning preadipocytes in a native cytoarchitecture and by adjusting cell-to-cell spacing, rates of hypertrophy were controlled independent of culture time or differentiation efficiency. In vitro hypertrophy followed a nonlinear, nonexponential growth model similar to human development and elicited transcriptomic changes that increased overall similarity with primary tissue. Cells on the chip responded to simulated meals and starvation, which potentiated some adipocyte endocrine and metabolic functions. To test the utility of the platform for therapeutic development, transcriptional network analysis was performed, and retinoic acid receptors were identified as candidate drug targets. Regulation by retinoid signaling was suggested further by pharmacological modulation, where activation accelerated and inhibition slowed hypertrophy. Altogether, this work presents technology for mature adipocyte engineering, addresses the regulation of cell growth, and informs broader applications for synthetic adipose in pharmaceutical development, regenerative medicine, and cellular agriculture.
Collapse
Affiliation(s)
- Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA. and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Curtis R Warren
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Madeleine O Dahl
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Christina V Pizza
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Douglas E Henze
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Nina R Sinatra
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Grant M Gonzalez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Huibin Chang
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Qihan Liu
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - John P Ferrier
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Chad A Cowan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA. and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Lee SA, Yang KJZ, Brun PJ, Silvaroli JA, Yuen JJ, Shmarakov I, Jiang H, Feranil JB, Li X, Lackey AI, Krężel W, Leibel RL, Libien J, Storch J, Golczak M, Blaner WS. Retinol-binding protein 2 (RBP2) binds monoacylglycerols and modulates gut endocrine signaling and body weight. SCIENCE ADVANCES 2020; 6:eaay8937. [PMID: 32195347 PMCID: PMC7065888 DOI: 10.1126/sciadv.aay8937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 05/09/2023]
Abstract
Expressed in the small intestine, retinol-binding protein 2 (RBP2) facilitates dietary retinoid absorption. Rbp2-deficient (Rbp2-/- ) mice fed a chow diet exhibit by 6-7 months-of-age higher body weights, impaired glucose metabolism, and greater hepatic triglyceride levels compared to controls. These phenotypes are also observed when young Rbp2-/- mice are fed a high fat diet. Retinoids do not account for the phenotypes. Rather, RBP2 is a previously unidentified monoacylglycerol (MAG)-binding protein, interacting with the endocannabinoid 2-arachidonoylglycerol (2-AG) and other MAGs with affinities comparable to retinol. X-ray crystallographic studies show that MAGs bind in the retinol binding pocket. When challenged with an oil gavage, Rbp2-/- mice show elevated mucosal levels of 2-MAGs. This is accompanied by significantly elevated blood levels of the gut hormone GIP (glucose-dependent insulinotropic polypeptide). Thus, RBP2, in addition to facilitating dietary retinoid absorption, modulates MAG metabolism and likely signaling, playing a heretofore unknown role in systemic energy balance.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kryscilla Jian Zhang Yang
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pierre-Jacques Brun
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Josie A. Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Jason J. Yuen
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Igor Shmarakov
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hongfeng Jiang
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jun B. Feranil
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xueting Li
- PhD Program in Nutritional and Metabolic Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U1258, CNRS, UMR 7104, Unistra, Illkirch 67404, France
| | - Rudolph L. Leibel
- Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jenny Libien
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S. Blaner
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Li B, Qiao L, Yan X, Shi T, Ren D, Zhao Y, Zhao J, Liu W. mRNA expression of genes related to fat deposition during in vitro ovine adipogenesis. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fat deposition in animals involves adipogenic differentiation guided by transcriptional factors and other key factors. To understand the molecular mechanism underlying ovine adipogenic differentiation, the dynamic mRNA expression of key genes related to fat deposition, including peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid-binding protein 4 (FABP4), FABP5, and cellular retinoic acid-binding protein 2 (CRABP2), were analyzed during in vitro differentiation of ovine preadipocytes. The stromal vascular cells from underneath the tail fat tissue of 1-wk-old sheep were isolated and cultured, and the preadipocytes were induced using a cocktail of 3-isobutyl-1-methylxanthine, insulin, dexamethasone, and troglitazone. The cultivated cells were collected at different time points after induced differentiation. The expression levels of PPAR-γ, FABP4, FABP5, and CRABP2 were studied by quantitative real-time polymerase chain reaction. The expressions of these genes in sheep were compared with those in human and mouse retrieved from the Gene Expression Omnibus DataSets. We observed that the expression of PPAR-γ, FABP4, and FABP5 was increased upon differentiation of ovine preadipocytes, as in humans and mice. The expression of CRABP2 was sharply increased from days 0 to 2 after induced differentiation and was subsequently decreased. This expression pattern of CRABP2 was different from that observed in humans and mice. Our results provide new insights into the function of these genes in fat deposition.
