1
|
Torre-Cea I, Berlana-Galán P, Guerra-Paes E, Cáceres-Calle D, Carrera-Aguado I, Marcos-Zazo L, Sánchez-Juanes F, Muñoz-Félix JM. Basement membranes in lung metastasis growth and progression. Matrix Biol 2025; 135:135-152. [PMID: 39719224 DOI: 10.1016/j.matbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies. These basement membranes play a critical role in the progression of lung metastases, influencing multiple stages of the metastatic cascade, from the acquisition of an aggressive phenotype to intravasation, extravasation and colonization of secondary sites. This review examines the biological composition of basement membranes, focusing on their core components-collagens, fibronectin, and laminin-and their specific roles in cancer progression. Additionally, we discuss the function of integrins as primary mediators of cell adhesion and signaling between tumor cells, basement membranes and the extracellular matrix, as well as their implications for metastatic growth in the lung. We also explore vascular co-option (VCO) as a form of tumor growth resistance linked to basement membranes and tumor vasculature. Finally, the review covers current clinical therapies targeting tumor adhesion, extracellular matrix remodeling, and vascular development, aiming to improve the precision and effectiveness of treatments against lung metastases.
Collapse
Affiliation(s)
- Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| | - José M Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| |
Collapse
|
2
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
3
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
4
|
Xue F, Wang T, Shi H, Feng H, Feng G, Wang R, Yao Y, Yuan H. CD73 facilitates invadopodia formation and boosts malignancy of head and neck squamous cell carcinoma via the MAPK signaling pathway. Cancer Sci 2022; 113:2704-2715. [PMID: 35657703 PMCID: PMC9357645 DOI: 10.1111/cas.15452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated adenosine generated by CD73 (ecto‐5′‐nucleotidase; NT5E) could boost immunosuppressive responses and promote immune evasion in the tumor microenvironment. However, despite the immune response, CD73 could also promote tumor progression in a variety of cancers, and the nonimmunologic role and corresponding molecular mechanism of CD73 involved in head and neck squamous cell carcinoma (HNSCC) progression are not well characterized. Here, we demonstrated that CD73/NT5E is overexpressed in HNSCC tissues and predicts poor prognosis. Suppression of CD73 inhibited the proliferation, migration, and invasion of HNSCC cell lines (CAL27 and HN4) in vitro and in vivo. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) predicted that CD73 may be involved in invadopodia formation and MAPK signaling activation. As expected, knockdown of CD73 inhibited the MAPK signaling pathway, and the suppressive effect of CD73 knockdown on proliferation, migration, invasion, and invadopodia formation was reversed by a MAPK signaling activator. Our results suggest that CD73 could promote the proliferation, migration, invasion, and invadopodia formation of HNSCC via the MAPK signaling pathway and provide new mechanistic insights into the nonimmunological role of CD73 in HNSCC.
Collapse
Affiliation(s)
- Feifei Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tianxiao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hao Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongjie Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Guanying Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yao Yao
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
5
|
He L, Zhao X, He L. LINC01140 Alleviates the Oxidized Low-Density Lipoprotein-Induced Inflammatory Response in Macrophages via Suppressing miR-23b. Inflammation 2020; 43:66-73. [PMID: 31748847 DOI: 10.1007/s10753-019-01094-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our previous study has demonstrated that miR-23b enhances oxidized low-density lipoprotein (oxLDL)-induced inflammatory response of macrophages through the A20/NF-κB signaling pathway, thus contributing to atherosclerosis. This study aims to further investigate the upstream regulators of miR-23b in mediating oxLDL-induced inflammatory response. Human monocyte cell line THP1 was induced to differentiate into macrophages followed by the oxLDL stimulation of inflammatory response. The expression of miR-23b, LINC01140, and p53 mRNA was detected by quantitative PCR. The combination of miR-23b and LINC01140 was confirmed by luciferase reporter assay and RNA immunoprecipitation. The binding of p53 and LINC01140 promoter was determined by luciferase reporter assay. The level of inflammatory cytokines, including MCP-1, TNF-α, and IL-1β, was assessed by enzyme-linked immunosorbent assay. LINC01140 was downregulated, while p53 and miR-23b were upregulated in oxLDL-induced inflammatory response of macrophages. Overexpression of LINC01140 reduced NF-κB activity by reducing miR-23b and increasing A20. The transcription of LINC01140 was inhibited by binding of p53 and the LINC01140 promoter region. Knockdown of p53 significantly reduced NF-κB activity and level of inflammatory cytokines by promoting LINC01140 expression. Our findings demonstrated that LINC01140 acts as an anti-inflammatory factor through negatively regulating miR-23/A20 axis. In addition, p53 is identified as a transcriptional repressor of LINC01140.
