1
|
Huang B, Guo F, Chen J, Lu L, Gao S, Yang C, Wu H, Luo W, Pan Q. Regulation of B-cell function by miRNAs impacting Systemic lupus erythematosus progression. Gene 2025; 933:149011. [PMID: 39427831 DOI: 10.1016/j.gene.2024.149011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease marked by abnormal B-cell proliferation and increased autoantibodies. miRNAs play a crucial role in regulating B-cell dysfunction and SLE pathology. miRNAs influence DNA methylation, B-cell activation, and gene expression, contributing to SLE pathogenesis. miRNAs impact B cells through key processes like proliferation, differentiation, tolerance, and apoptosis. miRNAs also exacerbate inflammation and immune responses by modulating Interleukin 4 (IL-4), IL-6, and interferon cytokines. Autophagy, a key degradation mechanism, is also regulated by specific miRNAs that impact SLE pathology. This article explores the role of multiple miRNAs in regulating B-cell development, proliferation, survival, and immune responses, influencing SLE pathogenesis. miRNAs like miR-23a, the miR-17 ∼ 92 family, and miR-125b/miR-221 affect B-cell development by regulating transcription factors, signaling pathways, and cell cycle genes. miRNAs such as miR-181a-5p and miR-23a-5p are differentially regulated across developmental stages, emphasizing their complex regulatory roles in B-cell biology. This article synthesizes miRNA-B cell interactions to offer new strategies and directions for SLE diagnosis and treatment.
Collapse
Affiliation(s)
- Bitang Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Fengbiao Guo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiaxuan Chen
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lu Lu
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shenglan Gao
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chunlong Yang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Han Wu
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Wenying Luo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Qingjun Pan
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
2
|
Zhong C, Xu H, Chen J, Cai W, Zhou J, Peng H. Human Umbilical Cord Mesenchymal Stem Cells Prevent Steroid-Induced Avascular Necrosis of the Femoral Head by Modulating Cellular Autophagy. Biomedicines 2024; 12:2817. [PMID: 39767723 PMCID: PMC11673007 DOI: 10.3390/biomedicines12122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Glucocorticoids (GCs) are critical regulatory molecules in the body, commonly utilized in clinical practice for their potent anti-inflammatory and immunosuppressive properties. However, prolonged, high-dose GC therapy is frequently associated with femoral head necrosis, a condition known as glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH). Emerging evidence suggests that enhanced autophagy may mitigate apoptosis, thereby protecting osteoblasts from GC-induced damage and delaying the progression of ONFH. This study aims to evaluate whether human umbilical cord mesenchymal stem cells (hUCMSCs) can alleviate GC-induced osteoblast injury through autophagy modulation. METHODS In vitro, osteoblasts were exposed to GCs for 48 h, followed by co-culture with hUCMSCs for an additional 12 h before further analysis. The osteoblasts were categorized into four experimental groups: (A) control group, (B) Dex group, (C) Dex + hUCMSC group, and (D) Dex + hUCMSC + 3-MA group. In vivo, rabbits were assigned to one of four groups: Con, MPS, core decompression (CD), and CD + hUCMSC (n = 12 per group), and subsequently subjected to CT imaging and HE staining. RESULTS In vitro results demonstrate that hUCMSC treatment mitigated GC-induced osteoblast apoptosis and preserved osteogenic activity through autophagy modulation. In vivo, infusion of hUCMSCs enhanced trabecular thickness in the femoral head and improved the femoral head microenvironment. CONCLUSIONS These findings suggest that hUCMSCs protect osteoblasts from GC-induced damage by regulating autophagy, offering new insights into the potential therapeutic use of hUCMSCs for treating ONFH via autophagy enhancement.
Collapse
Affiliation(s)
| | | | | | | | - Jianlin Zhou
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.Z.); (J.C.); (H.X.); (W.C.)
| | - Hao Peng
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.Z.); (J.C.); (H.X.); (W.C.)
| |
Collapse
|
3
|
Li Z, Hu O, Xu S, Lin C, Yu W, Ma D, Lu J, Liu P. The SIRT3-ATAD3A axis regulates MAM dynamics and mitochondrial calcium homeostasis in cardiac hypertrophy. Int J Biol Sci 2024; 20:831-847. [PMID: 38250153 PMCID: PMC10797690 DOI: 10.7150/ijbs.89253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/18/2023] [Indexed: 01/23/2024] Open
Abstract
Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zeyu Li
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ou Hu
- Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Chenjia Lin
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjing Yu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dinghu Ma
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Tian R, Yuan L, Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Perturbed autophagy intervenes systemic lupus erythematosus by active ingredients of traditional Chinese medicine. Front Pharmacol 2023; 13:1053602. [PMID: 36733375 PMCID: PMC9887156 DOI: 10.3389/fphar.2022.1053602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a common multisystem, multiorgan heterozygous autoimmune disease. The main pathological features of the disease are autoantibody production and immune complex deposition. Autophagy is an important mechanism to maintain cell homeostasis. Autophagy functional abnormalities lead to the accumulation of apoptosis and induce the autoantibodies that result in immune disorders. Therefore, improving autophagy may alleviate the development of SLE. For SLE, glucocorticoids or immunosuppressive agents are commonly used in clinical treatment, but long-term use of these drugs causes serious side effects in humans. Immunosuppressive agents are expensive. Traditional Chinese medicines (TCMs) are widely used for immune diseases due to their low toxicity and few side effects. Many recent studies found that TCM and its active ingredients affected the pathological development of SLE by regulating autophagy. This article explains how autophagy interferes with immune system homeostasis and participates in the occurrence and development of SLE. It also summarizes several studies on TCM-regulated autophagy intervention in SLE to generate new ideas for basic research, the development of novel medications, and the clinical treatment of SLE.
Collapse
Affiliation(s)
- Rui Tian
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- College of Biological Science and Technology, Hubei MinZu University, Enshi, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, China
| | - Yuan Huang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jingfeng Tang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Lead Contact, Wuhan, China
| |
Collapse
|
5
|
A Mechanism Exploration for the Yi-Fei-San-Jie Formula against Non-Small-Cell Lung Cancer Based on UPLC-MS/MS, Network Pharmacology, and In Silico Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3436814. [PMID: 36654811 PMCID: PMC9842415 DOI: 10.1155/2023/3436814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most prevalent cancers worldwide. A Yi-Fei-San-Jie formula (YFSJF), widely used in NSCLC treatment in south China, has been validated in clinical studies. However, the pharmacological mechanism behind it remains unclear. In this study, 73 compounds were identified using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), with 58 enrolled in network pharmacology. The protein-protein interaction network, functional enrichment analysis, and compound-target-pathway network were constructed using 74 overlapping targets from 58 drugs and NSCLC. YFSJF has many targets and pathways in the fight against NSCLC. PIK3R1, PIK3CA, and AKT1 were identified as key targets, and the PI3K/AKT pathway was identified as the key pathway. According to the Human Protein Atlas (THPA) database and the Kaplan-Meier Online website, the three key targets had varying expression levels in normal and abnormal tissues and were linked to prognosis. Molecular docking and dynamics simulations verified that hub compounds have a strong affinity with three critical targets. This study revealed multiple compounds, targets, and pathways for YFSJF against NSCLC and suggested that YFSJF might inhibit PIK3R1, PIK3CA, and AKT1 to suppress the PI3K/AKT pathway and play its pharmacological role.
Collapse
|
6
|
Fyn Signaling in Ischemia-Reperfusion Injury: Potential and Therapeutic Implications. Mediators Inflamm 2022; 2022:9112127. [PMID: 36157893 PMCID: PMC9499810 DOI: 10.1155/2022/9112127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke and is one of the leading causes of disability and death, with the incidence increasing each year. Fyn is a nonreceptor tyrosine kinase belonging to the Src family of kinases (SFKs), which is related to many normal and pathological processes of the nervous system, including neurodevelopment and disease progression. In recent years, more and more evidence suggests that Fyn may be closely related to cerebral ischemia-reperfusion, including energy metabolism disorders, excitatory neurotoxicity, intracellular calcium homeostasis, free radical production, and the activation of apoptotic genes. This paper reviews the role of Fyn in the pathological process of cerebral ischemia-reperfusion, including neuroexcitotoxicity and neuroinflammation, to explore how Fyn affects specific signal cascades and leads to cerebral ischemia-reperfusion injury. In addition, Fyn also promotes the production of superoxide and endogenous NO, so as to quickly react to produce peroxynitrite, which may also mediate cerebral ischemia-reperfusion injury, which is discussed in this paper. Finally, we revealed the treatment methods related to Fyn inhibitors and discussed its potential as a clinical treatment for ischemic stroke.