Collapse
Affiliation(s)
- Baojun Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Liying Qiao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Xiaoru Yan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Tao Shi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Duanyang Ren
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Yanyan Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Wenzhong Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| |
Collapse
|
14
|
Abedi-Taleb E, Vahabi Z, Sekhavati-Moghadam E, Khedmat L, Jazayeri S, Saboor-Yaraghi AA. Upregulation of FNDC5 gene expression in C2C12 cells after single and combined treatments of resveratrol and ATRA. Lipids Health Dis 2019; 18:181. [PMID: 31640715 PMCID: PMC6806552 DOI: 10.1186/s12944-019-1128-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/03/2019] [Indexed: 01/18/2023] Open
Abstract
Background Irisin is a newly discovered myokine that secreted from skeletal muscle cells. Several studies showed that irisin involves in thermogenesis and increases the expression of browning markers such as uncoupling protein-1 that in turns induces the conversion of white adipose tissue to brown fat. Resveratrol (Res) and all-trans retinoic acid (ATRA) can also upregulate the expression of thermogenesis genes. In the present study, the effects of single and combined treatments of Res and ATRA on fibronectin type III domain containing 5 (FNDC5) gene expression was explored. Methods The mouse myoblasts, C2C12 cells, were seeded in 6-well plastic plates and cultured in DMEM media. After differentiation, in a pilot study, C2C12 myotubes were treated with different concentrations of Res and ATRA for 12 h. The best result was obtained by treatment of 1and 25 μM of Res and 1 μM of ATRA. Then the main study was continued by single and combined treatment of these compounds at chosen concentration. After treatments, total RNA was extracted from C2C12 cells. Complementary DNA (cDNA) was generated by the cDNA synthesis kit and FNDC5 mRNA expression was evaluated by the real-time PCR method. Results The FNDC5 gene expression in C2C12 myotubes of alone-treated with 1 μM, 25 μM Res and 10 μM ATRA did not change compared to vehicle group. However, in combination-treated the expression of FNDC5 gene was significantly increased compared to vehicle group. Conclusion This is the first evidence that Res and ATRA can regulate FNDC5 gene expression in C2C12 myotubes. More investigations are necessary to explore the therapeutic effects of these nutrients in obesity, diabetes, cardiac and neurovascular disease.
Collapse
Affiliation(s)
- Elahe Abedi-Taleb
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition and Biochemistry, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Saboor-Yaraghi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, 141613151, Iran.
