1
|
Pavlik P, Velecka E, Spidlova P. Breaking the cellular defense: the role of autophagy evasion in Francisella virulence. Front Cell Infect Microbiol 2024; 14:1523597. [PMID: 39776438 PMCID: PMC11703736 DOI: 10.3389/fcimb.2024.1523597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Many pathogens have evolved sophisticated strategies to evade autophagy, a crucial cellular defense mechanism that typically targets and degrades invading microorganisms. By subverting or inhibiting autophagy, these pathogens can create a more favorable environment for their replication and survival within the host. For instance, some bacteria secrete factors that block autophagosome formation, while others might escape from autophagosomes before degradation. These evasion tactics are critical for the pathogens' ability to establish and maintain infections. Understanding the mechanisms by which pathogens avoid autophagy is crucial for developing new therapeutic strategies, as enhancing autophagy could bolster the host's immune response and aid in the elimination of pathogenic bacteria. Francisella tularensis can manipulate host cell pathways to prevent its detection and destruction by autophagy, thereby enhancing its virulence. Given the potential for F. tularensis to be used as a bioterrorism agent due to its high infectivity and ability to cause severe disease, research into how this pathogen evades autophagy is of critical importance. By unraveling these mechanisms, new therapeutic approaches could be developed to enhance autophagic responses and strengthen host defense against this and other similarly evasive pathogens.
Collapse
Affiliation(s)
- Pavla Pavlik
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Eva Velecka
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
2
|
Vozandychova V, Rehulka P, Hercik K, Spidlova P, Pavlik P, Hanus J, Hadravova R, Stulik J. Modified activities of macrophages' deubiquitinating enzymes after Francisella infection. Front Immunol 2023; 14:1252827. [PMID: 37841261 PMCID: PMC10570801 DOI: 10.3389/fimmu.2023.1252827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Pavla Pavlik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jaroslav Hanus
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czechia
| | - Romana Hadravova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
3
|
Li B, Rong Q, Du Y, Zhang R, Li J, Tong X, Geng L, Zhang Y. Regulation of β1-integrin in autophagy and apoptosis of gastric epithelial cells infected with Helicobacter pylori. World J Microbiol Biotechnol 2021; 38:12. [PMID: 34873651 DOI: 10.1007/s11274-021-03199-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023]
Abstract
Helicobacter pylori infection is an essential factor in the development of human gastric diseases, but its pathogenic mechanism is still unclear. In this work we have showed that, the LC3II levels were increased and β1-integrin levels were decreased in H. pylori-positive human gastric tissue samples and H. pylori co-cultured GES-1 cells. There was significant upregulation of LC3II levels and downregulation of P62 levels in GES-1 cells after β1-integrin knockdown co-cultured with H. pylori. This indicated that β1-integrin downregulation promoted autophagy in GES-1 cells after H. pylori infection. The cell apoptosis rate and poly ADP-ribose polymerase (PARP) and caspase-3 activities were increased in GES-1 cells pretreated with 3-methyladenine (3-MA ) after H. pylori infection. Furthermore, there was a significant decrease in apoptosis of β1-integrin knockdown GES-1 cells co-cultured with H. pylori; apoptosis was also downregulated in β1-integrin knockdown- and 3-MA-treated GES-1 cells co-cultured with H. pylori. Correspondingly, PARP and caspase-3 activities were decreased in β1-integrin knockdown cells co-cultured with H. pylori and β1-integrin knockdown-3-MA-treated-1 cells with H. pylori infection. Thus, β1-integrin is a novel autophagy and apoptosis regulator during H. pylori infection. However, inhibition of autophagy did not reverse the decrease in apoptosis caused by downregulation of β1-integrin.
Collapse
Affiliation(s)
- Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Qianyu Rong
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yunqiu Du
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Ruiqing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Jing Li
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Xiaohan Tong
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Li Geng
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China.
| |
Collapse
|
4
|
Cellular and molecular level host-pathogen interactions in Francisella tularensis: A microbial gene network study. Comput Biol Chem 2021; 96:107601. [PMID: 34801846 DOI: 10.1016/j.compbiolchem.2021.107601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 11/09/2021] [Indexed: 01/17/2023]
Abstract
Due to the high infectivity and fatal effect on human population, Francisella tularensis (F. tularensis) is classified as a potential biological warfare agent. The interaction between host and pathogen behind the successful establishment of F. tularensis infection within the human host is largely unknown. In our present work, we have studied the molecular level interactions between the host cellular components and F. tularensis genes to understand the interplay between the host and pathogen. Interestingly, we have identified the pathways associated with the pathogen offensive strategies that help in invasion of host defensive systems. The F. tularensis genes purL, katG, proS, rpoB and fusA have displayed high number of interactions with the host genes and thus play a crucial role in vital pathogen pathways. The pathways identified were involved in adaptation to different stress conditions within the host and might be crucial for designing new therapeutic interventions against tularemia.
