1
|
Yang Y, Huang Z, Luo J, He J, Shi L, Chen G, Chen S, Deng Y, Yang Y, Tang Y, Pang Y. Comprehensive transcriptome and scRNA-seq analyses uncover the expression and underlying mechanism of SYNJ2 in papillary thyroid carcinoma. IET Syst Biol 2024; 18:183-198. [PMID: 39370684 PMCID: PMC11490192 DOI: 10.1049/syb2.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Synaptojanin 2 (SYNJ2) has crucial role in various tumors, but its role in papillary thyroid carcinoma (PTC) remains unexplored. This study first detected SYNJ2 protein expression in PTC using immunohistochemistry method and further assessed SYNJ2 mRNA expression through mRNA chip and RNA sequencing data and its association with clinical characteristics. Additionally, KEGG, GSVA, and GSEA analyses were conducted to investigate potential biological functions, while single-cell RNA sequencing data were used to explore SYNJ2's underlying mechanisms in PTC. Meanwhile, immune infiltration status in different SYNJ2 expression groups were analyzed. Besides, we investigated the immune checkpoint gene expression and implemented drug sensitivity analysis. Results indicated that SYNJ2 is highly expressed in PTC (SMD = 0.66 [95% CI: 0.17-1.15]) and could distinguish between PTC and non-PTC tissues (AUC = 0.74 [0.70-0.78]). Furthermore, the study identified 134 intersecting genes of DEGs and CEGs, mainly enriched in the angiogenesis and epithelial-mesenchymal transition (EMT) pathways. Subsequent analysis showed the above pathways were activated in PTC epithelial cells. PTC patients with high SYNJ2 expression showed higher sensitivity to the six common drugs. Summarily, SYNJ2 may promote PTC progression through angiogenesis and EMT pathways. High SYNJ2 expression is associated with better response to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yuan‐Ping Yang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhi‐Guang Huang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jia‐Yuan Luo
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Juan He
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Lin Shi
- Department of PathologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gang Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Si‐Yuan Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yu‐Wen Deng
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yi‐Jia Yang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yi‐Jun Tang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | | |
Collapse
|
2
|
Luan D, Li SZ, Zhang C, Ye B. Association of single nucleotide polymorphisms and gene-environment interactions with major depressive disorder in Chinese. Heliyon 2024; 10:e37504. [PMID: 39315198 PMCID: PMC11417526 DOI: 10.1016/j.heliyon.2024.e37504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
We conducted a case-control study to investigate the effects of genetics and gene-environment interactions on major depressive disorders (MDD) in the Chinese population. Using targeted-exome sequencing, we included 984 patients with MDD and 508 healthy controls in our study. A logistic regression model was employed to analyze the association between single nucleotide polymorphisms (SNPs) and MDD. Additionally, a linear regression model was utilized to examine the associations between (1) gene-environment interaction and the 17-item Hamilton Depression Rating Scale, (2) SNPs and the Beck Scale for Suicide Ideation-Chinese version, and gene-environment interaction and the Beck scale for suicide ideation-Chinese version. The association analysis between SNPs and MDD revealed that the following loci reached genome-wide significance: rs2305554 of the cholinergic receptor nicotinic alpha 7 subunit, rs9459173 of synaptojanin 2, rs372369000 of beta-1,4-galactosyltransferase 6, rs866666526 of dopa decarboxylase, rs1254882194 of calcium/calmodulin dependent protein kinase ID, rs199880487 of reelin, rs1167948188 of reelin, rs1390140186 of QKI, KH domain containing RNA binding, and rs1776342 of period circadian regulator 3. The association analysis between SNPs and the Beck Scale for Suicide Ideation-Chinese version indicated that rs264272 and rs1774784888 of piezo type mechanosensitive ion channel component 2 reached genome-wide significance. These findings may enhance our understanding of MDD and contribute to the development of new potential targets for its diagnosis and treatment.