Collapse
Affiliation(s)
- Liping He
- Department of Cardiology, People's Hospital of Inner Mongolia Autonomous region, No. 20 of Zhaowuda Road, Hohhot city, 010020, Inner Mongolia, China
| | - Xingsheng Zhao
- Department of Cardiology, People's Hospital of Inner Mongolia Autonomous region, No. 20 of Zhaowuda Road, Hohhot city, 010020, Inner Mongolia, China.
| | - Leping He
- The Center of Computer Information, People's Hospital of Inner Mongolia Autonomous region, Hohhot, 010020, Inner Mongolia, China
| |
Collapse
|
6
|
O’Sullivan MJ, Lindsay AJ. The Endosomal Recycling Pathway-At the Crossroads of the Cell. Int J Mol Sci 2020; 21:ijms21176074. [PMID: 32842549 PMCID: PMC7503921 DOI: 10.3390/ijms21176074] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.
Collapse
|
7
|
Zhao K, Wang D, Zhao X, Wang C, Gao Y, Liu K, Wang F, Wu X, Wang X, Sun L, Zang J, Mei Y. WDR63 inhibits Arp2/3-dependent actin polymerization and mediates the function of p53 in suppressing metastasis. EMBO Rep 2020; 21:e49269. [PMID: 32128961 DOI: 10.15252/embr.201949269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that p53 plays a suppressive role in cancer metastasis, yet the underlying mechanism remains largely unclear. Regulation of actin dynamics is essential for the control of cell migration, which is an important step in metastasis. The Arp2/3 complex is a major nucleation factor to initiate branched actin polymerization that drives cell migration. However, it is unknown whether p53 could suppress metastasis through modulating Arp2/3 function. Here, we report that WDR63 is transcriptionally upregulated by p53. We show with migration assays and mouse xenograft models that WDR63 negatively regulates cell migration, invasion, and metastasis downstream of p53. Mechanistically, WDR63 interacts with the Arp2/3 complex and inhibits Arp2/3-mediated actin polymerization. Furthermore, WDR63 overexpression is sufficient to dampen the increase in cell migration, invasion, and metastasis induced by p53 depletion. Together, these findings suggest that WDR63 is an important player in the regulation of Arp2/3 function and also implicate WDR63 as a critical mediator of p53 in suppressing metastasis.
Collapse
Affiliation(s)
- Kailiang Zhao
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Decai Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenfeng Wang
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yongxiang Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiyue Liu
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Wang
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianning Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuejuan Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Linfeng Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianye Zang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yide Mei
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
Smirnov A, Cappello A, Lena AM, Anemona L, Mauriello A, Di Daniele N, Annicchiarico-Petruzzelli M, Melino G, Candi E. ZNF185 is a p53 target gene following DNA damage. Aging (Albany NY) 2019; 10:3308-3326. [PMID: 30446632 PMCID: PMC6286825 DOI: 10.18632/aging.101639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
The transcription factor p53 is a key player in the tumour suppressive DNA damage response and a growing number of target genes involved in these pathways has been identified. p53 has been shown to be implicated in controlling cell motility and its mutant form enhances metastasis by loss of cell directionality, but the p53 role in this context has not yet being investigated. Here, we report that ZNF185, an actin cytoskeleton-associated protein from LIM-family of Zn-finger proteins, is induced following DNA-damage. ChIP-seq analysis, chromatin crosslinking immune-precipitation experiments and luciferase assays demonstrate that ZNF185 is a bona fide p53 target gene. Upon genotoxic stress, caused by DNA-damaging drug etoposide and UVB irradiation, ZNF185 expression is up-regulated and in etoposide-treated cells, ZNF185 depletion does not affect cell proliferation and apoptosis, but interferes with actin cytoskeleton remodelling and cell polarization. Bioinformatic analysis of different types of epithelial cancers from both TCGA and GTEx databases showed a significant decrease in ZNF185 mRNA level compared to normal tissues. These findings are confirmed by tissue micro-array IHC staining. Our data highlight the involvement of ZNF185 and cytoskeleton changes in p53-mediated cellular response to genotoxic stress and indicate ZNF185 as potential biomarker for epithelial cancer diagnosis.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Angela Cappello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome 00133, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy.,Istituto Dermopatico dell'Immacolata-IRCCS, Rome 00163, Italy