Collapse
|
5
|
Gregory DJ, Kramnik I, Kobzik L. Protection of macrophages from intracellular pathogens by miR-182-5p mimic-a gene expression meta-analysis approach. FEBS J 2017; 285:244-260. [PMID: 29197182 DOI: 10.1111/febs.14348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
The goals of this study were to (a) define which host genes are of particular importance during the interactions between macrophages and intracellular pathogens, and (b) use this knowledge to gain fresh, experimental understanding of how macrophage activities may be manipulated during host defense. We designed an in silico method for meta-analysis of microarray gene expression data, and used this to combine data from 16 different studies of cells in the monocyte-macrophage lineage infected with seven different pathogens. Three thousand four hundred ninety-eight genes were identified, which we call the macrophage intracellular pathogen response (macIPR) gene set. As expected, the macIPR gene set showed a strong bias toward genes previously associated with the immune response. Predicted target sites for miR-182-5p (miR-182) were strongly over-represented among macIPR genes, indicating an unexpected role for miR-182-regulatable genes during intracellular pathogenesis. We therefore transfected primary human alveolar macrophage-like monocyte-derived macrophages from multiple different donors with synthetic miR-182, and found that miR-182 overexpression (a) increases proinflammatory gene induction during infection with Francisella tularensis live vaccine strain (LVS), (b) primes macrophages for increased autophagy, and (c) enhances macrophage control of both gram negative F. tularensisLVS and gram positive Bacillus anthracisANR-1 spores. These data therefore suggest a new application for miR-182 in promoting resistance to intracellular pathogens.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, MA, USA
| | - Lester Kobzik
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Seveau S, Turner J, Gavrilin MA, Torrelles JB, Hall-Stoodley L, Yount JS, Amer AO. Checks and Balances between Autophagy and Inflammasomes during Infection. J Mol Biol 2017; 430:174-192. [PMID: 29162504 DOI: 10.1016/j.jmb.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 12/24/2022]
Abstract
Autophagy and inflammasome complex assembly are physiological processes that control homeostasis, inflammation, and immunity. Autophagy is a ubiquitous pathway that degrades cytosolic macromolecules or organelles, as well as intracellular pathogens. Inflammasomes are multi-protein complexes that assemble in the cytosol of cells upon detection of pathogen- or danger-associated molecular patterns. A critical outcome of inflammasome assembly is the activation of the cysteine protease caspase-1, which activates the pro-inflammatory cytokine precursors pro-IL-1β and pro-IL-18. Studies on chronic inflammatory diseases, heart diseases, Alzheimer's disease, and multiple sclerosis revealed that autophagy and inflammasomes intersect and regulate each other. In the context of infectious diseases, however, less is known about the interplay between autophagy and inflammasome assembly, although it is becoming evident that pathogens have evolved multiple strategies to inhibit and/or subvert these pathways and to take advantage of their intricate crosstalk. An improved appreciation of these pathways and their subversion by diverse pathogens is expected to help in the design of anti-infective therapeutic interventions.
Collapse
Affiliation(s)
- Stephanie Seveau
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Mikhail A Gavrilin
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Association between genetic polymorphisms in the autophagy-related 5 gene promoter and the risk of sepsis. Sci Rep 2017; 7:9399. [PMID: 28839236 PMCID: PMC5570943 DOI: 10.1038/s41598-017-09978-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
Previous studies demonstrated significant roles of autophagy in the pathogenesis of sepsis, but few studies focused on the effect of autophagy-related SNPs on sepsis susceptibility. In this present study, five polymorphisms of ATG5/ATG16L1 were investigated for the possible risk on sepsis in a Chinese Han population. Our results showed that ATG5 expression levels decreased with the severity of sepsis, and rs506027 T > C and rs510432 G > A were associated with sepsis progression and mortality. Moreover, the rs506027 TT and rs510432 GG carriers also exhibited increased expression levels of ATG5. Functional assays showed that ATG5 knockdown elevated the secretion of pro-inflammatory cytokines in THP-1 cells, and the extracted mononuclear cell of the risk C-A carriers exhibited decreased ATG5 expression levels, leading to enhanced releases of TNF-α and IL-1β under LPS stimulation in vitro. Furthermore, ATG5 T-G haplotype mutation showed higher promoter activities compared to C-A haplotype mutation, suggesting the effect of these SNPs on ATG5 gene transcription. Taken together, these results above indicated that these two ATG5 promoter polymorphisms may be functional and clinically significant for sepsis progression, underscoring its potentially therapeutic implications for sepsis and other inflammatory diseases.