| |
Collapse
|
15
|
Zhao X, Yang X. Retinoic Acid Promotes Retinoic Acid Signaling by Suppression of Pitx1 In Tendon Cells: A Possible Mechanism of a Clubfoot-Like Phenotype Induced by Retinoic Acid. Med Sci Monit 2019; 25:6980-6989. [PMID: 31527569 PMCID: PMC6761847 DOI: 10.12659/msm.917740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The pathogenesis of idiopathic congenital clubfoot (CCF) is unknown. Although some familial patients have Pitx1 mutations, and the Pitx1+/− genotype causes a clubfoot-like phenotype in mice, the mechanism of Pitx1-induced CCF is unknown. Material/Methods We used tibialis anterior tendon samples to detect the expression of Pitx1 in idiopathic and neurogenic clubfoot patients. After obtaining Sprague-Dawley (SD) rat Achilles tendon cells, the expression of Pitx1 was knocked down by SiRNA. After 48 h of culture, mass spectrometry was used to quantitatively analyze proteins. Then, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to assess the downstream pathway of PITX1. The relationship between Pitx1 and the promoter region of deacetylase 1 (Sirtuin-1 and Sirt1) was examined by luciferase and ChIP assays. Results We found that Pitx1 expression in the tendon samples of idiopathic CCF patients was downregulated. Mass spectrometry analysis revealed that the inhibition of Pitx1 induced the downregulation of Sirt1 expression in tendon cells. Luciferase and ChIP assays confirmed that Pitx1 binds to the promoter region of SIRT1 and promotes Sirt1 gene transcription. Further results showed that, after the inhibition of Pitx1 in tendon cells, CRABP2 acetylation increased, the nuclear import of CRABP2 was enhanced, and the expression of RARβ2 increased. After the inhibition of Pitx1, RARβ2 expression was further increased by RA treatment in tendon cells. In the presence of retinoic acid, the expression of Pitx1 was inhibited in tendon cells. Conclusions Pitx1 binds to the promoter region of SIRT1 and promotes the transcription of SIRT1. Positive feedback occurs between RA signaling and Pitx1.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Xuan Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
16
|
Abstract
Much evidence has accumulated in the literature over the last fifteen years that indicates vitamin A has a role in metabolic disease prevention and causation. This literature proposes that vitamin A can affect obesity development and the development of obesity-related diseases including insulin resistance, type 2 diabetes, hepatic steatosis and steatohepatitis, and cardiovascular disease. Retinoic acid, the transcriptionally active form of vitamin A, accounts for many of the reported associations. However, a number of proteins involved in vitamin A metabolism, including retinol-binding protein 4 (RBP4) and aldehyde dehydrogenase 1A1 (ALDH1A1, alternatively known as retinaldehyde dehydrogenase 1 or RALDH1), have also been identified as being associated with metabolic disease. Some of the reported effects of these vitamin A-related proteins are proposed to be independent of their roles in assuring normal retinoic acid homeostasis. This review will consider both human observational data as well as published data from molecular studies undertaken in rodent models and in cells in culture. The primary focus of the review will be on the effects that vitamin A per se and proteins involved in vitamin A metabolism have on adipocytes, adipose tissue biology, and adipose-related disease, as well as on early stage liver disease, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
| |
Collapse
|
17
|
Wang B, Fu X, Zhu MJ, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol 2018; 9:338-349. [PMID: 28992291 DOI: 10.1093/jmcb/mjx026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid (RA), a bioactive metabolite of vitamin A, is a critical mediator of cell differentiation. RA blocks adipogenesis, but mechanisms remain to be established. ZFP423 is a key transcription factor maintaining white adipose identity. We found that RA inhibits Zfp423 expression and adipogenesis via blocking DNA demethylation in the promoter of Zfp423, a process mediated by growth arrest and DNA-damage-inducible protein alpha (GADD45A). RA induces the partnering between retinoic acid receptor (RAR) and tumor suppressor inhibitor of growth protein 1 (ING1), which prevents the formation of GADD45A and ING1 complex necessary for locus-specific Zfp423 DNA demethylation. In vivo, vitamin A supplementation prevents obesity, downregulates Gadd45a expression, and reduces GADD45A binding and DNA demethylation in the Zfp423 promoter. Inhibition of Zfp423 expression due to RA contributes to the enhanced brown adipogenesis. In summary, RA inhibits white adipogenesis by inducing RAR and ING1 interaction and inhibiting Gadd45a expression, which prevents GADD45A-mediated DNA demethylation.