| |
Collapse
|
9
|
He S, Carman CV, Lee JH, Lan B, Koehler S, Atia L, Park CY, Kim JH, Mitchel JA, Park JA, Butler JP, Lu Q, Fredberg JJ. The tumor suppressor p53 can promote collective cellular migration. PLoS One 2019; 14:e0202065. [PMID: 30707705 PMCID: PMC6358060 DOI: 10.1371/journal.pone.0202065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Loss of function of the tumor suppressor p53 is known to increase the rate of migration of cells transiting the narrow pores of the traditional Boyden chamber assay. Here by contrast we investigate how p53 impacts the rate of cellular migration within a 2D confluent cell layer and a 3D collagen-embedded multicellular spheroid. We use two human carcinoma cell lines, the bladder carcinoma EJ and the colorectal carcinoma HCT116. In the confluent 2-D cell layer, for both EJ and HCT cells the migratory speeds and effective diffusion coefficients for the p53 null cells were significantly smaller than in p53-expressing cells. Compared to p53 expressers, p53-null cells exhibited more organized cortical actin rings together with reduced front-rear cell polarity. Furthermore, loss of p53 caused cells to exert smaller traction forces upon their substrates, and reduced formation of cryptic lamellipodia. In the 3D multicellular spheroid, loss of p53 consistently reduced collective cellular migration into surrounding collagen matrix. As regards the role of p53 in cellular migration, extrapolation from the Boyden chamber assay to other cellular microenvironments is seen to be fraught even in terms of the sign of the effect. Together, these paradoxical results show that the effects of p53 on cellular migration are context-dependent.
Collapse
Affiliation(s)
- Shijie He
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Christopher V. Carman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jung Hyun Lee
- Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United states of America
| | - Bo Lan
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Stephan Koehler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Lior Atia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Chan Young Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jae Hun Kim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jennifer A. Mitchel
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - James P. Butler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Quan Lu
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jeffrey J. Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| |
Collapse
|
10
|
NEDD9 stimulated MMP9 secretion is required for invadopodia formation in oral squamous cell carcinoma. Oncotarget 2018; 9:25503-25516. [PMID: 29876004 PMCID: PMC5986644 DOI: 10.18632/oncotarget.25347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a component of the metastatic signatures of melanoma, breast cancer, glioblastoma, lung cancer and head and neck squamous cell carcinoma (HNSCC). Here we tested the efficacy of NEDD9's domains in stimulating matrix metalloproteinase (MMP) secretion and invadopodia formation in cells stably expressing various NEDD9 mutants. Replacement of the 13 YxxP motif substrate domain (SD) tyrosines and the C-terminal Y629 with phenylalanines (F14NEDD9) eliminated tyrosine phosphorylation, MMP9 secretion and loss of invadopodia formation. Mutation of the N-terminal SH3 domain Y12 to glutamic acid (Y12ENEDD9) or phenylalanine (Y12FNEDD9) reduced MMP9 secretion and inhibited invadopodia formation. SH3 domain deletion (∆SH3NEDD9) resulted in the loss of MMP9 secretion and a lack of invadopodia formation. The SH3–SD domain (SSNEDD9) construct exhibited tyrosine phosphorylation and stimulated MMP9 secretion, as did ∆CTNEDD9 which lacked the C-terminus (∆C-terminal; ∆CT). E13NEDD9 expression blocked MMP9 secretion and invadopodia formation. MICAL1 (molecule interacting with Cas-L1) silencing with a short hairpin RNA reduced MMP9 secretion, vimentin and E-cadherin levels while increasing N-cadherin and Rab6 levels, consistent with reduced invasive behavior. These findings indicate that NEDD9 SD phosphorylation and SH3 domain interactions are necessary for increasing MMP9 secretion and invadopodia formation.