Collapse
|
7
|
Caza T, Wijewardena C, Al-Rabadi L, Perl A. Cell type-specific mechanistic target of rapamycin-dependent distortion of autophagy pathways in lupus nephritis. Transl Res 2022; 245:55-81. [PMID: 35288362 PMCID: PMC9240418 DOI: 10.1016/j.trsl.2022.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Pro-inflammatory immune system development, metabolomic defects, and deregulation of autophagy play interconnected roles in driving the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a leading cause of morbidity and mortality in SLE. While the causes of SLE have not been clearly delineated, skewing of T and B cell differentiation, activation of antigen-presenting cells, production of antinuclear autoantibodies and pro-inflammatory cytokines are known to contribute to disease development. Underlying this process are defects in autophagy and mitophagy that cause the accumulation of oxidative stress-generating mitochondria which promote necrotic cell death. Autophagy is generally inhibited by the activation of the mammalian target of rapamycin (mTOR), a large protein kinase that underlies abnormal immune cell lineage specification in SLE. Importantly, several autophagy-regulating genes, including ATG5 and ATG7, as well as mitophagy-regulating HRES-1/Rab4A have been linked to lupus susceptibility and molecular pathogenesis. Moreover, genetically-driven mTOR activation has been associated with fulminant lupus nephritis. mTOR activation and diminished autophagy promote the expansion of pro-inflammatory Th17, Tfh and CD3+CD4-CD8- double-negative (DN) T cells at the expense of CD8+ effector memory T cells and CD4+ regulatory T cells (Tregs). mTOR activation and aberrant autophagy also involve renal podocytes, mesangial cells, endothelial cells, and tubular epithelial cells that may compromise end-organ resistance in LN. Activation of mTOR complexes 1 (mTORC1) and 2 (mTORC2) has been identified as biomarkers of disease activation and predictors of disease flares and prognosis in SLE patients with and without LN. This review highlights recent advances in molecular pathogenesis of LN with a focus on immuno-metabolic checkpoints of autophagy and their roles in pathogenesis, prognosis and selection of targets for treatment in SLE.
Collapse
Affiliation(s)
| | - Chathura Wijewardena
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| | - Laith Al-Rabadi
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Biochemistry and Molecular Biology, Neuroscience and Physiology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.
| |
Collapse
|
8
|
Celia AI, Colafrancesco S, Barbati C, Alessandri C, Conti F. Autophagy in Rheumatic Diseases: Role in the Pathogenesis and Therapeutic Approaches. Cells 2022; 11:cells11081359. [PMID: 35456038 PMCID: PMC9025357 DOI: 10.3390/cells11081359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Autophagy is a lysosomal pathway for the degradation of damaged proteins and intracellular components that promotes cell survival under specific conditions. Apoptosis is, in contrast, a critical programmed cell death mechanism, and the relationship between these two processes influences cell fate. Recent evidence suggests that autophagy and apoptosis are involved in the self-tolerance promotion and in the regulatory mechanisms contributing to disease susceptibility and immune regulation in rheumatic diseases. The aim of this review is to discuss how the balance between autophagy and apoptosis may be dysregulated in multiple rheumatic diseases and to dissect the role of autophagy in the pathogenesis of rheumatoid arthritis, systemic lupus erythematosus, and Sjögren’s syndrome. Furthermore, to discuss the potential capacity of currently used disease-modifying antirheumatic drugs (DMARDs) to target and modulate autophagic processes.
Collapse
|
9
|
Yang J, Sun M, Cheng R, Tan H, Liu C, Chen R, Zhang J, Yang Y, Gao X, Huang L. Pitavastatin activates mitophagy to protect EPC proliferation through a calcium-dependent CAMK1-PINK1 pathway in atherosclerotic mice. Commun Biol 2022; 5:124. [PMID: 35145192 PMCID: PMC8831604 DOI: 10.1038/s42003-022-03081-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Statins play a major role in reducing circulating cholesterol levels and are widely used to prevent coronary artery disease. Although they are recently confirmed to up-regulate mitophagy, little is known about the molecular mechanisms and its effect on endothelial progenitor cell (EPC). Here, we explore the role and mechanism underlying statin (pitavastatin, PTV)-activated mitophagy in EPC proliferation. ApoE−/− mice are fed a high-fat diet for 8 weeks to induce atherosclerosis. In these mice, EPC proliferation decreases and is accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway. PTV reverses mitophagy and reduction in proliferation. Pink1 knockout or silencing Atg7 blocks PTV-induced proliferation improvement, suggesting that mitophagy contributes to the EPC proliferation increase. PTV elicits mitochondrial calcium release into the cytoplasm and further phosphorylates CAMK1. Phosphorylated CAMK1 contributes to PINK1 phosphorylation as well as mitophagy and mitochondrial function recover in EPCs. Together, our findings describe a molecular mechanism of mitophagy activation, where mitochondrial calcium release promotes CAMK1 phosphorylation of threonine177 before phosphorylation of PINK1 at serine228, which recruits PARK2 and phosphorylates its serine65 to activate mitophagy. Our results further account for the pleiotropic effects of statins on the cardiovascular system and provide a promising and potential therapeutic target for atherosclerosis. Endothelial progenitor cell (EPCs) proliferation decreased, accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway in atherosclerosis. Statins induce mitophagy to protect EPCs by mitochondrial calcium release and CAMK1-mediated PINK1 phosphorylation.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ran Cheng
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Renzheng Chen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China. .,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
10
|
Liu Y, Ding Q, Halderson SJ, Arriola Apelo SI, Jones AK, Pillai SM, Hoffman ML, Reed S, Govoni KE, Zinn SA, Guo W. Maternal Overnutrition During Gestation in Sheep Alters Autophagy Associated Pathways in Offspring Heart. Front Genet 2022; 12:742704. [PMID: 35173761 PMCID: PMC8841792 DOI: 10.3389/fgene.2021.742704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Poor maternal nutrition during gestation can negatively affect offspring growth, development, and health pre- and post-natally. Overfeeding during gestation or maternal obesity (MO) results in altered metabolism and imbalanced endocrine hormones in animals and humans which will have long-lasting and detrimental effects on offspring growth and health. In this study, we examined the effects of overnutrition during gestation on autophagy associated pathways in offspring heart muscles at two gestational and one early postnatal time point (n = 5 for treated and untreated male and female heart respectively at each time point). Two-way ANOVA was used to analyze the interaction between treatment and sex at each time point. Our results revealed significant interactions of maternal diet by developmental stages for offspring autophagy signaling. Overfeeding did not affect the autophagy signaling at mid-gestation day 90 (GD90) in both male and female offspring while the inflammatory cytokines were increased in GD90 MO male offsrping; however, overfeeding during gestation significantly increased autophagy signaling, but not inflammation level at a later developmental stage (GD135 and day 1 after birth) in both males and females. We also identified a sexual dimorphic response in which female progeny were more profoundly influenced by maternal diet than male progeny regardless of developmental stages. We also determined the cortisol concentrations in male and female hearts at three developmental stages. We did not observe cortisol changes between males and females or between overfeeding and control groups. Our exploratory studies imply that MO alters autophagy associated pathways in both male and female at later developmental stages with more profound effects in female. This finding need be confirmed with larger sample numbers in the future. Our results suggest that targeting on autophagy pathway could be a strategy for correction of adverse effects in offspring of over-fed ewes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Animal and Diary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Qiyue Ding
- Department of Animal and Diary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Halderson
- Department of Animal and Diary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Amanda K. Jones
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Sambhu M. Pillai
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Maria L. Hoffman
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Sarah Reed
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Kristen E. Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Steven A. Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Wei Guo
- Department of Animal and Diary Sciences, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Wei Guo,
| |
Collapse
|
11
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
12
|
Liu J, Liang R, Huang H, Zhang Y, Xie A, Zhong Y. Effect of an Antagonistic Peptide of CCR5 on the Expression of Autophagy-related Genes and β-Arrestin 2 in Lung Tissues of Asthmatic Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:106-121. [PMID: 33191680 PMCID: PMC7680831 DOI: 10.4168/aair.2021.13.1.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Purpose The mechanisms of CC chemokine receptor 5 (CCR5) in the process of autophagy remain unknown. In this study, we examined the role of HY peptide, which is an antagonistic peptide specifically binding the second extracellular loop of CCR5, in the expression of autophagy genes and β-arrestin 2 in lung tissues of asthmatic mice. Methods Experimental asthmatic mice were treated with HY peptide and dexamethasone sodium phosphate (Dex). Airway inflammation, autophagy-related genes, autophagic vacuoles (AVs) and β-arrestin 2 were examined in lung tissues, and the correlation between β-arrestin 2 and LC3 expression was assessed. Results HY peptide and Dex treatments alleviate airway inflammation. The expression of autophagy-related genes, such as BECN1, ATG5 and LC3, was decreased in the lung tissues of the asthmatic mice. However, HY peptide and Dex treatments increased the expression of these genes as well as the formation of AVs. Additionally, the expression of the β-arrestin 2 protein was significantly increased in the HY peptide-treated group, and positive cells expressing β-arrestin 2 were mainly located in the membrane and cytoplasm of bronchial epithelial cells. The β-arrestin 2 expression was positively correlated with the expression of LC3 in the model and HY peptide-treated groups. Conclusions HY peptide inhibits airway inflammation, autophagic dysfunction exists in asthmatic mice, and targeting HY peptide increases the expression of autophagy-related genes. Thus, β-arrestin 2 may participate in the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Juan Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rongrong Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huarong Huang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingli Zhang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aicen Xie