Collapse
|
8
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
9
|
Li N, Tang B, Jia YP, Zhu P, Zhuang Y, Fang Y, Li Q, Wang K, Zhang WJ, Guo G, Wang TJ, Feng YJ, Qiao B, Mao XH, Zou QM. Helicobacter pylori CagA Protein Negatively Regulates Autophagy and Promotes Inflammatory Response via c-Met-PI3K/Akt-mTOR Signaling Pathway. Front Cell Infect Microbiol 2017; 7:417. [PMID: 28983474 PMCID: PMC5613121 DOI: 10.3389/fcimb.2017.00417] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Cytotoxin-associated-gene A (CagA) of Helicobacter pylori (H. pylori) is a virulence factor that plays critical roles in H. pylori-induced gastric inflammation. In the present study, gastric biopsies were used for genotyping cagA and vacA genes, determining the autophagic activity, and the severity of gastric inflammation response. It was revealed that autophagy in gastric mucosal tissues infected with cagA+H. pylori strains was lower than the levels produced by cagA-H. pylori strains, accompanied with accumulation of SQSTM1 and decreased LAMP1 expression. In vitro, deletion mutant of cagA gene resulted in increased autophagic activity, and decreased expression of SQSTM1 and cytokines, whereas over-expression of CagA down-regulated the starvation-induced autophagy, and induced more production of the cytokines. Moreover, the production of the cytokines was increased by inhibition of autophagy, but decreased by enhancement of autophagy. Deletion of CagA decreased the ability to activate Akt kinase at Ser-473 site and increased autophagy. c-Met siRNA significantly affected CagA-mediated autophagy, and decreased the level of p-Akt, p-mTOR, and p-S6. Both c-Met siRNA and MK-2206 could reverse inflammatory response. H. pylori CagA protein negatively regulates autophagy and promotes the inflammation in H. pylori infection, which is regulated by c-Met-PI3K/Akt-mTOR signaling pathway activation.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical UniversityChongqing, China
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center for Immunobiological Products, College of Pharmacy, Third Military Medical UniversityChongqing, China
- Institute of Cardiovascular Disease, General Hospital of Jinan Military RegionJinan, China
| | - Bin Tang
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical UniversityChongqing, China
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center for Immunobiological Products, College of Pharmacy, Third Military Medical UniversityChongqing, China
- Emei Sanatorium of PLA Rocket ForceEmeishan, China
| | - Yin-ping Jia
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical UniversityChongqing, China
| | - Pan Zhu
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical UniversityChongqing, China
| | - Yuan Zhuang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center for Immunobiological Products, College of Pharmacy, Third Military Medical UniversityChongqing, China
| | - Yao Fang
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical UniversityChongqing, China
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center for Immunobiological Products, College of Pharmacy, Third Military Medical UniversityChongqing, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical UniversityChongqing, China
| | - Kun Wang
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical UniversityChongqing, China
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center for Immunobiological Products, College of Pharmacy, Third Military Medical UniversityChongqing, China
| | - Wei-jun Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center for Immunobiological Products, College of Pharmacy, Third Military Medical UniversityChongqing, China
| | - Gang Guo
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center for Immunobiological Products, College of Pharmacy, Third Military Medical UniversityChongqing, China
| | - Tong-jian Wang
- Institute of Cardiovascular Disease, General Hospital of Jinan Military RegionJinan, China
| | - You-jun Feng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of MedicineHangzhou, China
| | - Bin Qiao
- Institute of Cardiovascular Disease, General Hospital of Jinan Military RegionJinan, China
- *Correspondence: Bin Qiao
| | - Xu-hu Mao
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical UniversityChongqing, China
- Xu-hu Mao
| | - Quan-ming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center for Immunobiological Products, College of Pharmacy, Third Military Medical UniversityChongqing, China
- Quan-ming Zou
| |
Collapse
|
10
|
Tang B, Wang K, Jia YP, Zhu P, Fang Y, Zhang ZJ, Mao XH, Li Q, Zeng DZ. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells. PLoS One 2016; 11:e0165701. [PMID: 27828984 PMCID: PMC5102440 DOI: 10.1371/journal.pone.0165701] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α) and reactive oxygen species (ROS) in Caco-2 colorectal) adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron) could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (ATG5 or ATG12) in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells.
Collapse
Affiliation(s)
- Bin Tang
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
- Emei Sanatorium of PLA Rocket Force, Emeishan, China
| | - Kun Wang
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | - Yin-ping Jia
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | - Pan Zhu
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | - Yao Fang
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | - Zhu-jun Zhang
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | - Xu-hu Mao
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, Southwest Hospital & College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
- * E-mail: (DZZ); (QL)
| | - Dong-Zhu Zeng
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (DZZ); (QL)
| |
Collapse
|
11
|
Qi X, Man SM, Malireddi RKS, Karki R, Lupfer C, Gurung P, Neale G, Guy CS, Lamkanfi M, Kanneganti TD. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. J Exp Med 2016; 213:2081-97. [PMID: 27551156 PMCID: PMC5030800 DOI: 10.1084/jem.20151938] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell.
Collapse
Affiliation(s)
- Xiaopeng Qi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Christopher Lupfer
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Mohamed Lamkanfi
- Inflammation Research Center, VIB, B-9052 Zwijnaarde-Ghent, Belgium Department of Internal Medicine, Ghent University, B-9000 Ghent, Belgium
| | | |
Collapse
|
12
|
Miller C, Celli J. Avoidance and Subversion of Eukaryotic Homeostatic Autophagy Mechanisms by Bacterial Pathogens. J Mol Biol 2016; 428:3387-98. [PMID: 27456933 PMCID: PMC5010449 DOI: 10.1016/j.jmb.2016.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Abstract
Autophagy is a conserved lysosomal recycling process, which maintains cellular homeostasis during stress and starvation conditions by degrading and recycling proteins, lipids, and carbohydrates, ultimately increasing nutrient availability in eukaryotes. An additional function of autophagy, termed xenophagy, is to detect, capture, and destroy invading microorganisms, such as viruses, bacteria, and protozoa, providing autophagy with a role in innate immunity. Many intracellular pathogens have, however, developed mechanisms to avoid xenophagy and have evolved strategies to take advantage of select autophagic processes to undergo their intracellular life cycle. This review article will discuss the molecular mechanisms used by the intracellular bacterial pathogens Francisella spp. and Brucella spp. to manipulate components of the autophagic pathway, promoting cytosolic growth in the case of Francisella spp. and facilitating cellular egress and cell-to-cell spread in the case of Brucella spp. These examples highlight how successful, highly infectious bacterial pathogens avoid or subvert host autophagy mechanisms normally employed to maintain eukaryotic homeostasis.