Collapse
Affiliation(s)
- Di Luan
- Department of Neurology, Bengbu Third People's Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Central Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Shi-zun Li
- Department of Neurology, Bengbu Third People's Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Central Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Can Zhang
- Department of Neurology, Bengbu Third People's Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Central Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Bin Ye
- Department of Neurology, Bengbu Third People's Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Central Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu, 233000, Anhui, China
| |
Collapse
|
3
|
Lebel M, Cliche DO, Charbonneau M, Adam D, Brochiero E, Dubois CM, Cantin AM. Invadosome Formation by Lung Fibroblasts in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 24:ijms24010499. [PMID: 36613948 PMCID: PMC9820272 DOI: 10.3390/ijms24010499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by abnormal fibroblast accumulation in the lung leading to extracellular matrix deposition and remodeling that compromise lung function. However, the mechanisms of interstitial invasion and remodeling by lung fibroblasts remain poorly understood. The invadosomes, initially described in cancer cells, consist of actin-based adhesive structures that coordinate with numerous other proteins to form a membrane protrusion capable of degrading the extracellular matrix to promote their invasive phenotype. In this regard, we hypothesized that invadosome formation may be increased in lung fibroblasts from patients with IPF. Public RNAseq datasets from control and IPF lung tissues were used to identify differentially expressed genes associated with invadosomes. Lung fibroblasts isolated from bleomycin-exposed mice and IPF patients were seeded with and without the two approved drugs for treating IPF, nintedanib or pirfenidone on fluorescent gelatin-coated coverslips for invadosome assays. Several matrix and invadosome-associated genes were increased in IPF tissues and in IPF fibroblastic foci. Invadosome formation was significantly increased in lung fibroblasts isolated from bleomycin-exposed mice and IPF patients. The degree of lung fibrosis found in IPF tissues correlated strongly with invadosome production by neighboring cells. Nintedanib suppressed IPF and PDGF-activated lung fibroblast invadosome formation, an event associated with inhibition of the PDGFR/PI3K/Akt pathway and TKS5 expression. Fibroblasts derived from IPF lung tissues express a pro-invadosomal phenotype, which correlates with the severity of fibrosis and is responsive to antifibrotic treatment.
Collapse
Affiliation(s)
- Mégane Lebel
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Dominic O. Cliche
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - André M. Cantin
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +819-346-1110 (ext. 14881)
| |
Collapse
|
4
|
Proteomic profiling reveals neuronal ion channel dysregulation and cellular responses to DNA damage-induced cell cycle arrest and senescence in human neuroblastoma SH-SY5Y cells exposed to cypermethrin. Neurotoxicology 2022; 93:71-83. [PMID: 36063984 DOI: 10.1016/j.neuro.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022]
Abstract
Cypermethrin (CYP), a synthetic pyrethroid of class II, is widely used as a pesticide worldwide. The primary target of cypermethrin is a voltage-gated sodium channel. The neurotoxicity of CYP has been extensively studied in terms of affecting neuronal development, increasing cellular oxidative stress, and apoptosis. However, little is known about how it affects the expression of channel proteins involved in synaptic transmission, as well as the effects of cypermethrin on DNA damage and cell cycle processes. We found that the ligand and voltage-gated calcium channels and proteins involved in synaptic transmission including NMDA 1 receptor subunit, alpha 1A-voltage-dependent calcium channel, synaptotagmin-17, and synaptojanin-2 were downregulated in CYP-treated cells. After 48h of CYP exposure, cell viability was reduced with flattened and enlarged morphology. The levels of 23 proteins regulating cell cycle processes were altered in CYP-treated cells, according to a proteomic study. The cell cycle analysis showed elevated G0/G1 cell cycle arrest and DNA fragmentation at the sub-G0 stage after CYP exposure. CYP treatment also increased senescence-associated β-galactosidase positive cells, DNA damage, and apoptotic markers. Taken together, the current study showed that cypermethrin exposure caused DNA damage and hastened cellular senescence and apoptosis via disrupting cell cycle regulation. In addition, despite its primary target sodium channel, CYP might cause synaptic dysfunction via the downregulation of synaptic proteins and dysregulation of synapse-associated ion channels.