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingqiang Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
13
|
Wang X, Xu Z, Cai Y, Zeng S, Peng B, Ren X, Yan Y, Gong Z. Rheostatic Balance of Circadian Rhythm and Autophagy in Metabolism and Disease. Front Cell Dev Biol 2020; 8:616434. [PMID: 33330516 PMCID: PMC7732583 DOI: 10.3389/fcell.2020.616434] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Circadian rhythms are physical, behavioral and environmental cycles that respond primarily to light and dark, with a period of time of approximately 24 h. The most essential physiological functions of mammals are manifested in circadian rhythm patterns, including the sleep-wake cycle and nutrient and energy metabolism. Autophagy is a conserved biological process contributing to nutrient and cellular homeostasis. The factors affecting autophagy are numerous, such as diet, drugs, and aging. Recent studies have indicated that autophagy is activated rhythmically in a clock-dependent manner whether the organism is healthy or has certain diseases. In addition, autophagy can affect circadian rhythm by degrading circadian proteins. This review discusses the interaction and mechanisms between autophagy and circadian rhythm. Moreover, we introduce the molecules influencing both autophagy and circadian rhythm. We then discuss the drugs affecting the circadian rhythm of autophagy. Finally, we present the role of rhythmic autophagy in nutrient and energy metabolism and its significance in physiology and metabolic disease.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Luo X, Li Y, Yang P, Chen Y, Wei L, Yu T, Xia J, Ruan XZ, Zhao L, Chen Y. Obesity induces preadipocyte CD36 expression promoting inflammation via the disruption of lysosomal calcium homeostasis and lysosome function. EBioMedicine 2020; 56:102797. [PMID: 32516742 PMCID: PMC7281849 DOI: 10.1016/j.ebiom.2020.102797] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/13/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Preadipocyte is closely related to obesity-induced inflammation. The impairment of autophagic flux by defective lysosomal function has been observed in adipose tissue from obese mice. While the fatty acid translocase CD36 is an important immuno-metabolic receptor, it remains unclear whether preadipocyte CD36 is involved in adipose tissue inflammation and whether CD36 regulates lysosomal function. Methods Using visceral adipose tissue from obese patients, a high-fat diet (HFD)-induced obese mice model, primary mouse preadipocytes and 3T3L1 cells we analyzed whether and how preadipocyte CD36 modulates lysosomal function and adipose tissue inflammation. Findings CD36 expression in preadipocytes is induced in obese patients and HFD-fed mice, accompanied with the disruption of lysosome function. CD36 knockout protects primary preadipocytes of HFD-fed mice from lysosomal impairment. In vitro, CD36 interacts with Fyn to phosphorylate and activate Inositol (1,4,5)-trisphosphate receptor 1 (IP3R1), causing excess calcium transport from endoplasmic reticulum (ER) to lysosome, which results in lysosomal impairment and inflammation. Moreover, IP3R inhibitor 2-aminoethoxydiphenyl borate (2APB) attenuates lysosomal impairment, inflammation and lipid accumulation in CD36-overexpressing preadipocytes. Interpretation Our data support that the abnormal upregulation of CD36 in preadipocytes may contribute to the development of adipose tissue inflammation. CD36/Fyn/IP3R1-mediated lysosomal calcium overload leads to lysosomal impairment and inflammation in preadipocyte. Thus targeting improving lysosomal calcium homeostasis may represent a novel strategy for treating obesity-induced inflammation.
Collapse
Affiliation(s)
- Xiaoxiao Luo
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanping Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ping Yang
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yao Chen
- Medical Examination Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wei
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ting Yu
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jun Xia
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Hanghai, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| | - Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Pacheco Y, Lim CX, Weichhart T, Valeyre D, Bentaher A, Calender A. Sarcoidosis and the mTOR, Rac1, and Autophagy Triad. Trends Immunol 2020; 41:286-299. [PMID: 32122794 DOI: 10.1016/j.it.2020.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Sarcoidosis is an enigmatic multisystem disease characterized by the development and accumulation of granulomas: a compact collection of macrophages that have differentiated into epithelioid cells and which are associated with T helper (Th)1 and Th17 cells. Although no single causative factor has been shown to underlie sarcoidosis in humans, its etiology has been related to microbial, environmental, and genetic factors. We examine how these factors play a role in sarcoidosis pathogenesis. Specifically, we propose that dysfunction of mTOR, Rac1, and autophagy-related pathways not only hampers pathogen or nonorganic particle clearance but also participates in T cell and macrophage dysfunction, driving granuloma formation. This concept opens new avenues for potentially treating sarcoidosis and may serve as a blueprint for other granulomatous disorders.
Collapse
Affiliation(s)
- Yves Pacheco
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France
| | - Clarice X Lim
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Dominique Valeyre
- Department of Pulmonology, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), EA-2363, Université Paris 13, Bobigny, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France
| | - Alain Calender
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France; Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital, Bron, France.
| |
Collapse
|
16
|
Leong JY, Chen P, Yeo JG, Ally F, Chua C, Nur Hazirah S, Poh SL, Pan L, Lai L, Lee ESC, Bathi LDT, Arkachaisri T, Lovell D, Albani S. Immunome perturbation is present in patients with juvenile idiopathic arthritis who are in remission and will relapse upon anti-TNFα withdrawal. Ann Rheum Dis 2019; 78:1712-1721. [PMID: 31540934 PMCID: PMC6900250 DOI: 10.1136/annrheumdis-2019-216059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Biologics treatment with antitumour necrosis factor alpha (TNFα) is efficacious in patients with juvenile idiopathic arthritis (JIA). Despite displaying clinical inactivity during treatment, many patients will flare on cessation of therapy. The inability to definitively discriminate patients who will relapse or continue to remain in remission after therapy withdrawal is currently a major unmet medical need. CD4 T cells have been implicated in active disease, yet how they contribute to disease persistence despite treatment is unknown. METHODS We interrogated the circulatory reservoir of CD4+ immune subsets at the single-cell resolution with mass cytometry (cytometry by time of flight) of patients with JIA (n=20) who displayed continuous clinical inactivity for at least 6 months with anti-TNFα and were subsequently withdrawn from therapy for 8 months, and scored as relapse or remission. These patients were examined prior to therapy withdrawal for putative subsets that could discriminate relapse from remission. We verified on a separate JIA cohort (n=16) the dysregulation of these circulatory subsets 8 months into therapy withdrawal. The immunological transcriptomic signature of CD4 memory in relapse/remission patients was examined with NanoString. RESULTS An inflammatory memory subset of CD3+CD4+CD45RA-TNFα+ T cells deficient in immune checkpoints (PD1-CD152-) was present in relapse patients prior to therapy withdrawal. Transcriptomic profiling reveals divergence between relapse and remission patients in disease-centric pathways involving (1) T-cell receptor activation, (2) apoptosis, (3) TNFα, (4) nuclear factor-kappa B and (5) mitogen-activated protein kinase signalling. CONCLUSIONS A unique discriminatory immunomic and transcriptomic signature is associated with relapse patients and may explain how relapse occurs.
Collapse
Affiliation(s)
- Jing Yao Leong
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | - Phyllis Chen
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Fauziah Ally
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | - Camillus Chua
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | - Sharifah Nur Hazirah
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | - Su Li Poh
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | - Lu Pan
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | - Liyun Lai
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | | | - Loshinidevi D/O Thana Bathi
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Daniel Lovell
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Paediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore Health Service, Singapore, Singapore
| |
Collapse
|
17
|
Yang F, He Y, Zhai Z, Sun E. Programmed Cell Death Pathways in the Pathogenesis of Systemic Lupus Erythematosus. J Immunol Res 2019; 2019:3638562. [PMID: 31871956 PMCID: PMC6913273 DOI: 10.1155/2019/3638562] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/04/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by excessive inflammatory and immune responses and tissue damage. Increasing evidence has demonstrated the important role of programmed cell death in SLE pathogenesis. When apoptosis encounters with defective clearance, accumulated apoptotic cells lead to secondary necrosis. Different forms of lytic cell death, including secondary necrosis after apoptosis, NETosis, necroptosis, and pyroptosis, contribute to the release of damage-associated molecular patterns (DAMPs) and autoantigens, resulting in triggering immunity and tissue damage in SLE. However, the role of autophagy in SLE pathogenesis is in dispute. This review briefly discusses different forms of programmed cell death pathways and lay particular emphasis on inflammatory cell death pathways such as NETosis, pyroptosis, and necroptosis and their roles in the inflammatory and immune responses in SLE.