Collapse
Affiliation(s)
- B Wang
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
18
|
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 10:nu10010029. [PMID: 29286303 PMCID: PMC5793257 DOI: 10.3390/nu10010029] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
19
|
Yang D, Krois CR, Huang P, Wang J, Min J, Yoo HS, Deng Y, Napoli JL. Raldh1 promotes adiposity during adolescence independently of retinal signaling. PLoS One 2017; 12:e0187669. [PMID: 29095919 PMCID: PMC5667840 DOI: 10.1371/journal.pone.0187669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
All-trans-retinoic acid (RA) inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO). The aldehyde dehydrogenase Raldh1 (Aldh1a1) functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.
Collapse
Affiliation(s)
- Di Yang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Charles R. Krois
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Priscilla Huang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jinshan Wang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jin Min
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Yinghua Deng
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph L. Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Roussel AM. Déficits en micronutriments dans le surpoids et l’obésité : conséquences métaboliques et cliniques. NUTR CLIN METAB 2017. [DOI: 10.1016/j.nupar.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
|
22
|
Wang B, Wang Z, de Avila JM, Zhu MJ, Zhang F, Gomez NA, Zhao L, Tian Q, Zhao J, Maricelli J, Zhang H, Rodgers BD, Du M. Moderate alcohol intake induces thermogenic brown/beige adipocyte formation via elevating retinoic acid signaling. FASEB J 2017; 31:4612-4622. [PMID: 28679528 DOI: 10.1096/fj.201700396r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022]
Abstract
Clinically, low and moderate alcohol intake improves human health with protection against metabolic syndromes, including type 2 diabetes; however, mechanisms that are associated with these effects remain to be elucidated. The aims of this study were to investigate the effects of moderate alcohol intake on thermogenic brown/beige adipocyte formation and glucose and lipid homeostasis, as well as the involvement of retinoic acid (RA) signaling in the entire process. C57BL6 male mice were supplemented with 8% (w/v) alcohol in water for 1 or 4 mo. Alcohol intake prevented body weight gain, induced the formation of uncoupling protein 1-positive beige adipocytes in white adipose tissue, and increased thermogenesis in mice, which is associated with decreased serum glucose and triacylglycerol levels. Mechanistically, alcohol intake increased RA levels in serum and adipose tissue, which was associated with increased expression of aldehyde dehydrogenase family 1 subfamily A1 (Aldh1a1). When RA receptor-α signaling was conditionally blocked in platelet-derived growth factor receptor-α-positive adipose progenitors, the effects of alcohol on beige adipogenesis were largely abolished. Finally, moderate alcohol prevented high-fat diet-induced obesity and metabolic dysfunction. In conclusion, moderate alcohol intake induces thermogenic brown/beige adipocyte formation and promotes glucose and lipid oxidation via elevation of RA signaling.-Wang, B., Wang, Z., de Avila, J. M., Zhu, M.-J., Zhang, F., Gomez, N. A., Zhao, L., Tian, Q., Zhao, J., Maricelli, J., Zhang, H., Rodgers, B. D., Du, M. Moderate alcohol intake induces thermogenic brown/beige adipocyte formation via elevating retinoic acid signaling.