Collapse
|
11
|
Meirson T, Gil-Henn H. Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updat 2018; 39:1-17. [PMID: 30075834 DOI: 10.1016/j.drup.2018.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Dissemination of cancer cells from the primary tumor and their spread to distant sites of the body is the leading cause of mortality in metastatic cancer patients. Metastatic cancer cells invade surrounding tissues and blood vessels by forming F-actin-rich protrusions known as invadopodia, which degrade the extracellular matrix and enable invasion of tumor cells through it. Invadopodia have now been observed in vivo, and recent evidence demonstrates direct molecular links between assembly of invadopodia and cancer metastasis in both mouse models and in human patients. While significant progress has been achieved in the last decade in understanding the molecular mechanisms and signaling pathways regulating invadopodia formation and function, the application of this knowledge to development of prognostic and therapeutic approaches for cancer metastasis has not been discussed before. Here, we provide a detailed overview of current prognostic markers and tests for cancer metastasis and discuss their advantages, disadvantages, and their predicted efficiency. Using bioinformatic patient database analysis, we demonstrate, for the first time, a significant correlation between invadopodia-associated genes to breast cancer metastasis, suggesting that invadopodia could be used as both a prognostic marker and as a therapeutic target for blocking cancer metastasis. We include here a novel network interaction map of invadopodia-associated proteins with currently available inhibitors, demonstrating a central role for the recently identified EGFR-Pyk2-Src-Arg-cortactin invadopodial pathway, to which re-purposing of existent inhibitors could be used to block breast cancer metastasis. We then present an updated overview of current cancer-related clinical trials, demonstrating the negligible number of trials focusing on cancer metastasis. We also discuss the difficulties and complexity of performing cancer metastasis clinical trials, and the possible development of anti-metastasis drug resistance when using a prolonged preventive treatment with invadopodia inhibitors. This review presents a new perspective on invadopodia-mediated tumor invasiveness and may lead to the development of novel prognostic and therapeutic approaches for cancer metastasis.
Collapse
Affiliation(s)
- Tomer Meirson
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
12
|
Memmel S, Sisario D, Zöller C, Fiedler V, Katzer A, Heiden R, Becker N, Eing L, Ferreira FLR, Zimmermann H, Sauer M, Flentje M, Sukhorukov VL, Djuzenova CS. Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities. Oncotarget 2018; 8:45298-45310. [PMID: 28424411 PMCID: PMC5542187 DOI: 10.18632/oncotarget.16847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023] Open
Abstract
High invasiveness and resistance to chemo- and radiotherapy of glioblastoma multiforme (GBM) make it the most lethal brain tumor. Therefore, new treatment strategies for preventing migration and invasion of GBM cells are needed. Using two different migration assays, Western blotting, conventional and super-resolution (dSTORM) fluorescence microscopy we examine the effects of the dual PI3K/mTOR-inhibitor PI-103 alone and in combination with the Hsp90 inhibitor NVP-AUY922 and/or irradiation on the migration, expression of marker proteins, focal adhesions and F-actin cytoskeleton in two GBM cell lines (DK-MG and SNB19) markedly differing in their invasive capacity. Both lines were found to be strikingly different in morphology and migration behavior. The less invasive DK-MG cells maintained a polarized morphology and migrated in a directionally persistent manner, whereas the highly invasive SNB19 cells showed a multipolar morphology and migrated randomly. Interestingly, a single dose of 2 Gy accelerated wound closure in both cell lines without affecting their migration measured by single-cell tracking. PI-103 inhibited migration of DK-MG (p53 wt, PTEN wt) but not of SNB19 (p53 mut, PTEN mut) cells probably due to aberrant reactivation of the PI3K pathway in SNB19 cells treated with PI-103. In contrast, NVP-AUY922 exerted strong anti-migratory effects in both cell lines. Inhibition of cell migration was associated with massive morphological changes and reorganization of the actin cytoskeleton. Our results showed a cell line-specific response to PI3K/mTOR inhibition in terms of GBM cell motility. We conclude that anti-migratory agents warrant further preclinical investigation as potential therapeutics for treatment of GBM.