Collapse
Affiliation(s)
- Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
- Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Hu YX, Han XS, Jing Q. Ca(2+) Ion and Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:151-166. [PMID: 31776984 DOI: 10.1007/978-981-15-0602-4_7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlled by a strict mechanism, intracellular calcium (Ca(2+)) is closely related to various cellular activities, including the regulation of autophagy. Researchers believed that under normal or stress state, Ca(2+) has a positive or negative regulation effect on autophagy, the mechanisms of which are different. This bidirectional role of Ca(2+), promotive or suppressing in the regulation of autophagy under different conditions remains controversial, so as the potential mechanisms. Several studies reported that Ca(2+) promotes autophagy through plenty of ways, like inositol 1,4,5-trisphosphate receptor (IP3R) and beclin1 pathway, calmodulin-dependent kinase kinase beta (CaMKKβ)-AMPK-mTOR pathway, mitochondrial energy metabolism-related Ca(2+) uptake, lysosome's regulation of Ca(2+) signal, and so on. Others thought Ca(2+) may inhibit autophagy through IP3R and beclin1-Bcl-2 complex and the AMPK-mTOR pathway, either. It seems to be still a long way to thoroughly understand the truth of Ca(2+) and autophagy.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Xiao-Shuai Han
- CAS Key Lab of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Qing Jing
- CAS Key Lab of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
19
|
Yin H, Wu H, Chen Y, Zhang J, Zheng M, Chen G, Li L, Lu Q. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front Immunol 2018; 9:1512. [PMID: 30108582 PMCID: PMC6080611 DOI: 10.3389/fimmu.2018.01512] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a complicated cellular mechanism that maintains cellular and tissue homeostasis and integrity via degradation of senescent, defective subcellular organelles, infectious agents, and misfolded proteins. Accumulating evidence has shown that autophagy is involved in numerous immune processes, such as removal of intracellular bacteria, cytokine production, autoantigen presentation, and survival of lymphocytes, indicating an apparent and important role in innate and adaptive immune responses. Indeed, in genome-wide association studies, autophagy-related gene polymorphisms have been suggested to be associated with the pathogenesis of several autoimmune and inflammatory disorders, such as systemic lupus erythematosus, psoriasis, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition, conditional knockdown of autophagy-related genes in mice displayed therapeutic effects on several autoimmune disease models by reducing levels of inflammatory cytokines and autoreactive immune cells. However, the inhibition of autophagy accelerates the progress of some inflammatory and autoimmune diseases via promotion of inflammatory cytokine production. Therefore, this review will summarize the current knowledge of autophagy in immune regulation and discuss the therapeutic and pathogenic role of autophagy in autoimmune diseases to broaden our understanding of the etiopathogenesis of autoimmune diseases and shed light on autophagy-mediated therapies.
Collapse
Affiliation(s)
- Heng Yin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Genhui Chen
- Beijing Wenfeng Tianji Pharmaceuticals Ltd., Beijing, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Anguita E, Villalobo A. Ca 2+ signaling and Src-kinases-controlled cellular functions. Arch Biochem Biophys 2018; 650:59-74. [DOI: 10.1016/j.abb.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
|
21
|
Wang L, Law HKW. Immune complexes suppressed autophagy in glomerular endothelial cells. Cell Immunol 2018; 328:1-8. [DOI: 10.1016/j.cellimm.2018.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
22
|
BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget 2018; 7:23370-82. [PMID: 26993765 PMCID: PMC5029633 DOI: 10.18632/oncotarget.8042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 02/28/2016] [Indexed: 11/29/2022] Open
Abstract
Inhibition of proapoptotic pathways in synovial fibroblasts is one of the major causes of synovial proliferation and hyperplasia in rheumatic diseases. We have shown previously that NF-κB inhibitor BAY 11-7085, through inactivation of PPAR-γ, induces apoptosis in human synovial fibroblasts. In this work we showed that BAY 11-7085 induced autophagy that preceded BAY 11-7085-induced apoptosis. Of interest, BAY 11-7085 induced Serine 211 phosphorylation and degradation of glucocorticoid receptor (GR). Glucocorticoid prednisolone induced both activation and degradation of GR, as well as autophagy in synovial fibroblasts. BAY 11-7085-induced cell death was significantly decreased with glucocorticoid inhibitor mifepristone and with inhibitors of autophagy. Both BAY 11-7085-induced autophagy and GR activation were down regulated with PPAR-γ agonist, 15d-PGJ2 and MEK/ERK inhibitor UO126. Inhibition of autophagy markedly decreased endogenous and BAY 11-7085-induced ERK phosphorylation, suggesting a positive feed back loop between ERK activation and autophagy in synovial fibroblasts. Co-transfection of MEK1 with PPAR-γ1 in HEK293 cells caused known inhibitory phosphorylation of PPAR-γ1 (Serine 112) and enhanced GR degradation, in the absence or presence of prednisolone. Furthermore, GR was both phosphorylated on Serine 211 and down regulated in synovial fibroblasts during serum starvation induced autophagy. These results showed that GR activation and PPAR-γ inactivation mediated BAY 11-7085-induced autophagy.
Collapse
|
23
|
Long Z, Chen B, Liu Q, Zhao J, Yang Z, Dong X, Xia L, Huang S, Hu X, Song B, Li L. The reverse-mode NCX1 activity inhibitor KB-R7943 promotes prostate cancer cell death by activating the JNK pathway and blocking autophagic flux. Oncotarget 2018; 7:42059-42070. [PMID: 27275542 PMCID: PMC5173116 DOI: 10.18632/oncotarget.9806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023] Open
Abstract
We explored the effects of KB-R7943, an inhibitor of reverse-mode NCX1 activity, in prostate cancer (PCa). NCX1 was overexpressed in PCa tissues and cell lines, and higher NCX1 levels were associated higher PCa grades. At concentrations greater than 10 μM, KB-R7943 dose-dependently decreased PC3 and LNCaP cell viability. KB-R7943 also increased cell cycle G1/S phase arrest and induced apoptosis in PC3 cells. KB-R7943 increased autophagosome accumulation in PCa cells as indicated by increases in LC3-II levels and eGFP-LC3 puncta. Combined treatment with chloroquine (CQ) and KB-R7943 decreased P62 and increased LC3-II protein levels in PC3 cells, indicating that KB-R7943 blocked autophagic flux. KB-R7943 induced autophagosome accumulation mainly by downregulating the PI3K/AKT/m-TOR pathway and upregulating the JNK pathway. In xenograft experiments, KB-R7943 inhibited tumor growth. Combined treatment with KB-R7943 and an autophagy inhibitor inhibited growth and increased apoptosis. These results indicate that KB-R7943 promotes cell death in PCa by activating the JNK signaling pathway and blocking autophagic flux.
Collapse
Affiliation(s)
- Zhou Long
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - BaiJun Chen
- Department of Gastroenterology, First Affiliated Hospital, Medical College of Chengdu, Chengdu, 610500, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - ZhenXing Yang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - XingYou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - LiuBin Xia
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - ShengQuan Huang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - XiaoYan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Bo Song
- Department of Urology, First Affiliated Hospital, Third Military Medical University, Chongqing, 400038, China
| | - LongKun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
24
|
Abstract
Receptors that activate the heterotrimeric G protein Gαq are thought to play a role in the development of heart failure. Dysregulation of autophagy occurs in some pathological cardiac conditions including heart failure, but whether Gαq is involved in this process is unknown. We used a cardiomyocyte-specific transgenic mouse model of inducible Gαq activation (termed GαqQ209L) to address this question. After 7 days of Gαq activation, GαqQ209L hearts contained more autophagic vacuoles than wild type hearts. Increased levels of proteins involved in autophagy, especially p62 and LC3-II, were also seen. LysoTracker staining and western blotting showed that the number and size of lysosomes and lysosomal protein levels were increased in GαqQ209L hearts, indicating enhanced lysosomal degradation activity. Importantly, an autophagic flux assay measuring LC3-II turnover in isolated adult cardiomyocytes indicated that autophagic activity is enhanced in GαqQ209L hearts. GαqQ209L hearts exhibited elevated levels of the autophagy initiation complex, which contains the Class III phosphoinositide 3-kinase Vps34. As a consequence, Vps34 activity and phosphatidylinositol 3-phosphate levels were higher in GαqQ209L hearts than wild type hearts, thus accounting for the higher abundance of autophagic vacuoles. These results indicate that an increase in autophagy is an early response to Gαq activation in the heart.
