1
|
Kushwaha S, Mallik B, Bisht A, Mushtaq Z, Pippadpally S, Chandra N, Das S, Ratnaparkhi G, Kumar V. dAsap regulates cellular protrusions via an Arf6-dependent actin regulatory pathway in S2R+ cells. FEBS Lett 2024; 598:1491-1505. [PMID: 38862211 DOI: 10.1002/1873-3468.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Membrane protrusions are fundamental to cellular functions like migration, adhesion, and communication and depend upon dynamic reorganization of the cytoskeleton. GAP-dependent GTP hydrolysis of Arf proteins regulates actin-dependent membrane remodeling. Here, we show that dAsap regulates membrane protrusions in S2R+ cells by a mechanism that critically relies on its ArfGAP domain and relocalization of actin regulators, SCAR, and Ena. While our data reinforce the preference of dAsap for Arf1 GTP hydrolysis in vitro, we demonstrate that induction of membrane protrusions in S2R+ cells depends on Arf6 inactivation. This study furthers our understanding of how dAsap-dependent GTP hydrolysis maintains a balance between active and inactive states of Arf6 to regulate cell shape.
Collapse
Affiliation(s)
- Shikha Kushwaha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagaban Mallik
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Anjali Bisht
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Srikanth Pippadpally
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Nitika Chandra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Subhradip Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Girish Ratnaparkhi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
2
|
Xu Z, Wang Y, Xu J, Ang X, Ge N, Xu M, Pei C. Identify AGAP2 as prognostic biomarker in clear cell renal cell carcinoma based on bioinformatics and IHC staining. Heliyon 2023; 9:e13543. [PMID: 36846683 PMCID: PMC9947311 DOI: 10.1016/j.heliyon.2023.e13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
Background Arf GTPase-activating proteins are aberrantly expressed in a variety of tumors, but their role in clear cell renal cell carcinoma (ccRCC) was unclear. Exploring the biological role of Arf GAP with GTP binding protein like domain, Ankyrin repeat and PH domain 2 (AGAP2) in ccRCC could improve our understanding on the aggressiveness and immune relevance of ccRCC. Methods The expression of AGAP2 was analyzed based on the Cancer Genome Atlas (TCGA) database and verified in ccRCC samples using immunohistochemistry. The association between AGAP2 and clinical cancer stages was explored by TCGA dataset and UALCAN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to analyze the biological functions of AGAP2-related genes. Moreover, the relationship between AGAP2 and immune cell infiltration was investigated with TIME and TCGA dataset. Results Compared to normal tissues, AGAP2 was upregulated in ccRCC tissues. Higher expression of AGAP2 was associated with clinical cancer stages, TNM stages, pathologic stages, and status. Prognostic analysis on AGAP2 showed that AGAP2 overexpression was associated with KIRC overall survival (OS) reduction (P = 0.019). However, higher expression of AGAP2 may improve the OS of CESC (P = 0.002), THYM (P = 0.006) and UCEC (P = 0.049). GO and KEGG analysis showed that AGAP2-related genes was related to T cell activation, immune activity and PD-L1 expression and PD-1 checkpoint pathway. Furthermore, our study showed that AGAP2 were significantly associated with T cells, Cytotoxic cells, Treg, Th1 cells, CD8 T cells, T helper cells. And AGAP2 expression level affected the abundance of immune cells infiltration. The infiltrating level of immune cells was different between the AGAP2 high-expression and low-expression groups. Conclusion The expression of AGAP2 in ccRCC was higher than that in normal kidney tissues. It was significantly associated with clinical stage, poor prognosis, and immune cell infiltration. Therefore, AGAP2 may become an important component for ccRCC patients who receive precision cancer therapy and may be a promising prognostic biomarker.