Collapse
Affiliation(s)
- Simon Memmel
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Dmitri Sisario
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Caren Zöller
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Robin Heiden
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Nicholas Becker
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Lorenz Eing
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Fábio L R Ferreira
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer-Institut für Biomedizinische Technik, Sulzbach, Germany.,Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Daizumoto K, Yoshimaru T, Matsushita Y, Fukawa T, Uehara H, Ono M, Komatsu M, Kanayama HO, Katagiri T. A DDX31/Mutant-p53/EGFR Axis Promotes Multistep Progression of Muscle-Invasive Bladder Cancer. Cancer Res 2018; 78:2233-2247. [PMID: 29440146 DOI: 10.1158/0008-5472.can-17-2528] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/26/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
The p53 and EGFR pathways are frequently altered in bladder cancer, yet their contributions to its progression remain elusive. Here we report that DEAD box polypeptide 31 (DDX31) plays a critical role in the multistep progression of muscle-invasive bladder cancer (MIBC) through its sequential interactions with mutant p53 (mutp53) and EGFR. In early MIBC cells, nuclear DDX31-bound mutp53/SP1 enhanced mutp53 transcriptional activation, leading to migration and invasion of MIBC. Cytoplasmic DDX31 also bound EGFR and phospho-nucleolin in advanced MIBC, leading to EGFR-Akt signaling activation. High expression of both cytoplasmic DDX31 and p53 proteins correlated with poor prognosis in patients with MIBC, and blocking the DDX31/NCL interaction resulted in downregulation of EGFR/Akt signaling, eliciting an in vivo antitumor effect against bladder cancer. These findings reveal that DDX31 cooperates with mutp53 and EGFR to promote progression of MIBC, and inhibition of DDX31/NCL formation may lead to potential treatment strategies for advanced MIBC.Significance: DDX31 cooperates with mutp53 and EGFR to promote progression of muscle invasive bladder cancer. Cancer Res; 78(9); 2233-47. ©2018 AACR.
Collapse
Affiliation(s)
- Kei Daizumoto
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan.,Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Tomoya Fukawa
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan.,Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Hiro-Omi Kanayama
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan.
| |
Collapse
|
14
|
Hauck PM, Wolf ER, Olivos DJ, Batuello CN, McElyea KC, McAtarsney CP, Cournoyer RM, Sandusky GE, Mayo LD. Early-Stage Metastasis Requires Mdm2 and Not p53 Gain of Function. Mol Cancer Res 2017; 15:1598-1607. [PMID: 28784612 DOI: 10.1158/1541-7786.mcr-17-0174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 01/15/2023]
Abstract
Metastasis of cancer cells to distant organ systems is a complex process that is initiated with the programming of cells in the primary tumor. The formation of distant metastatic foci is correlated with poor prognosis and limited effective treatment options. We and others have correlated Mouse double minute 2 (Mdm2) with metastasis; however, the mechanisms involved have not been elucidated. Here, it is reported that shRNA-mediated silencing of Mdm2 inhibits epithelial-mesenchymal transition (EMT) and cell migration. In vivo analysis demonstrates that silencing Mdm2 in both post-EMT and basal/triple-negative breast cancers resulted in decreased primary tumor vasculature, circulating tumor cells, and metastatic lung foci. Combined, these results demonstrate the importance of Mdm2 in orchestrating the initial stages of migration and metastasis.Implication: Mdm2 is the major factor in the initiation of metastasis. Mol Cancer Res; 15(11); 1598-607. ©2017 AACR.