Collapse
Affiliation(s)
- Cheryl Miller
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, 99164-7090 WA, USA.
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, 99164-7090 WA, USA.
| |
Collapse
|
13
|
Bettencourt P, Pires D, Anes E. Immunomodulating microRNAs of mycobacterial infections. Tuberculosis (Edinb) 2015; 97:1-7. [PMID: 26980489 DOI: 10.1016/j.tube.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/17/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs that have emerged as key regulators of gene expression at the post-transcriptional level by sequence-specific binding to target mRNAs. Some microRNAs block translation, while others promote mRNA degradation, leading to a reduction in protein availability. A single miRNA can potentially regulate the expression of multiple genes and their encoded proteins. Therefore, miRNAs can influence molecular signalling pathways and regulate many biological processes in health and disease. Upon infection, host cells rapidly change their transcriptional programs, including miRNA expression, as a response against the invading microorganism. Not surprisingly, pathogens can also alter the host miRNA profile to their own benefit, which is of major importance to scientists addressing high morbidity and mortality infectious diseases such as tuberculosis. In this review, we present recent findings on the miRNAs regulation of the host response against mycobacterial infections, providing new insights into host-pathogen interactions. Understanding these findings and its implications could reveal new opportunities for designing better diagnostic tools, therapies and more effective vaccines.
Collapse
Affiliation(s)
- Paulo Bettencourt
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - David Pires
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Elsa Anes
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
14
|
Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum. Appl Environ Microbiol 2015; 82:1586-1598. [PMID: 26712555 DOI: 10.1128/aem.02950-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism.
Collapse
|
15
|
Li X, He Q, Shi J. Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS NANO 2014; 8:1309-1320. [PMID: 24392791 DOI: 10.1021/nn4046985] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mesoporous silica nanoparticles (MSNs), as one of the most promising inorganic drug carriers, have attracted ever increasing attention due to their unique structural, physicochemical, and biochemical features. Drug delivery systems (DDSs) based on MSNs could easily escape from endosomes after endocytosis and protect the loaded drugs from bioerosion by stable MSN carriers, efficiently deliver drugs intracellularly in a sustained release way, and consequently kill cancer cells at enhanced efficacy. However, the underlying pathways and mechanisms of cancer cell death induced by MSN-mediated drug delivery have not been well explored. In this study, we introduce gene expression analyses to evaluate the pathways and mechanisms of cancer cell death induced by a MSN-based drug delivery system. Unique changes in gene expressions and gene ontology terms, which were caused only by the MSN-based DDS (DOX-loaded MSNs, DOX@MSNs) but not by free drug doxorubicin (DOX) and/or the carrier MSNs, were discovered and proposed to be responsible for the varied cell death mechanisms, including the greatly enhanced necrosis due to amplified oxidative stress and the apoptosis related with DNA/RNA synthesis and cell cycle inhibitions. By virtue of a certain kind of synergetic biological effect between the drug and the carrier, the DOX@MSNs DDS was found capable of increasing the intracellular levels of reactive oxygen species and triggering the mitochondria-related autophagic lysosome pathway, consequently activating a specific pathway of necrosis, which is different from those by the free drug and the carrier.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Ding-Xi Road, Shanghai 200050, China
| | | | | |
Collapse
|
16
|
Härtlova A, Link M, Balounova J, Benesova M, Resch U, Straskova A, Sobol M, Philimonenko A, Hozak P, Krocova Z, Gekara N, Filipp D, Stulik J. Quantitative proteomics analysis of macrophage-derived lipid rafts reveals induction of autophagy pathway at the early time of Francisella tularensis LVS infection. J Proteome Res 2014; 13:796-804. [PMID: 24364512 DOI: 10.1021/pr4008656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Francisella tularensis is a highly infectious intracellular pathogen that has evolved an efficient strategy to subvert host defense response to survive inside the host. The molecular mechanisms regulating these host-pathogen interactions and especially those that are initiated at the time of the bacterial entry via its attachment to the host plasma membrane likely predetermine the intracellular fate of pathogen. Here, we provide the evidence that infection of macrophages with F. tularensis leads to changes in protein composition of macrophage-derived lipid rafts, isolated as detergent-resistant membranes (DRMs). Using SILAC-based quantitative proteomic approach, we observed the accumulation of autophagic adaptor protein p62 at the early stages of microbe-host cell interaction. We confirmed the colocalization of the p62 with ubiquitinated and LC3-decorated intracellular F. tularensis microbes with its maximum at 1 h postinfection. Furthermore, the infection of p62-knockdown host cells led to the transient increase in the intracellular number of microbes up to 4 h after in vitro infection. Together, these data suggest that the activation of the autophagy pathway in F. tularensis infected macrophages, which impacts the early phase of microbial proliferation, is subsequently circumvented by ongoing infection.