Collapse
|
25
|
Rocha Arrieta YC, Rojas M, Vasquez G, Lopez J. The Lymphocytes Stimulation Induced DNA Release, a Phenomenon Similar to NETosis. Scand J Immunol 2017; 86:229-238. [PMID: 28805301 DOI: 10.1111/sji.12592] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/30/2017] [Indexed: 12/23/2022]
Abstract
The release of DNA into the extracellular milieu by neutrophil during a process called NETosis has been postulated as an additional source of autoantigens; a process believed to be important in the pathogenesis of some autoimmune disease, such as systemic lupus erythematosus (SLE). However, it is not established if the B and T cells undergo the release of DNA to the extracellular milleu, in response to different stimuli. In this study, it was observed that the treatment of B and T cells with PMA, ionomycin and the serum from patients with SLE induced the extracellular DNA presence in B and T cells. These findings suggest that the phenomenon were similar to those observed in neutrophil's Etosis; B and T cells also released their DNA into the extracellular milieu. The findings express that serum from patients with SLE and SLEDAI ≤ 8 triggers the release of extracellular DNA in neutrophils, B and T cells, that suggested the presence of soluble factors in the serum that favoured this phenomenon.
Collapse
Affiliation(s)
- Y C Rocha Arrieta
- Grupo de Inmunodeficiencias Primarias/Lab 530-531, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - M Rojas
- Unidad de Citometría/Lab 420, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo de Inmunología Celular e Inmunogenética/Lab 510-511, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - G Vasquez
- Grupo de Inmunología Celular e Inmunogenética/Lab 510-511, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - J Lopez
- Grupo de Inmunodeficiencias Primarias/Lab 530-531, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
26
|
Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K. The regulation of autophagy by calcium signals: Do we have a consensus? Cell Calcium 2017; 70:32-46. [PMID: 28847414 DOI: 10.1016/j.ceca.2017.08.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Macroautophagy (hereafter called 'autophagy') is a cellular process for degrading and recycling cellular constituents, and for maintenance of cell function. Autophagy initiates via vesicular engulfment of cellular materials and culminates in their degradation via lysosomal hydrolases, with the whole process often being termed 'autophagic flux'. Autophagy is a multi-step pathway requiring the interplay of numerous scaffolding and signalling molecules. In particular, orthologs of the family of ∼30 autophagy-regulating (Atg) proteins that were first characterised in yeast play essential roles in the initiation and processing of autophagic vesicles in mammalian cells. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a master regulator of the canonical autophagic response of cells to nutrient starvation. In addition, AMP-activated protein kinase (AMPK), which is a key sensor of cellular energy status, can trigger autophagy by inhibiting mTOR, or by phosphorylating other downstream targets. Calcium (Ca2+) has been implicated in autophagic signalling pathways encompassing both mTOR and AMPK, as well as in autophagy seemingly not involving these kinases. Numerous studies have shown that cytosolic Ca2+ signals can trigger autophagy. Moreover, introduction of an exogenous chelator to prevent cytosolic Ca2+ signals inhibits autophagy in response to many different stimuli, with suggestions that buffering Ca2+ affects not only the triggering of autophagy, but also proximal and distal steps during autophagic flux. Observations such as these indicate that Ca2+ plays an essential role as a pro-autophagic signal. However, cellular Ca2+ signals can exert anti-autophagic actions too. For example, Ca2+ channel blockers induce autophagy due to the loss of autophagy-suppressing Ca2+ signals. In addition, the sequestration of Ca2+ by mitochondria during physiological signalling appears necessary to maintain cellular bio-energetics, thereby suppressing AMPK-dependent autophagy. This article attempts to provide an integrated overview of the evidence for the proposed roles of various Ca2+ signals, Ca2+ channels and Ca2+ sources in controlling autophagic flux.
Collapse
Affiliation(s)
- Martin D Bootman
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK.
| | - Tala Chehab
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), B-3000 Leuven, Belgium
| | - Katja Rietdorf
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK
| |
Collapse
|
27
|
Aufschnaiter A, Habernig L, Kohler V, Diessl J, Carmona-Gutierrez D, Eisenberg T, Keller W, Büttner S. The Coordinated Action of Calcineurin and Cathepsin D Protects Against α-Synuclein Toxicity. Front Mol Neurosci 2017; 10:207. [PMID: 28713240 PMCID: PMC5491553 DOI: 10.3389/fnmol.2017.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/12/2017] [Indexed: 11/24/2022] Open
Abstract
The degeneration of dopaminergic neurons during Parkinson’s disease (PD) is intimately linked to malfunction of α-synuclein (αSyn), the main component of the proteinaceous intracellular inclusions characteristic for this pathology. The cytotoxicity of αSyn has been attributed to disturbances in several biological processes conserved from yeast to humans, including Ca2+ homeostasis, general lysosomal function and autophagy. However, the precise sequence of events that eventually results in cell death remains unclear. Here, we establish a connection between the major lysosomal protease cathepsin D (CatD) and the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for PD, high levels of human αSyn triggered cytosolic acidification and reduced vacuolar hydrolytic capacity, finally leading to cell death. This could be counteracted by overexpression of yeast CatD (Pep4), which re-installed pH homeostasis and vacuolar proteolytic function, decreased αSyn oligomers and aggregates, and provided cytoprotection. Interestingly, these beneficial effects of Pep4 were independent of autophagy. Instead, they required functional calcineurin signaling, since deletion of calcineurin strongly reduced both the proteolytic activity of endogenous Pep4 and the cytoprotective capacity of overexpressed Pep4. Calcineurin contributed to proper endosomal targeting of Pep4 to the vacuole and the recycling of the Pep4 sorting receptor Pep1 from prevacuolar compartments back to the trans-Golgi network. Altogether, we demonstrate that stimulation of this novel calcineurin-Pep4 axis reduces αSyn cytotoxicity.
Collapse
Affiliation(s)
| | - Lukas Habernig
- Institute of Molecular Biosciences, University of GrazGraz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholm, Sweden
| | - Verena Kohler
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholm, Sweden
| | | | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of GrazGraz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
28
|
Abstract
Inflammatory bowel disease [IBD] is characterized by chronic inflammation of the gastrointestinal tract. Medications such as corticosteroids, thiopurines, immunomodulators and biologic agents are used to induce and maintain remission; however, response to these drugs is variable and can diminish over time. Defective autophagy has been strongly linked to IBD pathogenesis, with evidence showing that enhancing autophagy may be therapeutically beneficial by regulating inflammation and clearing intestinal pathogens. It is plausible that the therapeutic effects of some IBD drugs are mediated in part through modulation of the autophagy pathway, with studies investigating a wide range of diseases and cell types demonstrating autophagy pathway regulation by these agents. This review will highlight the current evidence, both in vitro and in vivo, for the modulation of autophagy by drugs routinely used in IBD. A clearer understanding of their mechanisms of action will be invaluable to utilize these drugs in a more targeted and personalized manner in this diverse and often complex group of patients.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Life, Sport & Social Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Peter G Barlow
- School of Life, Sport & Social Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Craig Stevens
- School of Life, Sport & Social Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, UK
| |
Collapse
|
29
|
Wu H, Fu S, Zhao M, Lu L, Lu Q. Dysregulation of Cell Death and Its Epigenetic Mechanisms in Systemic Lupus Erythematosus. Molecules 2016; 22:E30. [PMID: 28035990 PMCID: PMC6155917 DOI: 10.3390/molecules22010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease involving multiple organs and tissues, which is characterized by the presence of excessive anti-nuclear autoantibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. Increasing evidence has shown that the genetic susceptibilities and environmental factors-induced abnormalities in immune cells, dysregulation of apoptosis, and defects in the clearance of apoptotic materials contribute to the development of SLE. As the main source of auto-antigens, aberrant cell death may play a critical role in the pathogenesis of SLE. In this review, we summarize up-to-date research progress on different levels of cell death-including increasing rate of apoptosis, necrosis, autophagy and defects in clearance of dying cells-and discuss the possible underlying mechanisms, especially epigenetic modifications, which may provide new insight in the potential development of therapeutic strategies for SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Siqi Fu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Liwei Lu
- Department of Pathology and Center for Infection and Immunology, the University of Hong Kong, Hong Kong, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
30
|
Sun F, Xu X, Wang X, Zhang B. Regulation of autophagy by Ca 2. Tumour Biol 2016; 37:15467–15476. [PMID: 27864685 PMCID: PMC5250648 DOI: 10.1007/s13277-016-5353-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal catabolic process used as an internal engine in response to nutrient starvation or metabolic stress. A number of protein complexes and an intricate network of stress signaling cascades impinge on the regulation of autophagy; the mammalian target of rapamycin serves as a canonical player. Ca2+, as a major intracellular second messenger, regulates multiple physiological and pathological functions. Although significant information is already well-established about the role of Ca2+ in apoptosis, its role in autophagy has been recently determined and is poorly understood. Intracellular Ca2+ positively and negatively affects autophagy. In this review, evidence for both views and the interplay of Ca2+ between autophagy and apoptosis induction are discussed. The available data revealed the bidirectional role of Ca2+ in the regulation of autophagy. Moreover, the data also indicated that this role probably depends on the context of time, space, Ca2+ source, and cell state, thus either preventing or enhancing autophagy.