Collapse
Affiliation(s)
- Paula M Hauck
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - Eric R Wolf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David J Olivos
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher N Batuello
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kyle C McElyea
- Department of Pathology and Lab Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ciarán P McAtarsney
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - R Michael Cournoyer
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Lab Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
15
|
Xu J, Jiao J, Xu W, Ji L, Jiang D, Xie S, Kubra S, Li X, Fu J, Xiao J, Zhang B. Mutant p53 promotes cell spreading and migration via ARHGAP44. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1019-1029. [DOI: 10.1007/s11427-016-9040-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/09/2017] [Indexed: 01/15/2023]
|
16
|
Cao RY, Eves R, Jia L, Funk CD, Jia Z, Mak AS. Effects of p53-knockout in vascular smooth muscle cells on atherosclerosis in mice. PLoS One 2017; 12:e0175061. [PMID: 28362832 PMCID: PMC5376331 DOI: 10.1371/journal.pone.0175061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
In vitro and in vivo evidence has indicated that the tumor suppressor, p53, may play a significant role in the regulation of atherosclerotic plaque formation. In vivo studies using global knockout mice models, however, have generated inconclusive results that do not address the roles of p53 in various cell types involved in atherosclerosis. In this study, we have specifically ablated p53 in vascular smooth muscle cells (VSMC) in the ApoE-/- mouse model to investigate the roles of p53 in VSMC in atherosclerotic plaque formation and stability. We found that p53 deficiency in VSMC alone did not affect the overall size of atherosclerotic lesions. However, there was a significant increase in the number of p53-/- VSMC in the fibrous caps of atherosclerotic plaques in the early stages of plaque development. Loss of p53 results in migration of VSMC at a faster rate using wound healing assays and augments PDGF-induced formation of circular dorsal ruffles (CDR), known to be involved in cell migration and internalization of surface receptors. Furthermore, aortic VSMC from ApoE-/- /p53-/- mice produce significantly more podosomes and are more invasive. We conclude that p53-/- VSMC are enriched in the fibrous caps of lesions at early stages of plaque formation, which is caused in part by an increase in VSMC migration and invasion as shown by p53-/- VSMC in culture having significantly higher rates of migration and producing more CDRs and invasive podosomes.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Cell Movement/genetics
- Cell Movement/physiology
- Cells, Cultured
- Disease Models, Animal
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Richard Yang Cao
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Lilly Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Colin D. Funk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alan S. Mak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Ni T, Li XY, Lu N, An T, Liu ZP, Fu R, Lv WC, Zhang YW, Xu XJ, Grant Rowe R, Lin YS, Scherer A, Feinberg T, Zheng XQ, Chen BA, Liu XS, Guo QL, Wu ZQ, Weiss SJ. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 2016; 18:1221-1232. [PMID: 27749822 DOI: 10.1038/ncb3425] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/16/2016] [Indexed: 12/17/2022]
Abstract
The zinc-finger transcription factor Snail1 is inappropriately expressed in breast cancer and associated with poor prognosis. While interrogating human databases, we uncovered marked decreases in relapse-free survival of breast cancer patients expressing high Snail1 levels in tandem with wild-type, but not mutant, p53. Using a Snail1 conditional knockout model of mouse breast cancer that maintains wild-type p53, we find that Snail1 plays an essential role in tumour progression by controlling the expansion and activity of tumour-initiating cells in preneoplastic glands and established tumours, whereas it is not required for normal mammary development. Growth and survival of preneoplastic as well as neoplastic mammary epithelial cells is dependent on the formation of a Snail1/HDAC1/p53 tri-molecular complex that deacetylates active p53, thereby promoting its proteasomal degradation. Our findings identify Snail1 as a molecular bypass that suppresses the anti-proliferative and pro-apoptotic effects exerted by wild-type p53 in breast cancer.
Collapse
Affiliation(s)
- Ting Ni
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Teng An
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Ping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Cong Lv
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Wei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - R Grant Rowe
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yong-Shun Lin
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Amanda Scherer
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tamar Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiao-Qi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Bao-An Chen
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 210009, China
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, The Dana-Farber Cancer Institute, Harvard School of Public Health, Harvard University, Boston, Massachusetts 02115, USA
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory of Carcinogenesis and Intervention, Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
18
|
Shi D, Murty VV, Gu W. PCDH10, a novel p53 transcriptional target in regulating cell migration. Cell Cycle 2015; 14:857-66. [PMID: 25590240 DOI: 10.1080/15384101.2015.1004935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cell cycle arrest, senescence and apoptosis are commonly regarded as the major tumor suppression mechanisms of p53. However, accumulating evidence indicates that loss of these canonical functions is not sufficient for tumor formation, highlighting the complexity of p53-mediated tumor suppression. PCDH10 belongs to a proto cadherin protein family and is a potential tumor suppressor protein as the dysregulation of PCDH10 gene frequently existed in multiple human tumors. Here, we found that PCDH10 is a transcriptional target of p53 and that the levels of PCDH10 expression can be induced by wild type p53 but not mutant p53 in a number of human cancer cell lines. Moreover, we identified a p53 consensus binding site located in the PCDH10 promoter region that is responsive to p53 regulation. Although upregulation of PCDH10 has no obvious effect on growth arrest or apoptosis in human cells, PCDH10 exhibits inhibitory roles in cancer cell motility and cell migration. These results suggest an important role of p53 in regulating tumor cell migration through activating PCDH10 expression and support the notion that non-canonical activities of p53 may contribute to its tumor suppressor function in vivo.