Collapse
Affiliation(s)
- Anetta Härtlova
- Centre of Advanced Studies , Faculty of Military Health Sciences, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Novel catanionic surfactant vesicle vaccines protect against Francisella tularensis LVS and confer significant partial protection against F. tularensis Schu S4 strain. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:212-26. [PMID: 24351755 DOI: 10.1128/cvi.00738-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Francisella tularensis is a Gram-negative immune-evasive coccobacillus that causes tularemia in humans and animals. A safe and efficacious vaccine that is protective against multiple F. tularensis strains has yet to be developed. In this study, we tested a novel vaccine approach using artificial pathogens, synthetic nanoparticles made from catanionic surfactant vesicles that are functionalized by the incorporation of either F. tularensis type B live vaccine strain (F. tularensis LVS [LVS-V]) or F. tularensis type A Schu S4 strain (F. tularensis Schu S4 [Schu S4-V]) components. The immunization of C57BL/6 mice with "bare" vesicles, which did not express F. tularensis components, partially protected against F. tularensis LVS, presumably through activation of the innate immune response, and yet it failed to protect against the F. tularensis Schu S4 strain. In contrast, immunization with LVS-V fully protected mice against intraperitoneal (i.p.) F. tularensis LVS challenge, while immunization of mice with either LVS-V or Schu S4-V partially protected C57BL/6 mice against an intranasal (i.n.) F. tularensis Schu S4 challenge and significantly increased the mean time to death for nonsurvivors, particularly following the i.n. and heterologous (i.e., i.p./i.n.) routes of immunization. LVS-V immunization, but not immunization with empty vesicles, elicited high levels of IgG against nonlipopolysaccharide (non-LPS) epitopes that were increased after F. tularensis LVS challenge and significantly increased early cytokine production. Antisera from LVS-V-immunized mice conferred passive protection against challenge with F. tularensis LVS. Together, these data indicate that functionalized catanionic surfactant vesicles represent an important and novel tool for the development of a safe and effective F. tularensis subunit vaccine and may be applicable for use with other pathogens.
Collapse
|
18
|
Francisella tularensis intracellular survival: to eat or to die. Microbes Infect 2013; 15:989-997. [PMID: 24513705 DOI: 10.1016/j.micinf.2013.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
Francisella tularensis is a highly infectious facultative intracellular bacterium causing the zoonotic disease tularemia. Numerous attributes required for F. tularensis intracellular multiplication have been identified recently. However, the mechanisms by which the majority of them interfere with the infected host are still poorly understood. The following review summarizes our current knowledge on the different steps of Francisella intramacrophagic life cycle and expands on the importance of nutrient acquisition.
Collapse
|
19
|
Pareja MEM, Colombo MI. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Front Cell Infect Microbiol 2013; 3:54. [PMID: 24137567 PMCID: PMC3786225 DOI: 10.3389/fcimb.2013.00054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/02/2013] [Indexed: 01/01/2023] Open
Abstract
Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.
Collapse
Affiliation(s)
- Maria Eugenia Mansilla Pareja
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Médicas, Instituto de Histología y Embriología-CONICET, Universidad Nacional de Cuyo Mendoza, Argentina
| | | |
Collapse
|
20
|
Kearney S, Delgado C, Lenz LL. Differential effects of type I and II interferons on myeloid cells and resistance to intracellular bacterial infections. Immunol Res 2013; 55:187-200. [PMID: 22983898 DOI: 10.1007/s12026-012-8362-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The type I and II interferons (IFNs) play important roles in regulating immune responses during viral and bacterial infections and in the context of autoimmune and neoplastic diseases. These two IFN types bind to distinct cell surface receptors that are expressed by nearly all cells to trigger signal transduction events and elicit diverse cellular responses. In some cases, type I and II IFNs trigger similar cellular responses, while in other cases, the IFNs have unique or antagonistic effects on host cells. Negative regulators of IFN signaling also modulate cellular responses to the IFNs and play important roles in maintaining immunological homeostasis. In this review, we provide an overview of how IFNs stimulate cellular responses. We discuss the disparate effects of type I and II IFNs on host resistance to certain intracellular bacterial infections and provide an overview of models that have been proposed to account for these disparate effects. Mechanisms of antagonistic cross talk between type I and II IFNs are also introduced.
Collapse
Affiliation(s)
- Staci Kearney
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
21
|
Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 2013; 3:a010314. [PMID: 23545572 DOI: 10.1101/cshperspect.a010314] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Francisella tularensis is a zoonotic intracellular pathogen and the causative agent of the debilitating febrile illness tularemia. Although natural infections by F. tularensis are sporadic and generally localized, the low infectious dose, with the ability to be transmitted to humans via multiple routes and the potential to cause life-threatening infections, has led to concerns that this bacterium could be used as an agent of bioterror and released intentionally into the environment. Recent studies of F. tularensis and other closely related Francisella species have greatly increased our understanding of mechanisms used by this organism to infect and cause disease within the host. Here, we review the intracellular life cycle of Francisella and highlight key genetic determinants and/or pathways that contribute to the survival and proliferation of this bacterium within host cells.