Collapse
Affiliation(s)
- Fang Sun
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
| | - Xia Xu
- Department of Obstetrics and Gynecology, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu, 221002, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu, 221002, China
| | - Bei Zhang
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
31
|
Liu X, Qin H, Xu J. The role of autophagy in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol 2016; 40:351-361. [DOI: 10.1016/j.intimp.2016.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/15/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
|
32
|
Yang J, Yu J, Li D, Yu S, Ke J, Wang L, Wang Y, Qiu Y, Gao X, Zhang J, Huang L. Store-operated calcium entry-activated autophagy protects EPC proliferation via the CAMKK2-MTOR pathway in ox-LDL exposure. Autophagy 2016; 13:82-98. [PMID: 27791458 DOI: 10.1080/15548627.2016.1245261] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Improving biological functions of endothelial progenitor cells (EPCs) is beneficial to maintaining endothelium homeostasis and promoting vascular re-endothelialization. Because macroautophagy/autophagy has been documented as a double-edged sword in cell functions, its effects on EPCs remain to be elucidated. This study was designed to explore the role and molecular mechanisms of store-operated calcium entry (SOCE)-activated autophagy in proliferation of EPCs under hypercholesterolemia. We employed oxidized low-density lipoprotein (ox-LDL) to mimic hypercholesterolemia in bone marrow-derived EPCs from rat. Ox-LDL dose-dependently activated autophagy flux, while inhibiting EPC proliferation. Importantly, inhibition of autophagy either by silencing Atg7 or by 3-methyladenine treatment, further aggravated proliferative inhibition by ox-LDL, suggesting the protective effects of autophagy against ox-LDL. Interestingly, ox-LDL increased STIM1 expression and intracellular Ca2+ concentration. Either Ca2+ chelators or deficiency in STIM1 attenuated ox-LDL-induced autophagy activation, confirming the involvement of SOCE in the process. Furthermore, CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, β) activation and MTOR (mechanistic target of rapamycin [serine/threonine kinase]) deactivation were associated with autophagy modulation. Together, our results reveal a novel signaling pathway of SOCE-CAMKK2 in the regulation of autophagy and offer new insights into the important roles of autophagy in maintaining proliferation and promoting the survival capability of EPCs. This may be beneficial to improving EPC transplantation efficacy and enhancing vascular re-endothelialization in patients with hypercholesterolemia.
Collapse
Affiliation(s)
- Jie Yang
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jie Yu
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Dongdong Li
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Sanjiu Yu
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jingbin Ke
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Lianyou Wang
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Yanwei Wang
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Youzhu Qiu
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Xubin Gao
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jihang Zhang
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Lan Huang
- a Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
33
|
Seo HY, Jeon JH, Jung YA, Jung GS, Lee EJ, Choi YK, Park KG, Choe MS, Jang BK, Kim MK, Lee IK. Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3. Kidney Int 2016; 90:1285-1297. [PMID: 27616741 DOI: 10.1016/j.kint.2016.06.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 01/30/2023]
Abstract
The hallmark of renal tubulointerstitial fibrosis is the accumulation of myofibroblasts and extracellular matrix proteins. Fyn, a member of the Src family of kinases, has diverse biological functions including regulation of mitogenic signaling and proliferation and integrin-mediated interaction. Src family proteins promote pulmonary fibrosis by augmenting transforming growth factor-β signaling, but their role in renal fibrosis is less understood. We observed upregulation of Fyn in a renal fibrosis model induced by unilateral ureteral obstruction. Upon ureteral obstruction, Fyn-deficient mice exhibited attenuated renal fibrosis relative to wild-type mice. Furthermore, obstruction-induced renal expression of type I collagen, fibronectin, α-smooth muscle actin, and plasminogen activator inhibitor-1 was suppressed. Pharmacologic inhibition of Fyn blocked induction of extracellular matrix proteins in kidney cell lines. Importantly, the attenuation of renal fibrosis by Fyn deficiency was not accompanied by changes in the Smad pathway. Rather, the antifibrotic effect of Fyn deficiency was associated with downregulation of signal transducer and activator of transcription 3 (STAT3). Small, interfering RNA targeting STAT3 in Fyn-deficient cells further suppressed α-smooth muscle actin expression, whereas a STAT3 activator partially restored plasminogen activator inhibitor-1 expression, indicating that STAT3 signaling is critically involved in this process. Thus, Fyn plays an important role in renal fibrosis. Hence, Fyn kinase inhibitors may be therapeutically useful against renal fibrosis.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea; Institute for Medical Science, Keimyung University School of Medicine, Daegu, South Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Yun-A Jung
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea; Institute for Medical Science, Keimyung University School of Medicine, Daegu, South Korea
| | - Gwon-Soo Jung
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Eun Ju Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea; Institute for Medical Science, Keimyung University School of Medicine, Daegu, South Korea
| | - Young-Keun Choi
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Mi Sun Choe
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea; Institute for Medical Science, Keimyung University School of Medicine, Daegu, South Korea
| | - Mi-Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea; Institute for Medical Science, Keimyung University School of Medicine, Daegu, South Korea.
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea.
| |
Collapse
|
34
|
Sun Q, Yang Y, Li X, He B, Jia Y, Zhang N, Zhao R. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway. Steroids 2016; 112:12-9. [PMID: 27133904 DOI: 10.1016/j.steroids.2016.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 01/13/2023]
Abstract
Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (P<0.05) enhanced GR activation indicated by higher ratio of GR phosphorylation. Out of 17 autophagy-related genes determined, 8 was significantly (P<0.05) up-regulated in FD group, which includes ATG2b, ATG3, ATG4c, ATG5, ATG10, ATG12, ATG13 and ATG14. Meanwhile, 4 out of 7 circadian-related genes detected, Clock, Cry1, Cry2 and Per2, were significantly (P<0.05) up-regulated. The protein content of autophagy markers, LC3A and LC3B, was also increased significantly (P<0.05). ChIP assay showed that FD promoted (P<0.05) GR binding to the promoter sequence of ATG3 and Per2. Moreover, MeDIP analysis demonstrated significant (P<0.05) hypomethylation in the promoter sequence of ATG12, ATG13 and Per2 genes. Together, we speculate that FD increases the transcription of autophagy- and circadian-related genes through, at least partly, GR-mediated pathway. Our results provide a basis for future investigations into the intracellular regulatory network in response to folate deficiency.
Collapse
Affiliation(s)
- Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Li
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nana Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China.
| |
Collapse
|
35
|
The role of autophagy in allergic inflammation: a new target for severe asthma. Exp Mol Med 2016; 48:e243. [PMID: 27364893 PMCID: PMC4973311 DOI: 10.1038/emm.2016.38] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Autophagy has been investigated for its involvement in inflammatory diseases, but its role in asthma has been little studied. This study aimed to explore the possible role of autophagy and its therapeutic potential in severe allergic asthma. BALB/c mice were sensitized with ovalbumin (OVA) on days 0 and 14, followed by primary OVA challenge on days 28–30. The mice received a secondary 1 or 2% OVA challenge on days 44–46. After the final OVA challenge, the mice were assessed for airway responsiveness (AHR), cell composition and cytokine levels in bronchoalveolar lavage fluid (BALF). LC3 expression in lung tissue was measured by western blot and immunofluorescence staining. Autophagosomes were detected by electron microscopy. 3-Methyladenine (3-MA) treatment and Atg5 knockdown were applied to investigate the potential role of autophagy in allergic asthma mice. AHR, inflammation in BALF and LC3 expression in lung tissue were significantly increased in the 2% OVA-challenged mice compared with the 1% OVA-challenged mice (P<0.05). In addition, eosinophils showed prominent formation of autophagosomes and increased LC3 expression compared with other inflammatory cells in BALF and lung tissue. After autophagy was inhibited by 3-MA and Atg5 shRNA treatment, AHR, eosinophilia, interleukin (IL)-5 levels in BALF and histological inflammatory findings were much improved. Finally, treatment with an anti-IL-5 antibody considerably reduced LC3 II expression in lung homogenates. Our findings suggest that autophagy is closely correlated with the severity of asthma through eosinophilic inflammation, and its modulation may provide novel therapeutic approaches for severe allergic asthma.