Collapse
Affiliation(s)
- Bo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Zhixiu Wang
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jeanene M de Avila
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Noe Alberto Gomez
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Liang Zhao
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Qiyu Tian
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Joseph Maricelli
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; .,Department of Animal Sciences, Washington State University, Pullman, Washington, USA.,College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
23
|
Wang B, Fu X, Liang X, Wang Z, Yang Q, Zou T, Nie W, Zhao J, Gao P, Zhu MJ, de Avila JM, Maricelli J, Rodgers BD, Du M. Maternal Retinoids Increase PDGFRα + Progenitor Population and Beige Adipogenesis in Progeny by Stimulating Vascular Development. EBioMedicine 2017; 18:288-299. [PMID: 28408241 PMCID: PMC5405191 DOI: 10.1016/j.ebiom.2017.03.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/18/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Maternal vitamin A intake varies but its impact on offspring metabolic health is unknown. Here we found that maternal vitamin A or retinoic acid (RA) administration expanded PDGFRα+ adipose progenitor population in progeny, accompanied by increased blood vessel density and enhanced brown-like (beige) phenotype in adipose tissue, protecting offspring from obesity. Blockage of retinoic acid signaling by either BMS493 or negative RA receptor (RARαDN) over-expression abolished the increase in blood vessel density, adipose progenitor population, and beige adipogenesis stimulated by RA. Furthermore, RA-induced beige adipogenesis was blocked following vascular endothelial growth factor receptor (VEGFR) 2 knock out in PDGFRα+ cells, suggesting its mediatory role. Our data reveal an intrinsic link between maternal retinoid level and offspring health via promoting beige adipogenesis. Thus, enhancing maternal retinoids is an amiable therapeutic strategy to prevent obesity in offspring, especially for those born to obese mothers which account for one third of all pregnancies. Maternal vitamin A supplementation increases blood vessel density and expands adipose progenitor population in progeny. Maternal vitamin A supplementation enhances brown-like phenotype in adipose tissues. Maternal vitamin A supplementation protects offspring from diet induced obesity.
Vitamin A and its metabolite, retinoic acid, play key roles in adipogenesis and energy expenditure of adipose tissues. In mice and humans, vitamin A intake is inversely correlated with adiposity. This study has uncovered a role for maternal retinoids in fetal adipose development. Maternal vitamin A supplementation or RA administration increases adipose progenitor population and promotes beige adipogenesis, which protects offspring from diet induced obesity in later life.
Collapse
Affiliation(s)
- Bo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Xingwei Liang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Zhixiu Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Qiyuan Yang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Tiande Zou
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Wei Nie
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Junxing Zhao
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Pengfei Gao
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, 99164, United States
| | - Jeanene M de Avila
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Joseph Maricelli
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
24
|
Landrier JF, Kasiri E, Karkeni E, Mihály J, Béke G, Weiss K, Lucas R, Aydemir G, Salles J, Walrand S, de Lera AR, Rühl R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. FASEB J 2016; 31:203-211. [PMID: 27729412 PMCID: PMC5161515 DOI: 10.1096/fj.201600263rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022]
Abstract
Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high–vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal–vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high–vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand–induced, WAT-selective, increased retinoic acid response element–mediated signaling; and 3) RAR ligand–dependent reduction of adiponectin expression.—Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue.
Collapse
Affiliation(s)
- Jean-Francois Landrier
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1260, Marseille, France.,INSERM, Unités Mixtes de Recherche 1062, Nutrition, Obésité et Risque Thrombotique, Marseille, France.,Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Elnaz Kasiri
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group, Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Esma Karkeni
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1260, Marseille, France.,INSERM, Unités Mixtes de Recherche 1062, Nutrition, Obésité et Risque Thrombotique, Marseille, France.,Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Johanna Mihály
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gabriella Béke
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Kathrin Weiss
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Renata Lucas
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gamze Aydemir
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Jérome Salles
- Unités Mixtes de Recherche, Institut National de la Recherche Agronomique (INRA) 1019 Unité de Nutrition Humaine, Centre de Recherches INRA de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - Stéphane Walrand
- Unités Mixtes de Recherche, Institut National de la Recherche Agronomique (INRA) 1019 Unité de Nutrition Humaine, Centre de Recherches INRA de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Universidade de Vigo, Facultad de Química, Centro de Investigaciones Biomédicas and Instituto de Investigación Biomédica de Vigo, Vigo, Spain; and
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary; .,MTA-DE Public Health Research Group, Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
25
|
Wang B, Yang Q, Harris CL, Nelson ML, Busboom JR, Zhu MJ, Du M. Nutrigenomic regulation of adipose tissue development - role of retinoic acid: A review. Meat Sci 2016; 120:100-106. [PMID: 27086067 DOI: 10.1016/j.meatsci.2016.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
To improve the efficiency of animal production, livestock have been extensively selected or managed to reduce fat accumulation and increase lean growth, which reduces intramuscular or marbling fat content. To enhance marbling, a better understanding of the mechanisms regulating adipogenesis is needed. Vitamin A has recently been shown to have a profound impact on all stages of adipogenesis. Retinoic acid, an active metabolite of vitamin A, activates both retinoic acid receptors (RAR) and retinoid X receptors (RXR), inducing epigenetic changes in key regulatory genes governing adipogenesis. Additionally, Vitamin D and folates interact with the retinoic acid receptors to regulate adipogenesis. In this review, we discuss nutritional regulation of adipogenesis, focusing on retinoic acid and its impact on epigenetic modifications of key adipogenic genes.