Collapse
|
5
|
Zhang R, Mo WJ, Huang LS, Chen JT, Wu WZ, He WY, Feng ZB. Identifying the Prognostic Risk Factors of Synaptojanin 2 and Its Underlying Perturbations Pathways in Hepatocellular Carcinoma. Bioengineered 2021; 12:855-874. [PMID: 33641617 PMCID: PMC8806346 DOI: 10.1080/21655979.2021.1890399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synaptojanin 2 (SYNJ2) regulates cell proliferation and apoptosis via dephosphorylating plasma membrane phosphoinositides. Aim of this study is to first seek the full-scale expression levels and potential emerging roles of SYNJ2 in hepatocellular carcinoma (HCC). We systematically analyzed SYNJ2 mRNA expression and protein levels in HCC tissues based on large-scale data and in-house immunohistochemistry (IHC). The clinical significance and risk factors for SYNJ2-related HCC cases were identified. A nomogram of prognosis was created and its performance was validated by concordance index (C-index) and shown in calibration plots. Based on the identified differentially coexpressed genes (DCGs) of SYNJ2, enriched annotations and potential pathways were predicted, and the protein interacting networks were mapped. Upregulated SYNJ2 in 3,728 HCC and 3,203 non-HCC tissues were verified and in-house IHC showed higher protein levels of SYNJ2 in HCC tissues. Pathologic T stage was identified as a risk factor. Upregulated mRNA levels and mutated SYNJ2 might cause a poorer outcome. The C-index of the nomogram model constructed by SYNJ2 level, age, gender, TNM classification, grade, and stage was evaluated as 0.643 (95%CI = 0.619–0.668) with well-calibrated plots. A total of 2,533 DCGs were extracted and mainly functioned together with SYNJ2 in metabolic pathways. Possible transcriptional axis of CTCF/POLR2A-SYNJ2/INPP5B (transcription factor-target) in metabolic pathways was discovered based on ChIP-seq datasets. In summary, transcriptional regulatory axis CTCF/POLR2A-SYNJ2 might influence SYNJ2 expression levels. Increased SYNJ2 expression level could be utilized for predicting HCC prognosis and potentially accelerates the occurrence and development of HCC via metabolic perturbations pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lan-Shan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ji-Tian Chen
- Department of Pathology, People's Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zi Wu
- Department of Pathology, People's Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, China
| | - Wei-Ying He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
6
|
Vázquez-Carretero MD, Carvajal AE, Serrano-Morales JM, García-Miranda P, Ilundain AA, Peral MJ. The Synaptojanins in the murine small and large intestine. J Bioenerg Biomembr 2016; 48:569-579. [DOI: 10.1007/s10863-016-9689-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023]
|
7
|
Tsai WC, Chen CL, Chen HC. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling. Oncotarget 2016. [PMID: 26204488 PMCID: PMC4695156 DOI: 10.18632/oncotarget.4313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells.
Collapse
Affiliation(s)
- Wan-Chen Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Lin Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institutue of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Jacob A, Prekeris R. The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol 2015; 3:4. [PMID: 25699257 PMCID: PMC4313772 DOI: 10.3389/fcell.2015.00004] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/09/2015] [Indexed: 01/07/2023] Open
Abstract
The dissemination of cancer cells from the primary tumor to a distant site, known as metastasis, is the main cause of mortality in cancer patients. Metastasis is a very complex cellular process that involves many steps, including the breaching of the basement membrane (BM) to allow the movement of cells through tissues. The BM breach occurs via highly regulated and localized remodeling of the extracellular matrix (ECM), which is mediated by formation of structures, known as invadopodia, and targeted secretion of matrix metalloproteinases (MMPs). Recently, invadopodia have emerged as key cellular structures that regulate the metastasis of many cancers. Furthermore, targeting of various cytoskeletal modulators and MMPs has been shown to play a major role in regulating invadopodia function. Here, we highlight recent findings regarding the regulation of protein targeting during invadopodia formation and function.