Collapse
|
36
|
Chung KM, Jeong EJ, Park H, An HK, Yu SW. Mediation of Autophagic Cell Death by Type 3 Ryanodine Receptor (RyR3) in Adult Hippocampal Neural Stem Cells. Front Cell Neurosci 2016; 10:116. [PMID: 27199668 PMCID: PMC4858590 DOI: 10.3389/fncel.2016.00116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/21/2016] [Indexed: 11/15/2022] Open
Abstract
Cytoplasmic Ca2+ actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca2+ levels is observed in various neuropathological states including Alzheimer’s and Parkinson’s diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca2+ release channels located in endoplasmic reticulum (ER) membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca2+-mediated regulation of survival and death of adult hippocampal neural stem (HCN) cells utilizing an insulin withdrawal model of autophagic cell death (ACD). Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs—especially RyR3—were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished ACD of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca2+ regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca2+ in neural stem cell biology.
Collapse
Affiliation(s)
- Kyung Min Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Eun-Ji Jeong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Hyunhee Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Hyun-Kyu An
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| |
Collapse
|
37
|
Wang B, Liang RC, Liu ZS, Luo B, Ding Y, Chen ZX, Liao YS, Wang XG. Hippocampal Src kinase is required for novelty-induced enhancement of contextual fear extinction. Biochem Biophys Res Commun 2016; 472:656-61. [DOI: 10.1016/j.bbrc.2016.02.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
|
38
|
Law BYK, Mok SWF, Wu AG, Lam CWK, Yu MXY, Wong VKW. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy. Molecules 2016; 21:359. [PMID: 26999089 PMCID: PMC6274228 DOI: 10.3390/molecules21030359] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Margaret Xin Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
39
|
He B, Zhang N, Zhao R. Dexamethasone Downregulates SLC7A5 Expression and Promotes Cell Cycle Arrest, Autophagy and Apoptosis in BeWo Cells. J Cell Physiol 2016; 231:233-42. [PMID: 26094588 DOI: 10.1002/jcp.25076] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Synthetic glucocorticoids (GCs) such as dexamethasone (Dex) are widely given to pregnant women to induce maturation and improve viability of preterm infants. Despite the beneficial effects, synthetic GCs have adverse effects on placental growth and nutrient transport system. However, the molecular mechanisms involved in these events remain unknown. Here we use a human placental choriocarcinoma cell line (BeWo) as model to explore the pathway linking amino acids transport with cell viability under Dex challenge. BeWo cells treated with Dex (100 nM) for 24 h demonstrated G1/S cell cycle arrest together with enhanced autophagy and apoptosis. Concurrently, the amino acid carrier SLC7A5 was down-regulated in association with impaired cellular amino acids uptake and inhibition of mammalian target of rapamycin (mTOR) signaling. Similar cellular responses were observed in BeWo cells treated with BCH, a classical System L inhibitor which inactivates SLC7A5. The glucocorticoid receptor (GR) antagonist RU486 was able to diminish Dex-induced translocation of GR into nucleus and to abolish these effects. Furthermore, Dex treatment significantly promoted the binding of GR to the proximal promoter sequence of SLC7A5 gene. Taken together, our results show that Dex downregulates SLC7A5 expression via GR-mediated transrepression. The impaired amino acids uptake leads to inhibition of mTOR signaling which in turn causes inhibited proliferation and enhanced autophagy and apoptosis in BeWo cells. These findings indicate that SLC7A5 mediates the effect of Dex on cell viability, thus providing a novel molecular target for the prevention and treatment of Dex-induced cell cycle arrest and apoptosis in placental cells.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Nana Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Shan NN, Dong LL, Zhang XM, Liu X, Li Y. Targeting autophagy as a potential therapeutic approach for immune thrombocytopenia therapy. Crit Rev Oncol Hematol 2016; 100:11-5. [PMID: 26830007 DOI: 10.1016/j.critrevonc.2016.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 12/09/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Autophagy involves the sequestration and lysosomal degradation of various cytoplasmic structures, including damaged organelles and invading microorganisms. Autophagy is not only an essential cell-intrinsic mechanism for protecting against internal and external stress conditions but is also key in the cellular response against microbes, in antigen processing for major histocompatibility complex (MHC) presentation, and in lymphocyte development, survival, and proliferation. In recent years, perturbations in autophagy have been implicated in a number of diseases, including autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). Immune thrombocytopenia (ITP) is a multifactorial disease characterized by autoimmune responses to self-platelet membrane proteins. Recently, our unpublished original data demonstrated aberrant expression of molecules in the autophagy pathway in ITP patients compared with controls, and we found a close correlation between the pathogenesis of ITP and the autophagy pathway. The potential of targeting the autophagy pathway in ITP as a novel therapeutic approach has been discussed.
Collapse
Affiliation(s)
- Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China.
| | - Li-Li Dong
- Department of Pediatric surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiao-Mei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| |
Collapse
|
41
|
Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y. IGF-1-Involved Negative Feedback of NR2B NMDA Subunits Protects Cultured Hippocampal Neurons Against NMDA-Induced Excitotoxicity. Mol Neurobiol 2016; 54:684-696. [DOI: 10.1007/s12035-015-9647-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
|
42
|
Jiang L, Xu L, Xie J, Li S, Guan Y, Zhang Y, Hou Z, Guo T, Shu X, Wang C, Fan W, Si Y, Yang Y, Kang Z, Fang M, Liu Q. Inhibition of autophagy overcomes glucocorticoid resistance in lymphoid malignant cells. Cancer Biol Ther 2016; 16:466-76. [PMID: 25778879 DOI: 10.1080/15384047.2015.1016658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucocorticoid (GC) resistance remains a major obstacle to successful treatment of lymphoid malignancies. Till now, the precise mechanism of GC resistance remains unclear. In the present study, dexamethasone (Dex) inhibited cell proliferation, arrested cell cycle in G0/G1-phase, and induced apoptosis in Dex-sensitive acute lymphoblastic leukemia cells. However, Dex failed to cause cell death in Dex-resistant lymphoid malignant cells. Intriguingly, we found that autophagy was induced by Dex in resistant cells, as indicated by autophagosomes formation, LC3-I to LC3-II conversion, p62 degradation, and formation of acidic autophagic vacuoles. Moreover, the results showed that Dex reduced the activity of mTOR pathway, as determined by decreased phosphorylation levels of mTOR, Akt, P70S6K and 4E-BP1 in resistant cells. Inhibition of autophagy by either chloroquine (CQ) or 3-methyladenine (3-MA) overcame Dex-resistance in lymphoid malignant cells by increasing apoptotic cell death in vitro. Consistently, inhibition of autophagy by stably knockdown of Beclin1 sensitized Dex-resistant lymphoid malignant cells to induction of apoptosis in vivo. Thus, inhibition of autophagy has the potential to improve lymphoid malignancy treatment by overcoming GC resistance.