Collapse
Affiliation(s)
- Bo Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Qiyuan Yang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Corrine L Harris
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Mark L Nelson
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Jan R Busboom
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, United States
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
26
|
Abstract
Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.
Collapse
Affiliation(s)
- M Luisa Bonet
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | - Jose A Canas
- Metabolism and Diabetes, Nemours Children's Clinic, Jacksonville, FL, 32207, USA
| | - Joan Ribot
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Andreu Palou
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
27
|
Zhang R, Wang Y, Li R, Chen G. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism. Int J Mol Sci 2015; 16:14210-14244. [PMID: 26110391 PMCID: PMC4490549 DOI: 10.3390/ijms160614210] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- State Food and Drug Administration Hubei Center for Medical Equipment Quality Supervision and Testing, 666 High-Tech Avenue, Wuhan 430000, China.
| | - Yueqiao Wang
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Rui Li
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, 1215 West Cumberland Avenue, Knoxville, TN 37996, USA.
| |
Collapse
|
28
|
Ayuso M, Óvilo C, Rodríguez-Bertos A, Rey AI, Daza A, Fenández A, González-Bulnes A, López-Bote CJ, Isabel B. Dietary vitamin A restriction affects adipocyte differentiation and fatty acid composition of intramuscular fat in Iberian pigs. Meat Sci 2015; 108:9-16. [PMID: 26005912 DOI: 10.1016/j.meatsci.2015.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate whether dietary vitamin A level is associated with differences in adipocyte differentiation or lipid accumulation in Iberian pigs at early growing (35.8kg live weight) and at finishing (158kg live weight). Iberian pigs of 16.3kg live weight were allocated to two feeding groups, one group received 10,000IU of vitamin A/kg diet (control); the other group received a diet with 0IU of vitamin A (var) for the whole experimental period. The dietary vitamin A level had no effect on growth performance and carcass traits. The early suppression of vitamin A increased the preadipocyte number in Longissimus thoracis (LT) muscle in the early growth period (P<0.001) and the neutral lipid content and composition (higher MUFA and lower SFA content) at the end of the finishing period (P<0.05). Vitamin A restriction in young pigs increases their lipogenic potential without affecting carcass traits.