Collapse
Affiliation(s)
- Jean Celli
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | | |
Collapse
|
22
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
23
|
Chong A, Wehrly TD, Child R, Hansen B, Hwang S, Virgin HW, Celli J. Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy 2012; 8:1342-56. [PMID: 22863802 DOI: 10.4161/auto.20808] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytosolic bacterial pathogens must evade intracellular innate immune recognition and clearance systems such as autophagy to ensure their survival and proliferation. The intracellular cycle of the bacterium Francisella tularensis is characterized by rapid phagosomal escape followed by extensive proliferation in the macrophage cytoplasm. Cytosolic replication, but not phagosomal escape, requires the locus FTT0369c, which encodes the dipA gene (deficient in intracellular replication A). Here, we show that a replication-deficient, ∆dipA mutant of the prototypical SchuS4 strain is eventually captured from the cytosol of murine and human macrophages into double-membrane vacuoles displaying the late endosomal marker, LAMP1, and the autophagy-associated protein, LC3, coinciding with a reduction in viable intracellular bacteria. Capture of SchuS4ΔdipA was not dipA-specific as other replication-deficient bacteria, such as chloramphenicol-treated SchuS4 and a purine auxotroph mutant SchuS4ΔpurMCD, were similarly targeted to autophagic vacuoles. Vacuoles containing replication-deficient bacteria were labeled with ubiquitin and the autophagy receptors SQSTM1/p62 and NBR1, and their formation was decreased in macrophages from either ATG5-, LC3B- or SQSTM1-deficient mice, indicating recognition by the ubiquitin-SQSTM1-LC3 pathway. While a fraction of both the wild-type and the replication-impaired strains were ubiquitinated and recruited SQSTM1, only the replication-defective strains progressed to autophagic capture, suggesting that wild-type Francisella interferes with the autophagic cascade. Survival of replication-deficient strains was not restored in autophagy-deficient macrophages, as these bacteria died in the cytosol prior to autophagic capture. Collectively, our results demonstrate that replication-impaired strains of Francisella are cleared by autophagy, while replication-competent bacteria seem to interfere with autophagic recognition, therefore ensuring survival and proliferation.
Collapse
Affiliation(s)
- Audrey Chong
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Genome-wide RNAi screen in IFN-γ-treated human macrophages identifies genes mediating resistance to the intracellular pathogen Francisella tularensis. PLoS One 2012; 7:e31752. [PMID: 22359626 PMCID: PMC3281001 DOI: 10.1371/journal.pone.0031752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/12/2012] [Indexed: 12/29/2022] Open
Abstract
Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ∼200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included ‘druggable’ targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis.
Collapse
|
25
|
Abdulrahman BA, Khweek AA, Akhter A, Caution K, Kotrange S, Abdelaziz DHA, Newland C, Rosales-Reyes R, Kopp B, McCoy K, Montione R, Schlesinger LS, Gavrilin MA, Wewers MD, Valvano MA, Amer AO. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 2011; 7:1359-70. [PMID: 21997369 DOI: 10.4161/auto.7.11.17660] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is the most common inherited lethal disease of Caucasians which results in multi organ dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR ΔF508 mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1β. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type macrophages but not in ΔF508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-ΔF508 (ΔF508) macrophages than in WT macrophages. An autophagosome is a compartment that engulfs non-functional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and ΔF508 macrophages. However, autophagy dysfunction is more pronounced in ΔF508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, Rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Center for Microbial Interface Biology, Department of Microbial Infection, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ogawa M, Mimuro H, Yoshikawa Y, Ashida H, Sasakawa C. Manipulation of autophagy by bacteria for their own benefit. Microbiol Immunol 2011; 55:459-71. [PMID: 21707736 DOI: 10.1111/j.1348-0421.2011.00343.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is the host innate immune system's first line of defense against microbial intruders. When the innate defense system recognizes invading bacterial pathogens and their infection processes, autophagic proteins act as cytosolic sensors that allow the autophagic pathway to be rapidly activated. However, many intracellular bacterial pathogens deploy highly evolved mechanisms to evade autophagic recognition, manipulate the autophagic pathway, and remodel the autophagosomal compartment for their own benefit. Here current topics regarding the recognition of invasive bacteria by the cytosolic innate immune system are highlighted, including autophagy and the mechanisms that enable bacteria to evade autophagy. Also highlighted are some selective examples of bacterial activities that manipulate the autophagic pathways for their own benefit.
Collapse
Affiliation(s)
- Michinaga Ogawa
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | |
Collapse
|
27
|
Joshi AD, Swanson MS. Secrets of a successful pathogen: legionella resistance to progression along the autophagic pathway. Front Microbiol 2011; 2:138. [PMID: 21743811 PMCID: PMC3127087 DOI: 10.3389/fmicb.2011.00138] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/13/2011] [Indexed: 11/22/2022] Open
Abstract
To proliferate within phagocytes, Legionella pneumophila relies on Type IV secretion to modulate host cellular pathways. Autophagy is an evolutionarily conserved degradative pathway that captures and transfers a variety of microbes to lysosomes. Biogenesis of L. pneumophila-containing vacuoles and autophagosomes share several features, including endoplasmic reticulum (ER)-derived membranes, contributions by the host GTPases Rab1, Arf1 and Sar1, and a final destiny in lysosomes. We discuss morphological, molecular genetic, and immunological data that support the model that, although A/J mouse macrophages efficiently engulf L. pneumophila within autophagosomal membranes, the Type IV effector proteins DrrA/SidM, LidA, and RalF prolong association with the ER. By inhibiting immediately delivery to lysosomes, the bacteria persist in immature autophagosomal vacuoles for a period sufficient to differentiate into an acid-resistant, replicative form. Subsequent secretion of the Type IV effector LepB releases the block to autophagosome maturation, and the adapted progeny continue to replicate within autophagolysosomes. Accordingly, L. pneumophila can be exploited as a genetic tool to analyze the recruitment and function of the macrophage autophagy pathway.