Collapse
Key Words
- 3-MA, 3-methyladenine
- CQ, chloroquine
- Dex, dexamethasone
- Dox, doxorubicin
- LC3, microtubule-associated protein 1 light chain 3
- MDC, monodansylcadaverine
- OCT, optimum cutting temperature
- Rapa, rapamycin; WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H- tetrazolium, monosodium salt
- apoptosis
- autophagy
- dexamethasone
- glucocorticoid resistance
- lymphoid malignancy
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Lei Jiang
- a Institute of Cancer Stem Cell; Dalian Medical University; Dalian, China; State Key Laboratory of Oncology in South China; Cancer Center; Sun Yat-sen University ; Guangzhou , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang L, Law HKW. The Role of Autophagy in Lupus Nephritis. Int J Mol Sci 2015; 16:25154-67. [PMID: 26506346 PMCID: PMC4632796 DOI: 10.3390/ijms161025154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by the generation of immune responses to self-antigens. Lupus nephritis is one of the most common and severe complications in SLE patients. Though the pathogenesis of lupus nephritis has been studied extensively, unresolved questions are still left and new therapeutic methods are needed for disease control. Autophagy is a conserved catabolic process through which cytoplasmic constituents can be degraded in lysosome and reused. Autophagy plays vital roles in maintaining cell homeostasis and is involved in the pathogenesis of many diseases. In particular, autophagy can affect almost all parts of the immune system and is involved in autoimmune diseases. Based on genetic analysis, cell biology, and mechanism studies of the classic and innovative therapeutic drugs, there are growing lines of evidence suggesting the relationship between autophagy and lupus nephritis. In the present review, we summarize the recent publications investigating the relationship between autophagy and lupus nephritis and provide a new perspective towards the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| |
Collapse
|
44
|
Shen C, Gu W, Cai GQ, Peng JP, Chen XD. Autophagy protects meniscal cells from glucocorticoids-induced apoptosis via inositol trisphosphate receptor signaling. Apoptosis 2015; 20:1176-86. [DOI: 10.1007/s10495-015-1146-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Joachim J, Jiang M, McKnight NC, Howell M, Tooze SA. High-throughput screening approaches to identify regulators of mammalian autophagy. Methods 2015; 75:96-104. [PMID: 25688674 DOI: 10.1016/j.ymeth.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 01/30/2023] Open
Abstract
This article discusses the issues to consider in the development and implementation of high-throughput screens (HTSs) using both siRNA libraries and small molecule compound collections, in order to discover autophagy regulators in mammalian cells. We discuss how to develop the screen, focusing on the key parameters to establish in order to perform a successful screen. As our understanding of autophagy increases and its impact on human disease is elucidated, this technology can be further exploited to uncover novel genes, which may one day become new therapeutic targets.
Collapse
Affiliation(s)
- Justin Joachim
- London Research Institute, Cancer Research UK, Secretory Pathway Laboratory, 44 Lincolns Inn Fields, London, WC2A 3LY, UK
| | - Ming Jiang
- London Research Institute, Cancer Research UK, High-throughput Screening Unit, 44 Lincolns Inn Fields, London, WC2A 3LY, UK
| | - Nicole C McKnight
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY 10029, USA
| | - Michael Howell
- London Research Institute, Cancer Research UK, High-throughput Screening Unit, 44 Lincolns Inn Fields, London, WC2A 3LY, UK
| | - Sharon A Tooze
- London Research Institute, Cancer Research UK, Secretory Pathway Laboratory, 44 Lincolns Inn Fields, London, WC2A 3LY, UK.
| |
Collapse
|
46
|
Pan Q, Gao C, Chen Y, Feng Y, Liu WJ, Liu HF. Update on the role of autophagy in systemic lupus erythematosus: A novel therapeutic target. Biomed Pharmacother 2015; 71:190-3. [PMID: 25960235 DOI: 10.1016/j.biopha.2015.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/15/2015] [Indexed: 01/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE), induced by the interaction of susceptibility genes and environment risk factors, is a classical autoimmune diseases characterized by the dysregulation of innate and adaptive immune systems. Recently, evidence from genetic, cell biology and animal models suggested autophagy, a major pathway for organelle and protein turnover, plays a pivotal role in the occurrence and development of SLE, but not yet fully elucidated. We summarized an update on the recognized key principles of autophagy in SLE and focused our attention on the role of autophagy, including two main signaling pathways including mTOR and Beclin-1, in immune cells, such as B cell, T cell, neutrophils, etc. in SLE. Also, effects of currently used biological and chemical therapeutic drugs on autophagy in SLE were discussed. Autophagy may provide new targets for both diagnostic and therapeutic approaches for SLE although some results are still controversial, which worth more in-depth discussion in the future.
Collapse
Affiliation(s)
- Qingjun Pan
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical College, Zhanjang 524001, China.
| | - Caina Gao
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical College, Zhanjang 524001, China.
| | - Yanwen Chen
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical College, Zhanjang 524001, China.
| | - Yongmin Feng
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical College, Zhanjang 524001, China.
| | - Wei Jing Liu
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical College, Zhanjang 524001, China.
| | - Hua-feng Liu
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical College, Zhanjang 524001, China.
| |
Collapse
|
47
|
Chandra V, Bhagyaraj E, Parkesh R, Gupta P. Transcription factors and cognate signalling cascades in the regulation of autophagy. Biol Rev Camb Philos Soc 2015; 91:429-51. [PMID: 25651938 DOI: 10.1111/brv.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 01/04/2015] [Accepted: 01/11/2015] [Indexed: 12/11/2022]
Abstract
Autophagy is a process that maintains the equilibrium between biosynthesis and the recycling of cellular constituents; it is critical for avoiding the pathophysiology that results from imbalance in cellular homeostasis. Recent reports indicate the need for the design of high-throughput screening assays to identify targets and small molecules for autophagy modulation. For such screening, however, a better understanding of the regulation of autophagy is essential. In addition to regulation by various signalling cascades, regulation of gene expression by transcription factors is also critical. This review focuses on the various transcription factors as well as the corresponding signalling molecules that act together to translate the stimuli to effector molecules that up- or downregulate autophagy. This review rationalizes the importance of these transcription factors functioning in tandem with cognate signalling molecules and their interfaces as possible therapeutic targets for more specific pharmacological interventions.
Collapse
Affiliation(s)
- Vemika Chandra
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Ella Bhagyaraj
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Raman Parkesh
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Pawan Gupta
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
48
|
Gros F, Muller S. Pharmacological regulators of autophagy and their link with modulators of lupus disease. Br J Pharmacol 2014; 171:4337-59. [PMID: 24902607 DOI: 10.1111/bph.12792] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a central regulator of cell survival. It displays both anti- and pro-death roles that are decisive in the maintenance of cell homeostasis. Initially described in several eukaryotic cellular models as being induced under nutrient stress favouring survival by energy supply, autophagy was found later to display other decisive physiological roles, especially in the immune system. Thus, it is involved in antigen presentation and lymphocyte differentiation as well as in the balance regulating survival/death and activation of lymphocytes. Autophagy therefore appears to be central in the regulation of inflammation. The observation that autophagy is deregulated in systemic lupus erythematosus is recent. This discovery revives the programme dealing with the design and development of pharmacological autophagy regulators in the therapeutic context of lupus, a debilitating autoimmune disease that affects several million people in the world. A large number of molecules that positively and negatively regulate autophagy have been described, most of them with therapeutic indications in cancer and infection. Only a few, however, are effectively potent activators or inhibitors endowed with experimentally demonstrated selective properties. In this review article, we highlight the most relevant ones and summarize what we know regarding their mechanism of action. We emphasize the link between pharmacological regulators of autophagy and inducers or inhibitors of lupus disease and discuss the fundamental and pharmacological/therapeutic interest of this functional interplay.
Collapse
Affiliation(s)
- Frédéric Gros
- CNRS, Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
49
|
Abstract
Aberrations of both innate immunity and adaptive immunity in genetically predisposed individuals evoked by environmental factors are suggested to be implicated in pathophysiological processes of systemic lupus erythematosus (SLE). Autophagy, a degradation pathway in which cytoplasmic content is engulfed and degraded by the lysosome, has been recently demonstrated to be involved in multiple cytoplasmic homeostatic progresses and interact with nearly all parts of the innate and adaptive immune system. More recently, some lines of evidence from genetic, cell biology and model animal studies also suggests a pivotal role of autophagy in mediating the occurrence and development of SLE. We discuss and synthesize studies that have begun to demonstrate how autophagy cause and/or promote autoimmunity in SLE.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) , Ministry of Education, Beijing , China
| | | | | |
Collapse
|
50
|
Ghislat G, Knecht E. Ca²⁺-sensor proteins in the autophagic and endocytic traffic. Curr Protein Pept Sci 2014; 14:97-110. [PMID: 23305313 PMCID: PMC3664516 DOI: 10.2174/13892037112139990033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
Autophagy and endocytosis are two evolutionarily conserved catabolic processes that comprise vesicle trafficking events for the clearance of the sequestered intracellular and extracellular cargo. Both start differently but end in the same compartment, the lysosome. Mounting evidences from the last years have established the involvement of proteins sensitive to intracellular Ca2+ in the control of the early autophagic steps and in the traffic of autophagic, endocytic and lysosomal vesicles. However, this knowledge is based on dispersed outcomes that do not set up a consensus model of the Ca2+-dependent control of autophagy and endocytosis. Here, we will provide a critical synopsis of insights from the last decade on the involvement of Ca2+-sensor proteins in the activation of autophagy and in fusion events of endocytic vesicles, autophagosomes and lysosomes.
Collapse
Affiliation(s)
- Ghita Ghislat
- Laboratorio de Biología Celular, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, Valencia 46012, Spain and CIBERER, Valencia, Spain
| | | |
Collapse
|