Collapse
Affiliation(s)
- Zekun Xu
- Department of Urology Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | | | - Jiangnan Xu
- Department of Urology Surgery, The First People's Hospital of Yancheng, China
| | - Xiaojie Ang
- Department of Urology Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nianxin Ge
- Department of Urology Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Xu
- Department of Urology Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China,Corresponding author.
| | - Changsong Pei
- Department of Urology Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,Corresponding author.
| |
Collapse
|
3
|
Zeledon C, Sun X, Plutoni C, Emery G. The ArfGAP Drongo Promotes Actomyosin Contractility during Collective Cell Migration by Releasing Myosin Phosphatase from the Trailing Edge. Cell Rep 2020; 28:3238-3248.e3. [PMID: 31533044 DOI: 10.1016/j.celrep.2019.08.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Collective cell migration is involved in various developmental and pathological processes, including the dissemination of various cancer cells. During Drosophila melanogaster oogenesis, a group of cells called border cells migrate collectively toward the oocyte. Herein, we show that members of the Arf family of small GTPases and some of their regulators are required for normal border cell migration. Notably, we found that the ArfGAP Drongo and its GTPase-activating function are essential for the initial detachment of the border cell cluster from the basal lamina. We demonstrate through protein localization and genetic interactions that Drongo controls the localization of the myosin phosphatase in order to regulate myosin II activity at the back of the cluster. Moreover, we show that toward the class III Arf, Drongo acts antagonistically to the guanine exchange factor Steppke. Overall, our work describes a mechanistic pathway that promotes the local actomyosin contractility necessary for border cell detachment.
Collapse
Affiliation(s)
- Carlos Zeledon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Xiaojuan Sun
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Osuna-Cruz CM, Bilcke G, Vancaester E, De Decker S, Bones AM, Winge P, Poulsen N, Bulankova P, Verhelst B, Audoor S, Belisova D, Pargana A, Russo M, Stock F, Cirri E, Brembu T, Pohnert G, Piganeau G, Ferrante MI, Mock T, Sterck L, Sabbe K, De Veylder L, Vyverman W, Vandepoele K. The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms. Nat Commun 2020; 11:3320. [PMID: 32620776 PMCID: PMC7335047 DOI: 10.1038/s41467-020-17191-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Benthic diatoms are the main primary producers in shallow freshwater and coastal environments, fulfilling important ecological functions such as nutrient cycling and sediment stabilization. However, little is known about their evolutionary adaptations to these highly structured but heterogeneous environments. Here, we report a reference genome for the marine biofilm-forming diatom Seminavis robusta, showing that gene family expansions are responsible for a quarter of all 36,254 protein-coding genes. Tandem duplications play a key role in extending the repertoire of specific gene functions, including light and oxygen sensing, which are probably central for its adaptation to benthic habitats. Genes differentially expressed during interactions with bacteria are strongly conserved in other benthic diatoms while many species-specific genes are strongly upregulated during sexual reproduction. Combined with re-sequencing data from 48 strains, our results offer insights into the genetic diversity and gene functions in benthic diatoms.
Collapse
Affiliation(s)
- Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Gust Bilcke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000, Ghent, Belgium
| | - Emmelien Vancaester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Sam De Decker
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Atle M Bones
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per Winge
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technical University of Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Petra Bulankova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Bram Verhelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Sien Audoor
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Darja Belisova
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Aikaterini Pargana
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Monia Russo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Frederike Stock
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Emilio Cirri
- Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Lessingstrasse 8, 07745, Jena, Germany
| | - Tore Brembu
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Georg Pohnert
- Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Lessingstrasse 8, 07745, Jena, Germany
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | | | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Yu L, Gui S, Liu Y, Qiu X, Zhang G, Zhang X, Pan J, Fan J, Qi S, Qiu B. Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY) 2019; 11:5300-5318. [PMID: 31386624 PMCID: PMC6710058 DOI: 10.18632/aging.102092] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/10/2019] [Indexed: 01/14/2023]
Abstract
Accumulating evidence has implied that microRNAs (miRNAs) are implicated in glioma progression, and genetically engineered mesenchymal stem cells can help to inhibit tumor growth of glioma. Herein we hypothesized that miR-199a could be delivered by mesenchymal stem cells to glioma cells through exosomes and thus prevent the glioma development by down-regulating ArfGAP with GTPase domain, ankyrin repeat and PH domain 2 (AGAP2). The expression pattern of miR-199a and AGAP2 was characterized in glioma tissues and cells using RNA polymerase chain reaction quantification, immunohistochemical staining and Western blot assays. Mesenchymal stem cells transfected with miR-199a mimic or their derived exosomes were co-cultured with U251 cells. The biological behaviors as well as chemosensitivity of U251 cells were assessed to explore the involvement of miR-199a/AGAP2 in glioma. MiR-199a was poorly expressed in glioma tissue and cells while AGAP2 was highly expressed. Mesenchymal stem cells delivered miR-199a to the glioma cells via the exosomes, which resulted in the suppression of the proliferation, invasion and migration of glioma cells. Besides, mesenchymal stem cells over-expressing miR-199a enhanced the chemosensitivity to temozolomide and inhibited the tumor growth in vivo. Taken together, mesenchymal stem cell-derived exosomal miR-199a can inhibit the progression of glioma by down-regulating AGAP2.