Collapse
Affiliation(s)
- Amrita D Joshi
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA
| | | |
Collapse
|
28
|
IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun 2011; 79:3683-96. [PMID: 21690239 DOI: 10.1128/iai.01344-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Gram-negative bacterium Francisella tularensis is the causative agent of tularemia, a disease intimately associated with the multiplication of the bacterium within host macrophages. This in turn requires the expression of Francisella pathogenicity island (FPI) genes, believed to encode a type VI secretion system. While the exact functions of many of the components have yet to be revealed, some have been found to contribute to the ability of Francisella to cause systemic infection in mice as well as to prevent phagolysosomal fusion and facilitate escape into the host cytosol. Upon reaching this compartment, the bacterium rapidly multiplies, inhibits activation of the inflammasome, and ultimately causes apoptosis of the host cell. In this study, we analyzed the contribution of the FPI-encoded proteins IglG, IglI, and PdpE to the aforementioned processes in F. tularensis LVS. The ΔpdpE mutant behaved similarly to the parental strain in all investigated assays. In contrast, ΔiglG and ΔiglI mutants, although they were efficiently replicating in J774A.1 cells, both exhibited delayed phagosomal escape, conferred a delayed activation of the inflammasome, and exhibited reduced cytopathogenicity as well as marked attenuation in the mouse model. Thus, IglG and IglI play key roles for modulation of the intracellular host response and also for the virulence of F. tularensis.
Collapse
|
29
|
Al-Khodor S, Abu Kwaik Y. Triggering Ras signalling by intracellular Francisella tularensis through recruitment of PKCα and βI to the SOS2/GrB2 complex is essential for bacterial proliferation in the cytosol. Cell Microbiol 2011; 12:1604-21. [PMID: 20618341 DOI: 10.1111/j.1462-5822.2010.01494.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intracellular proliferation of Francisella tularensis is essential for manifestation of the fatal disease tularaemia, and is classified as a category A bioterrorism agent. The F. tularensis-containing phagosome (FCP) matures into a late endosome-like phagosome with limited fusion to lysosomes, followed by rapid bacterial escape into the cytosol. The Francisella pathogenicity island (FPI) encodes a type VI-like secretion system, and the FPI-encoded IglC is essential for evasion of lysosomal fusion and phagosomal escape. Many host signalling events are likely to be modulated by F. tularensis to render the cell permissive for intracellular proliferation but they are not fully understood. Here we show that within 15 min of infection, intracellular F. tularensis ssp. novicida triggers IglC-dependent temporal activation of Ras, but attached extracellular bacteria fail to trigger Ras activation, which has never been shown for other intracellular pathogens. Intracellular F. tularensis ssp. novicida triggers activation of Ras through recruitment of PKCα and PKCβI to the SOS2/GrB2 complex. Silencing of SOS2, GrB2 and PKCα and PKCβI by RNAi has no effect on evasion of lysosomal fusion and bacterial escape into the cytosol but renders the cytosol non-permissive for replication of F. tularensis ssp. novicida. Since Ras activation promotes cell survival, we show that silencing of SOS2, GrB2 and PKCα and βI is associated with rapid early activation of caspase-3 within 8 h post infection. However, silencing of SOS2, GrB2 and PKCα and βI does not affect phosphorylation of Akt or Erk, indicating that activation of the PI3K/Akt and the Erk signalling cascade are independent of the F. tularensis-triggered Ras activation. We conclude that intracellular F. tularensis ssp. novicida triggers temporal and early activation of Ras through the SOS2/GrB2/PKCα/PKCβI quaternary complex. Temporal and rapid trigger of Ras signalling by intracellular F. tularensis is essential for intracellular bacterial proliferation within the cytosol, and this is associated with downregulation of early caspase-3 activation.
Collapse
Affiliation(s)
- Souhaila Al-Khodor
- Department of Microbiology and Immunology, College of Medicine, Department of Biology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
30
|
Kingry LC, Troyer RM, Marlenee NL, Bielefeldt-Ohmann H, Bowen RA, Schenkel AR, Dow SW, Slayden RA. Genetic identification of unique immunological responses in mice infected with virulent and attenuated Francisella tularensis. Microbes Infect 2011; 13:261-75. [PMID: 21070859 PMCID: PMC3031720 DOI: 10.1016/j.micinf.2010.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 11/22/2022]
Abstract
Francisella tularensis is a category A select agent based on its infectivity and virulence but disease mechanisms in infection remain poorly understood. Murine pulmonary models of infection were therefore employed to assess and compare dissemination and pathology and to elucidate the host immune response to infection with the highly virulent Type A F. tularensis strain Schu4 versus the less virulent Type B live vaccine strain (LVS). We found that dissemination and pathology in the spleen was significantly greater in mice infected with F. tularensis Schu4 compared to mice infected with F. tularensis LVS. Using gene expression profiling to compare the response to infection with the two F. tularensis strains, we found that there were significant differences in the expression of genes involved in the apoptosis pathway, antigen processing and presentation pathways, and inflammatory response pathways in mice infected with Schu4 when compared to LVS. These transcriptional differences coincided with marked differences in dissemination and severity of organ lesions in mice infected with the Schu4 and LVS strains. Therefore, these findings indicate that altered apoptosis, antigen presentation and production of inflammatory mediators explain the differences in pathogenicity of F. tularensis Schu4 and LVS.