Collapse
Affiliation(s)
- Dingding Shi
- a Institute for Cancer Genetics and Department of Pathology and Cell Biology; College of Physicians & Surgeons ; Columbia University ; New York , NY USA
| | | | | |
Collapse
|
19
|
Reddy VR, Annamalai T, Narayanan V, Ramanathan A. Hypermethylation of promoter region of LATS1--a CDK interacting protein in oral squamous cell carcinomas--a pilot study in India. Asian Pac J Cancer Prev 2015; 16:1599-603. [PMID: 25743838 DOI: 10.7314/apjcp.2015.16.4.1599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic silencing of tumor suppressor genes due to promoter hypermethylation is one of the frequent mechanisms observed in cancers. Hypermethylation of several tumor suppressor genes involved in cell cycle regulation has been reported in many types of tumors including oral squamous cell carcinomas. LATS1 (Large Tumor Suppressor, isoform 1) is a novel tumor suppressor gene that regulates cell cycle progression by forming complexes with the cyclin dependent kinase, CDK1. Promoter hypermethylation of the LATS1 gene has been observed in several carcinomas and also has been linked with prognosis. However, the methylation status of LATS1 in oral squamous cell carcinomas is not known. As oral cancer is one of the most prevalent forms of cancer in India, the present study was designed to investigate the methylation status of LATS1 promoter and associate it with histopathological findings in order to determine any associations of the genetic status with stage of differentiation. MATERIALS AND METHODS Tumor chromosomal DNA isolated from biopsy tissues of thirteen oral squamous cell carcinoma biopsy tissues were subjected to digestion with methylation sensitive HpaII enzyme followed by amplification with primers flanking CCGG motifs in promoter region of LATS1 gene. The PCR amplicons were subsequently subjected to agarose gel electrophoresis along with undigested amplification control. RESULTS HpaII enzyme based methylation sensitive PCR identified LATS1 promoter hypermethylation in seven out of thirteen oral squamous cell carcinoma samples. CONCLUSIONS The identification of LATS1 promoter hypermethylation in seven oral squamous cell carcinoma samples (54%), which included one sample with epithelial dysplasia, two early invasive and one moderately differentiated lesions indicates that the hypermethylation of this gene may be one of the early event during carcinogenesis. To the best of our knowledge, this is the first study to have explored and identified positive association between LATS1 promoter hypermethylation with histopathological features in oral squamous cell carcinomas.
Collapse
Affiliation(s)
- Vijaya Ramakrishna Reddy
- Oral and Maxillofacial Surgery, Rajah Muthiah Dental College and Hospital, Annamalai University, Annamalai Nagar, India E-mail :
| | | | | | | |
Collapse
|
20
|
Lei M, Xie W, Sun E, Sun Y, Tian D, Liu C, Han R, Li N, Liu M, Han R, Liu L. microRNA-21 Regulates Cell Proliferation and Migration and Cross Talk with PTEN and p53 in Bladder Cancer. DNA Cell Biol 2015; 34:626-32. [PMID: 26230405 DOI: 10.1089/dna.2015.2868] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mingde Lei
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Wanqin Xie
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Erlin Sun
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yan Sun
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Dawei Tian
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Rong Han
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Na Li
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Min Liu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Ruifa Han
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Liwei Liu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
21
|
|
22
|
The roles of akt isoforms in the regulation of podosome formation in fibroblasts and extracellular matrix invasion. Cancers (Basel) 2015; 7:96-111. [PMID: 25575302 PMCID: PMC4381253 DOI: 10.3390/cancers7010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal cells employ actin-based membrane protrusions called podosomes and invadopodia for cross-tissue migration during normal human development such as embryogenesis and angiogenesis, and in diseases such as atherosclerosis plaque formation and cancer cell metastasis. The Akt isoforms, downstream effectors of phosphatidylinositol 3 kinase (PI3K), play crucial roles in cell migration and invasion, but their involvement in podosome formation and cell invasion is not known. In this study, we have used Akt1 and/or Akt2 knockout mouse embryonic fibroblasts and Akt3-targeted shRNA to determine the roles of the three Akt isoforms in Src and phorbol ester-induced podosome formation, and extracellular matrix (ECM) digestion. We found that deletion or knockdown of Akt1 significantly reduces Src-induced formation of podosomes and rosettes, and ECM digestion, while suppression of Akt2 has little effect. In contrast, Akt3 knockdown by shRNA increases Src-induced podosome/rosette formation and ECM invasion. These data suggest that Akt1 promotes, while Akt3 suppresses, podosome formation induced by Src, and Akt2 appears to play an insignificant role. Interestingly, both Akt1 and Akt3 suppress, while Akt2 enhances, phorbol ester-induced podosome formation. These data show that Akt1, Akt2 and Akt3 play different roles in podosome formation and ECM invasion induced by Src or phorbol ester, thus underscoring the importance of cell context in the roles of Akt isoforms in cell invasion.