Collapse
Affiliation(s)
- M Ayuso
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | - C Óvilo
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain
| | - A Rodríguez-Bertos
- Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain; Animal Health Surveillance Center (VISAVET), Complutense University of Madrid, 28040 Madrid, Spain
| | - A I Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - A Daza
- Departamento de Producción Animal, ETSIA, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - A Fenández
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain
| | | | - C J López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - B Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
29
|
Obrochta KM, Krois CR, Campos B, Napoli JL. Insulin regulates retinol dehydrogenase expression and all-trans-retinoic acid biosynthesis through FoxO1. J Biol Chem 2015; 290:7259-68. [PMID: 25627686 DOI: 10.1074/jbc.m114.609313] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All-trans-retinoic acid (atRA), an autacoid derived from retinol (vitamin A), regulates energy balance and reduces adiposity. We show that energy status regulates atRA biosynthesis at the rate-limiting step, catalyzed by retinol dehydrogenases (RDH). Six h after re-feeding, Rdh1 expression decreased 80-90% in liver and brown adipose tissue and Rdh10 expression was decreased 45-63% in liver, pancreas, and kidney, all relative to mice fasted 16 h. atRA in the liver was decreased 44% 3 h after reduced Rdh expression. Oral gavage with glucose or injection with insulin decreased Rdh1 and Rdh10 mRNA 50% or greater in mouse liver. Removing serum from the medium of the human hepatoma cell line HepG2 increased Rdh10 and Rdh16 (human Rdh1 ortholog) mRNA expression 2-3-fold by 4 h, by increasing transcription and stabilizing mRNA. Insulin decreased Rdh10 and Rdh16 mRNA in HepG2 cells incubated in serum-free medium by inhibiting transcription and destabilizing mRNA. Insulin action required PI3K and Akt, which suppress FoxO1. Serum removal increased atRA biosynthesis 4-fold from retinol in HepG2 cells, whereas dominant-negative FoxO1 prevented the increase. Thus, energy status via insulin and FoxO1 regulate Rdh expression and atRA biosynthesis. These results reveal mechanisms for regulating atRA biosynthesis and the opposing effects of atRA and insulin on gluconeogenesis, and also suggest an interaction between atRA and insulin signaling related diseases, such as type II diabetes and cancer.
Collapse
Affiliation(s)
- Kristin M Obrochta
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Charles R Krois
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Benito Campos
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Joseph L Napoli
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| |
Collapse
|
30
|
DiSilvestro D, Petrosino J, Aldoori A, Melgar-Bermudez E, Wells A, Ziouzenkova O. Enzymatic intracrine regulation of white adipose tissue. Horm Mol Biol Clin Investig 2014; 19:39-55. [PMID: 25390015 DOI: 10.1515/hmbci-2014-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022]
Abstract
Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid.
Collapse
|
31
|
Pan J, Guleria RS, Zhu S, Baker KM. Molecular Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac Remodeling. J Clin Med 2014; 3:566-94. [PMID: 26237391 PMCID: PMC4449696 DOI: 10.3390/jcm3020566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a significant contributor to morbidity and mortality in diabetic patients, is characterized by ventricular dysfunction, in the absence of coronary atherosclerosis and hypertension. There is no specific therapeutic strategy to effectively treat patients with DCM, due to a lack of a mechanistic understanding of the disease process. Retinoic acid, the active metabolite of vitamin A, is involved in a wide range of biological processes, through binding and activation of nuclear receptors: retinoic acid receptors (RAR) and retinoid X receptors (RXR). RAR/RXR-mediated signaling has been implicated in the regulation of glucose and lipid metabolism. Recently, it has been reported that activation of RAR/RXR has an important role in preventing the development of diabetic cardiomyopathy, through improving cardiac insulin resistance, inhibition of intracellular oxidative stress, NF-κB-mediated inflammatory responses and the renin-angiotensin system. Moreover, downregulated RAR/RXR signaling has been demonstrated in diabetic myocardium, suggesting that impaired RAR/RXR signaling may be a trigger to accelerate diabetes-induced development of DCM. Understanding the molecular mechanisms of retinoid receptors in the regulation of cardiac metabolism and remodeling under diabetic conditions is important in providing the impetus for generating novel therapeutic approaches for the prevention and treatment of diabetes-induced cardiac complications and heart failure.
Collapse
Affiliation(s)
- Jing Pan
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Rakeshwar S Guleria
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Sen Zhu
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Kenneth M Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| |
Collapse
|