Collapse
Affiliation(s)
- Lei Yu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Si Gui
- Department of Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xiaoyu Qiu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Guozhong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xi'an Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jun Fan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Binghui Qiu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
6
|
Schreiber C, Saraswati S, Harkins S, Gruber A, Cremers N, Thiele W, Rothley M, Plaumann D, Korn C, Armant O, Augustin HG, Sleeman JP. Loss of ASAP1 in mice impairs adipogenic and osteogenic differentiation of mesenchymal progenitor cells through dysregulation of FAK/Src and AKT signaling. PLoS Genet 2019; 15:e1008216. [PMID: 31246957 PMCID: PMC6619832 DOI: 10.1371/journal.pgen.1008216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/10/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022] Open
Abstract
ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis for a variety of cancers, and promotes cell migration, invasion and metastasis. Little is known about its physiological role. In this study, we used mice with a gene-trap inactivated ASAP1 locus to study the functional role of ASAP1 in vivo, and found defects in tissues derived from mesenchymal progenitor cells. Loss of ASAP1 led to growth retardation and delayed ossification typified by enlarged hypertrophic zones in growth plates and disorganized chondro-osseous junctions. Furthermore, loss of ASAP1 led to delayed adipocyte development and reduced fat depot formation. Consistently, deletion of ASAP1 resulted in accelerated chondrogenic differentiation of mesenchymal cells in vitro, but suppressed osteo- and adipogenic differentiation. Mechanistically, we found that FAK/Src and PI3K/AKT signaling is compromised in Asap1GT/GT MEFs, leading to impaired adipogenic differentiation. Dysregulated FAK/Src and PI3K/AKT signaling is also associated with attenuated osteogenic differentiation. Together these observations suggest that ASAP1 plays a decisive role during the differentiation of mesenchymal progenitor cells. Mesenchymal progenitor cells are capable of differentiating into a number of lineages including osteoblasts, chondrocytes and adipocytes, and have therefore attracted interest for their potential application in regenerative medicine. Furthermore, defects in mesenchymal progenitor cell differentiation are considered to contribute to various diseases including metabolic syndrome, obesity and osteoporosis. In this study, we analyzed mice deficient in the multi-adaptor protein ASAP1, which has been implicated in tumor progression and metastasis. These mice display growth retardation, and a delayed development of bone and fat tissue. Consistently, mesenchymal progenitor cells deficient in ASAP1 exhibited enhanced differentiation into chondrocytes, but impaired differentiation into adipocytes and osteoblasts. Together these observations suggest that ASAP1 plays a decisive role during the differentiation of mesenchymal stem cells, which may be relevant for a number of diseases such as cancer.