Collapse
Affiliation(s)
- Luke C. Kingry
- Rocky Mountain Regional Center of Excellence, Colorado State University, Fort Collins, CO 80523
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
- Cellular and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Ryan M. Troyer
- Rocky Mountain Regional Center of Excellence, Colorado State University, Fort Collins, CO 80523
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Nicole L. Marlenee
- Rocky Mountain Regional Center of Excellence, Colorado State University, Fort Collins, CO 80523
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Helle Bielefeldt-Ohmann
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
- School of Veterinary Science, University of Queensland, Gatton Campus, Qld 4343, Australia
| | - Richard A. Bowen
- Rocky Mountain Regional Center of Excellence, Colorado State University, Fort Collins, CO 80523
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Alan R. Schenkel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Steven W. Dow
- Rocky Mountain Regional Center of Excellence, Colorado State University, Fort Collins, CO 80523
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
- Cellular and Molecular Biology, Colorado State University, Fort Collins, CO 80523
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Richard A. Slayden
- Rocky Mountain Regional Center of Excellence, Colorado State University, Fort Collins, CO 80523
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
- Cellular and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
31
|
Chong A, Celli J. The francisella intracellular life cycle: toward molecular mechanisms of intracellular survival and proliferation. Front Microbiol 2010; 1:138. [PMID: 21687806 PMCID: PMC3109316 DOI: 10.3389/fmicb.2010.00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/05/2010] [Indexed: 11/13/2022] Open
Abstract
The tularemia-causing bacterium Francisella tularensis is a facultative intracellular organism with a complex intracellular lifecycle that ensures its survival and proliferation in a variety of mammalian cell types, including professional phagocytes. Because this cycle is essential to Francisella pathogenesis and virulence, much research has focused on deciphering the mechanisms of its intracellular survival and replication and characterizing both bacterial and host determinants of the bacterium's intracellular cycle. Studies of various strains and host cell models have led to the consensual paradigm of Francisella as a cytosolic pathogen, but also to some controversy about its intracellular cycle. In this review, we will detail major findings that have advanced our knowledge of Francisella intracellular survival strategies and also attempt to reconcile discrepancies that exist in our molecular understanding of the Francisella–phagocyte interactions.
Collapse
Affiliation(s)
- Audrey Chong
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | |
Collapse
|
32
|
Chiu HC, Soni S, Kulp SK, Curry H, Wang D, Gunn JS, Schlesinger LS, Chen CS. Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent. J Biomed Sci 2009; 16:110. [PMID: 20003180 PMCID: PMC2801672 DOI: 10.1186/1423-0127-16-110] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/09/2009] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Autophagy has been shown recently to play an important role in the intracellular survival of several pathogenic bacteria. In this study, we investigated the effect of a novel small-molecule autophagy-inducing agent, AR-12, on the survival of Francisella tularensis, the causative bacterium of tularemia in humans and a potential bioterrorism agent, in macrophages. METHODS AND RESULTS Our results show that AR-12 induces autophagy in THP-1 macrophages, as indicated by increased autophagosome formation, and potently inhibits the intracellular survival of F. tularensis (type A strain, Schu S4) and F. novicida in macrophages in association with increased bacterial co-localization with autophagosomes. The effect of AR-12 on intracellular F. novicida was fully reversed in the presence of the autophagy inhibitor, 3-methyl adenine or the lysosome inhibitor, chloroquine. Intracellular F. novicida were not susceptible to the inhibitory activity of AR-12 added at 12 h post-infection in THP-1 macrophages, and this lack of susceptibility was independent of the intracellular location of bacteria. CONCLUSION Together, AR-12 represents a proof-of-principle that intracellular F. tularensis can be eradicated by small-molecule agents that target innate immunity.
Collapse
|
33
|
Meibom KL, Barel M, Charbit A. Loops and networks in control of Francisella tularensis virulence. Future Microbiol 2009; 4:713-29. [PMID: 19659427 DOI: 10.2217/fmb.09.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is a highly infectious, Gram-negative bacterium responsible for the disease tularemia in a broad variety of animals, including humans. F. tularensis intracellular multiplication occurs mainly in macrophages. However, F. tularensis is able to infect many other cell types, including other phagocytic (dendritic cells, polymorphonuclear leukocytes) and nonphagocytic (alveolar epithelial cells, hepatocytes, endothelial cells and fibroblasts) cells. The ability of professional phagocytic cells to engulf and kill microbes is an essential component of innate defense. The ability of F. tularensis to impair phagocyte function and survive in the cytosol of infected cells thus constitutes a central aspect of its virulence. The F. tularensis intracellular lifecycle relies on the tightly regulated expression of a series of genes. The unraveling secrets of the regulatory cascades governing the regulation of virulence of F. tularensis will be discussed along with future challenges yet to be solved.
Collapse
Affiliation(s)
- Karin L Meibom
- INSERM U570, Université Paris Descartes, Faculté de Médecine Necker Enfants-Malades, 75730, Paris Cedex 15, France.
| | | | | |
Collapse
|