Collapse
|
23
|
Payne LJ, Eves RL, Jia L, Mak AS. p53 Down regulates PDGF-induced formation of circular dorsal ruffles in rat aortic smooth muscle cells. PLoS One 2014; 9:e108257. [PMID: 25247424 PMCID: PMC4172730 DOI: 10.1371/journal.pone.0108257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023] Open
Abstract
The tumor suppressor, p53, negatively regulates cell migration and invasion in addition to its role in apoptosis, cell cycle regulation and senescence. Here, we study the roles of p53 in PDGF-induced circular dorsal ruffle (CDR) formation in rat aortic smooth muscle (RASM) cells. In primary and immortalized RASM cells, up-regulation of p53 expression or increase in activity with doxorubicin inhibits CDR formation. In contrast, shRNA-knockdown of p53 or inhibition of its activity with pifithrin α promotes CDR formation. p53 acts by up-regulating PTEN expression, which antagonizes Rac and Cdc42 activation. Both lipid and protein phosphatase activities of PTEN are required for maximal suppression of CDR, but the lipid activity clearly plays the dominant role. N-WASP, the downstream effector of Cdc42, is the major positive contributor to CDR formation in RASM, and is an indirect target of p53. The Rac effector, WAVE2, appears to also play a minor role, while WAVE1 has no significant effect in CDR formation. In sum, we propose that p53 suppresses PDGF-induced CDR formation in RASM cells by upregulating PTEN leading mainly to the inhibition of the Cdc42-N-WASP pathway.
Collapse
Affiliation(s)
- Laura J. Payne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert L. Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lilly Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alan S. Mak
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Suzuki M, Minami A, Nakanishi A, Kobayashi K, Matsuda S, Ogura Y, Kitagishi Y. Atherosclerosis and tumor suppressor molecules (review). Int J Mol Med 2014; 34:934-40. [PMID: 25069568 DOI: 10.3892/ijmm.2014.1866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis, the major cause of heart attack and stroke, is a chronic inflammatory disease characterized by the formation of atherosclerotic plaque. Oxidized low-density lipoprotein through increased oxidative stress has been identified as one of the primary factors responsible for atherogenesis. Cell proliferation and death are key processes in the progression of atherosclerosis. The oxidative environment in areas of lipid accumulation is mainly created by the production of reactive oxygen species, which are assumed to mediate vascular tissue injury. Oxidative DNA damage and levels of DNA repair are reduced during dietary lipid lowering. The tumor suppressor molecules play a pivotal role in regulating cell proliferation, DNA repair and cell death, which are important processes in regulating the composition of atherosclerotic plaque. Accordingly, in this review, we discuss the fundamental role of tumor suppressor molecules in regulating atherogenesis. In particular, we discuss how tumor suppressor molecules are activated in the complex environment of atherosclerotic plaque, and regulate growth arrest, cell senescence and the apoptosis of vascular smooth muscle cells, which may protect against the progression of atherosclerosis. In addition, we discuss promising alternatives to the use of medications (such as statin) against atherosclerosis, namely diet, with the use of plant-derived supplements to modulate the expression and/or activity of tumor suppressor molecules. We also summarize the progress of research made on herbs with a focus on the modulatory roles of tumor suppressors, and on the molecular mechanisms underlying the prevention if atherosclerosis, supporting designs for further research in this field.
Collapse
Affiliation(s)
- Miho Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Keiko Kobayashi
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| |
Collapse
|