Collapse
Affiliation(s)
- Caroline Schreiber
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| | - Supriya Saraswati
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shannon Harkins
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annette Gruber
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natascha Cremers
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Melanie Rothley
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Diana Plaumann
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Claudia Korn
- German Cancer Research Center (DKFZ-ZMBH-Alliance), Heidelberg, Germany
| | - Olivier Armant
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- German Cancer Research Center (DKFZ-ZMBH-Alliance), Heidelberg, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| |
Collapse
|
7
|
Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol 2018; 78:898-925. [PMID: 29989351 DOI: 10.1002/dneu.22608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 02/02/2023]
Abstract
Injury to the brain and spinal cord has devastating consequences because adult central nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system (PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration over long distances. CNS axons have some regenerative capacity during development, but this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules have been well characterized, but less is known about the neuron-intrinsic mechanisms which prevent axon re-growth. Key signaling pathways and genetic/epigenetic factors have been identified which can enhance regenerative capacity, but the precise cellular mechanisms mediating their actions have not been characterized. Recent studies suggest that an important prerequisite for regeneration is an efficient supply of growth-promoting machinery to the axon; however, this appears to be lacking from non-regenerative axons in the adult CNS. In the first part of this review, we summarize the evidence linking axon transport to axon regeneration. We discuss the developmental decline in axon regeneration capacity in the CNS, and comment on how this is paralleled by a similar decline in the selective axonal transport of regeneration-associated receptors such as integrins and growth factor receptors. In the second part, we discuss the mechanisms regulating selective polarized transport within neurons, how these relate to the intrinsic control of axon regeneration, and whether they can be targeted to enhance regenerative capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Veselina Petrova
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| | - Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| |
Collapse
|
8
|
Tiezzi F, Arceo ME, Cole JB, Maltecca C. Including gene networks to predict calving difficulty in Holstein, Brown Swiss and Jersey cattle. BMC Genet 2018; 19:20. [PMID: 29609562 PMCID: PMC5880070 DOI: 10.1186/s12863-018-0606-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 11/10/2022] Open
Abstract
Background Calving difficulty or dystocia has a great economic impact in the US dairy industry. Reported risk factors associated with calving difficulty are feto-pelvic disproportion, gestation length and conformation. Different dairy cattle breeds have different incidence of calving difficulty, with Holstein having the highest dystocia rates and Jersey the lowest. Genomic selection becomes important especially for complex traits with low heritability, where the accuracy of conventional selection is lower. However, for complex traits where a large number of genes influence the phenotype, genome-wide association studies showed limitations. Biological networks could overcome some of these limitations and better capture the genetic architecture of complex traits. In this paper, we characterize Holstein, Brown Swiss and Jersey breed-specific dystocia networks and employ them in genomic predictions. Results Marker association analysis identified single nucleotide polymorphisms explaining the largest average proportion of genetic variance on BTA18 in Holstein, BTA25 in Brown Swiss, and BTA15 in Jersey. Gene networks derived from the genome-wide association included 1272 genes in Holstein, 1454 genes in Brown Swiss, and 1455 genes in Jersey. Furthermore, 256 genes in Holstein network, 275 genes in the Brown Swiss network, and 253 genes in the Jersey network were within previously reported dystocia quantitative trait loci. The across-breed network included 80 genes, with 9 genes being within previously reported dystocia quantitative trait loci. The gene-gene interactions in this network differed in the different breeds. Gene ontology enrichment analysis of genes in the networks showed Regulation of ARF GTPase was very significant (FDR ≤ 0.0098) on Holstein. Neuron morphogenesis and differentiation was the term most enriched (FDR ≤ 0.0539) on the across-breed network. Genomic prediction models enriched with network-derived relationship matrices did not outperform regular GBLUP models. Conclusions Regions identified in the genome were in the proximity of previously described quantitative trait loci that would most likely affect calving difficulty by altering the feto-pelvic proportion. Inclusion of identified networks did not increase prediction accuracy. The approach used in this paper could be extended to any instance with asymmetric distribution of phenotypes, for example, resistance to disease data. Electronic supplementary material The online version of this article (10.1186/s12863-018-0606-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Maria E Arceo