Collapse
Affiliation(s)
- Abitha Jacob
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver Aurora, CO, USA
| |
Collapse
|
9
|
Ben-Chetrit N, Chetrit D, Russell R, Körner C, Mancini M, Abdul-Hai A, Itkin T, Carvalho S, Cohen-Dvashi H, Koestler WJ, Shukla K, Lindzen M, Kedmi M, Lauriola M, Shulman Z, Barr H, Seger D, Ferraro DA, Pareja F, Gil-Henn H, Lapidot T, Alon R, Milanezi F, Symons M, Ben-Hamo R, Efroni S, Schmitt F, Wiemann S, Caldas C, Ehrlich M, Yarden Y. Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Sci Signal 2015; 8:ra7. [PMID: 25605973 DOI: 10.1126/scisignal.2005537] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amplified HER2, which encodes a member of the epidermal growth factor receptor (EGFR) family, is a target of effective therapies against breast cancer. In search for similarly targetable genomic aberrations, we identified copy number gains in SYNJ2, which encodes the 5'-inositol lipid phosphatase synaptojanin 2, as well as overexpression in a small fraction of human breast tumors. Copy gain and overexpression correlated with shorter patient survival and a low abundance of the tumor suppressor microRNA miR-31. SYNJ2 promoted cell migration and invasion in culture and lung metastasis of breast tumor xenografts in mice. Knocking down SYNJ2 impaired the endocytic recycling of EGFR and the formation of cellular lamellipodia and invadopodia. Screening compound libraries identified SYNJ2-specific inhibitors that prevented cell migration but did not affect the related neural protein SYNJ1, suggesting that SYNJ2 is a potentially druggable target to block cancer cell migration.
Collapse
Affiliation(s)
- Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Chetrit
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roslin Russell
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Tomer Itkin
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Silvia Carvalho
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Cohen-Dvashi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wolfgang J Koestler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kirti Shukla
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merav Kedmi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Haim Barr
- INCPM, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dalia Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniela A Ferraro
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fresia Pareja
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hava Gil-Henn
- Faculty of Medicine, Bar-Ilan University, Safed 13115, Israel
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Marc Symons
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan 52900, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan 52900, Israel
| | | | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Razidlo GL, Schroeder B, Chen J, Billadeau DD, McNiven MA. Vav1 as a central regulator of invadopodia assembly. Curr Biol 2013; 24:86-93. [PMID: 24332539 DOI: 10.1016/j.cub.2013.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/20/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023]
Abstract
Invadopodia are protrusive structures used by tumor cells for degradation of the extracellular matrix to promote invasion [1]. Invadopodia formation and function are regulated by cytoskeletal-remodeling pathways and the oncogenic kinase Src. The guanine nucleotide exchange factor Vav1, which is an activator of Rho family GTPases, is ectopically expressed in many pancreatic cancers, where it promotes tumor cell survival and migration [2, 3]. We have now determined that Vav1 is also a potent regulator of matrix degradation by pancreatic tumor cells as depletion of Vav1 by siRNA-mediated knockdown inhibits the formation of invadopodia. This requires the exchange function of Vav1 toward the GTPase Cdc42, which is required for invadopodia assembly [4, 5]. In addition, we have determined that Src-mediated phosphorylation and activation of Vav1 are both required for, and, unexpectedly, sufficient for, invadopodia formation. Expression of Vav1 Y174F, which mimics its activated state, is a potent inducer of invadopodia formation through Cdc42, even in the absence of Src activation and phosphorylation of other Src substrates, such as cortactin. Thus, these data identify a novel mechanism by which Vav1 can enhance the tumorigenicity and invasive potential of cancer cells. These data suggest that Vav1 promotes the matrix-degrading processes underlying tumor cell migration and further, under conditions of ectopic Vav1 expression, that Vav1 is a central regulator and major driver of invasive matrix remodeling by pancreatic tumor cells.
Collapse
Affiliation(s)
- Gina L Razidlo
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Barbara Schroeder
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A McNiven
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|