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD, 27705, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
9
|
Zafar S, Schmitz M, Younus N, Tahir W, Shafiq M, Llorens F, Ferrer I, Andéoletti O, Zerr I. Creutzfeldt-Jakob Disease Subtype-Specific Regional and Temporal Regulation of ADP Ribosylation Factor-1-Dependent Rho/MLC Pathway at Pre-Clinical Stage. J Mol Neurosci 2015; 56:329-48. [PMID: 25896910 DOI: 10.1007/s12031-015-0544-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Small GTPases of the Arf family mainly activate the formation of coated carrier vesicles. We showed that class-I Arf1 interacts specifically with full length GPI-anchored cellular prion protein (PrP(C)). Several recent reports have also demonstrated a missing link between the endoplasmic reticulum and the Golgi-complex role for proper folding, but the exact molecular mechanism is not yet fully understood. In the present study, we identified and characterized the interactive role of Arf1 during PrP(C) intracellular distribution under pathophysiological conditions. PrP(C) interaction with Arf1 was investigated in cortical primary neuronal cultures of PrP(C) wild type and knockout mice (PrP(-/-)). Arf1 and PrP(C) co-binding affinity was confirmed using reverse co-immunoprecipitation, co-localization affinity using confocal laser-scanning microscopy. Treatment with brefeldin-A modulated Arf1 expression and resulted in down-regulation and redistribution of PrP(C) into cytosolic region. In the pre-symptomatic stage of the disease, Arf1 expression was significantly downregulated in the frontal cortex in tg340 mice expressing about fourfold of human PrP-M129 with PrP null background that had been inoculated with human sCJD MM1 brain tissue homogenates (sCJD MM1 mice). In addition, the frontal cortex of CJD human brain demonstrated significant binding capacity of Arf1 protein using co-immunoprecipitation analysis. We also examined Arf1 expression in the brain of CJD patients with the subtypes MM1 and VV2 and found that it was regulated in a region-specific manner. In the frontal cortex, Arf1 expression was not significantly changed in either MM1 or VV2 subtype. Interestingly, Arf1 expression was significantly reduced in the cerebellum in both subtypes as compared to controls. Furthermore, we observed altered RhoA activity, which in turn affects myosin light-chain (MLC) phosphorylation and Arf1-dependent PI3K pathway. Together, our findings underscore a key early symptomatic role of Arf1 in neurodegeneration. Targeting the Arf/Rho/MLC signaling axis might be a promising strategy to uncover the missing link which probably influences disease progression and internal homeostasis of misfolded proteins.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Small GTPases are key signal transducers from extracellular stimuli to the nucleus that regulate a variety of cellular responses, including changes in gene expression and cell adhesion and migration. Accumulating data have demonstrated that abnormal activation of these small GTPases plays a critical role in the atherosclerosis characterized by vascular abnormalities, especially endothelial dysfunction and inflammation. Here, we discuss the linkage between small GTPases, inflammation, and atherogenesis. First, small GTPases affect gene expression of inflammatory cytokines through proinflammatory signaling pathways, such as nuclear factor-κB, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, interlukin-8, and monocyte chemoattractant protein-1. Then, these molecules regulate the vascular inflammation through cell adhesion and migration. In turn, small GTPases are also regulated by extracellular stimuli, such as L-selectin, thrombin, oxidized phospholipids, and interleukins. Thus, these inflammatory cytokines generate a vicious cycle for small GTPases and inflammatory responses in the atherogenesis.
Collapse
|
11
|
Chen PW, Jian X, Luo R, Randazzo PA. Approaches to studying Arf GAPs in cells: in vitro assay with isolated focal adhesions. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; Chapter 17:17.13.1-17.13.20. [PMID: 23129116 DOI: 10.1002/0471143030.cb1713s55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Arf GAPs are a family of proteins with a common catalytic function of hydrolyzing GTP bound to ADP-ribosylation factors (Arf) with proposed cellular functions that are diverse (Inoue and Randazzo, 2007; Kahn et al., 2008). Understanding the biochemistry of the Arf GAPs is valuable for designing and interpreting experiments using standard cell biology techniques described elsewhere. The following briefly reviews some common approaches for in vivo studies of Arf GAPs and discusses the use of isolated cellular organelles to complement in vivo experiments. Detailed protocols for examining the activity of Arf GAPs in whole cell lysates and in association with isolated focal adhesions are provided.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | |
Collapse
|